[1] Aristoff J., Delmore S., Hernandez D., Kao S., Leu T., Lin H., Ramiscal J.A., Zackas R., Bertrand’s
Paradox, a web-based Animation, http://web.mit.edu/tee/www/bertrand/problem.html
[2] Bertrand J. (1888), Calcul des probabilities; Paris, 1888.
[3] Chiu S. (2008); What is Randomness? in Probabilistic Analysis: Structuring, Processing and
Presenting Probabilistic Information; Chapter 11, Class manuscript, Stanford University 2002 and
revised September.
[4] Crofton M.W.(1885), Probability; Encyclopedia Britannica 19; 9th edition, 768-788.
[5] Kendall M.G., MORAN P.A.P. (1963), Geometrical Probability; Charles Griffen; London
[6] Holbrook J., KIM S.S. (2000), Bertrand’s Paradox Revisited; Math Intelligencer 22; 16-19.
[7] Jaynes E.T. (1973), The Well-Posed Problem; Found. Phys 3; 477-492.
[8] Larson R.C., Odonia A.R. (1981), Urban Operations Research; Prentice Hall, NJ, Sec. 3.3.2.; Book
available on the web at http://web.mit.edu/urban_or_book/www/book/.
[9] Marinoff L. (1994), A Resolution of Bertrand’s Paradox; Philos. Sci. 61; 1-24.
[10] Rosenberg E. (2004), The Expected Length of a Random Line Segment in a Rectangle; Operations
Research Letters 32; 99-102.
[11] Streit F. (1978), On a Statistical Approach to Bertrand’s Problem; Elem. Math. 33; 134-138.
[12] Tissler P.E. (1984), Bertrand's Paradox; The Mathematical Gazette (The Mathematical Association)
68(443); 15-19.