A novel robustness measure for multi-objective optimization problems under interval uncertainty

Document Type : Research Paper


School of Industrial Engineering, Iran University of Science and Technology, Tehran, Iran


In this paper, a novel robustness index is introduced to provide a measure of the robustness of a solution against variations in decision variables and parameters. Most of the proposed robustness measures in the literature consider only magnitude of variations in the objectives space and don’t take into account the direction, or in the other words, the type of variations. In this paper, two types of variation named dominating and Pareto variations are introduced and argued that the Pareto variations are more robust than the other one. An index is also proposed here to help measuring the proportion of dominating variations. We proved that this index is independent of magnitude of variations. A robustness index is developed based on these two measures. The robustness index is then used as an additional objective and constraint function so that the uncertain multi-objective optimization problem is transformed to a deterministic one. The resulting deterministic multi-objective optimization problem is solved by NSGA-III. Moreover, Mont Carlo simulation is used to evaluate solutions during the algorithm and compute the robustness index. Two test problems from the context of engineering design optimization are used to illustrate the applicability and efficiency of our proposed robustness index.


Main Subjects

Abdelaziz, F. B. (2012). Solution approaches for the multiobjective stochastic programming. European Journal of Operational Research, 216(1), 1-16.
Augusto, O. B., Bennis, F., & Caro, S. (2012). Multiobjective engineering design optimization problems: a sensitivity analysis approach. Pesquisa Operacional, 32, 575-596.
Avigad, G., & Branke, J. (2008). Embedded evolutionary multi-objective optimization for worst case robustness. Paper presented at the Proceedings of the 10th annual conference on Genetic and evolutionary computation, Atlanta, GA, USA.
Barrico, C., & Antunes, C. H. (2006). Robustness Analysis in Multi-Objective Optimization Using a Degree of Robustness Concept. Paper presented at the Evolutionary Computation, 2006. CEC 2006. IEEE Congress on.
Ben-Tal, A., Ghaoui, L. E., & Nemirovski, A. (2009). Robust optimization. Princeton and Oxford: Princeton University Press.
Bertsimas, D., Brown, D. B., & Caramanis, C. (2011). Theory and applications of robust optimization. SIAM review, 53(3), 464-501.
Bertsimas, D., & Thiele, A. (2004). A Robust Optimization Approach to Supply Chain Management. In D. Bienstock & G. Nemhauser (Eds.), Integer Programming and Combinatorial Optimization (Vol. 3064, pp. 86-100): Springer Berlin Heidelberg.
Bokrantz, R., & Fredriksson, A. (2017). Necessary and sufficient conditions for Pareto efficiency in robust multiobjective optimization. European Journal of Operational Research, 262(2), 682-692.
Branke, J. (1998). Creating robust solutions by means of evolutionary algorithms. In A. Eiben, T. Bäck, M. Schoenauer, & H.-P. Schwefel (Eds.), Parallel Problem Solving from Nature — PPSN V (Vol. 1498, pp. 119-128): Springer Berlin Heidelberg.
Chen, W., Unkelbach, J., Trofimov, A., Madden, T., Kooy, H., Bortfeld, T., & Craft, D. (2012). Including robustness in multi-criteria optimization for intensity-modulated proton therapy. Physics in Medicine and Biology, 57, 591.
Chi, Y., Xu, Y., & Zhang, R. (2020). Many-objective robust optimization for dynamic var planning to enhance voltage stability of a wind-energy power system. IEEE Transactions on Power Delivery.
Daryani, A. M., Omran, M. M., & Makui, A. (2020). A novel heuristic, based on a new robustness concept, for multi-objective project portfolio optimization. Computers & Industrial Engineering, 139, 106187.
Deb, K., & Gupta, H. (2006). Introducing robustness in multi-objective optimization. Evol. Comput., 14(4), 463-494.
Deb, K., & Jain, H. (2013). An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part I: solving problems with box constraints. IEEE Transactions on Evolutionary Computation, 18(4), 577-601.
Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. (2002). A fast and elitist multiobjective genetic algorithm: NSGA-II. Evolutionary Computation, IEEE Transactions on, 6(2), 182-197.
Disser, Y., Müller–Hannemann, M., & Schnee, M. (2008). Multi-criteria Shortest Paths in Time-Dependent Train Networks. In C. McGeoch (Ed.), Experimental Algorithms (Vol. 5038, pp. 347-361): Springer Berlin Heidelberg.
Doolittle, E. K., Kerivin, H. L., & Wiecek, M. M. (2018). Robust multiobjective optimization with application to internet routing. Annals of Operations Research, 271(2), 487-525.
Ehrgott, M., Ide, J., & Schöbel, A. (2014). Minmax robustness for multi-objective optimization problems. European Journal of Operational Research, 239(1), 17-31.
Elyasi, M., Roudbari, A., & Hajipourzadeh, P. (2020). Multi-objective robust design optimization (MORDO) of an aeroelastic high-aspect-ratio wing. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 42(11), 1-18.
Fakhar, M., Mahyarinia, M. R., & Zafarani, J. (2018). On nonsmooth robust multiobjective optimization under generalized convexity with applications to portfolio optimization. European Journal of Operational Research, 265(1), 39-48.
Ferreira, C., Fonseca, C., Covas, J., & Gaspar-Cunha, A. (2008). Evolutionary multi-objective robust optimization: I-Tech Education and Publishing.
Fliedner, T., & Liesiö, J. (2016). Adjustable robustness for multi-attribute project portfolio selection. European Journal of Operational Research, 252(3), 931-946.
Fliege, J., & Werner, R. (2014). Robust multiobjective optimization & applications in portfolio optimization. European Journal of Operational Research, 234(2), 422-433.
Gilani, H., & Sahebi, H. (2020). A multi-objective robust optimization model to design sustainable sugarcane-to-biofuel supply network: the case of study. Biomass Conversion and Biorefinery, 1-22.
Goberna, M. A., Jeyakumar, V., Li, G., & Vicente-Pérez, J. (2015). Robust solutions to multi-objective linear programs with uncertain data. European Journal of Operational Research, 242(3), 730-743.
Goberna, M. A., Jeyakumar, V., Li, G., & Vicente-Pérez, J. (2018). Guaranteeing highly robust weakly efficient solutions for uncertain multi-objective convex programs. European Journal of Operational Research, 270(1), 40-50.
Goerigk, M., & Schöbel, A. (2016). Algorithm engineering in robust optimization. In Algorithm engineering (pp. 245-279): Springer.
Gunawan, S., & Azarm, S. (2005). Multi-objective robust optimization using a sensitivity region concept. Structural and Multidisciplinary Optimization, 29(1), 50-60. doi:10.1007/s00158-004-0450-8
Gutjahr, W. J., & Pichler, A. (2016). Stochastic multi-objective optimization: a survey on non-scalarizing methods. Annals of Operations Research, 236(2), 475-499.
Habibi-Kouchaksaraei, M., Paydar, M. M., & Asadi-Gangraj, E. (2018). Designing a bi-objective multi-echelon robust blood supply chain in a disaster. Applied Mathematical Modelling, 55, 583-599.
Hamarat, C., Kwakkel, J. H., Pruyt, E., & Loonen, E. T. (2014). An exploratory approach for adaptive policymaking by using multi-objective robust optimization. Simulation Modelling Practice and Theory, 46(0), 25-39.
Ide, J., & Schöbel, A. (2016). Robustness for uncertain multi-objective optimization: a survey and analysis of different concepts. OR spectrum, 38(1), 235-271.
Ju, L., Zhao, R., Tan, Q., Lu, Y., Tan, Q., & Wang, W. (2019). A multi-objective robust scheduling model and solution algorithm for a novel virtual power plant connected with power-to-gas and gas storage tank considering uncertainty and demand response. Applied Energy, 250, 1336-1355.
Khosravi, F., Borst, M., & Teich, J. (2018). Probabilistic Dominance in Robust Multi-Objective Optimization. Paper presented at the 2018 IEEE Congress on Evolutionary Computation (CEC).
Kuhn, K., Raith, A., Schmidt, M., & Schöbel, A. (2016). Bi-objective robust optimisation. European Journal of Operational Research, 252(2), 418-431.
Kuroiwa, D., & Lee, G. M. (2012). On robust multiobjective optimization. Vietnam Journal of Mathematics, 40(2-3), 305-317.
Kusch, L., & Gauger, N. R. (2021). Robustness Measures for Multi-objective Robust Design. In Advances in Evolutionary and Deterministic Methods for Design, Optimization and Control in Engineering and Sciences (pp. 179-190): Springer.
Li, M., Azarm, S., & Aute, V. (2005). A Multi-objective Genetic Algorithm for Robust Design Optimization. Paper presented at the Genetic and Evolutionary Computation Conference, Washington DC, USA.
Mavrotas, G., Pechak, O., Siskos, E., Doukas, H., & Psarras, J. (2015). Robustness analysis in Multi-Objective Mathematical Programming using Monte Carlo simulation. European Journal of Operational Research, 240(1), 193-201.
Meneghini, I. R., Guimaraes, F. G., & Gaspar-Cunha, A. (2016). Competitive coevolutionary algorithm for robust multi-objective optimization: The worst case minimization. Paper presented at the 2016 IEEE congress on evolutionary computation (CEC).
Najafi, M., Eshghi, K., & Dullaert, W. (2013). A multi-objective robust optimization model for logistics planning in the earthquake response phase. Transportation Research Part E: Logistics and Transportation Review, 49(1), 217-249.
Nikjoo, N., & Javadian, N. (2019). A Multi-Objective Robust Optimization Logistics Model in Times of Crisis under Uncertainty. Journal of Industrial Management Perspective, 8(4, Winter 2019), 121-147.
Peng, Y., Hou, L., Che, Q., Xu, P., & Li, F. (2019). Multi-objective robust optimization design of a front-end underframe structure for a high-speed train. Engineering Optimization, 51(5), 753-774.
Saha, A., Ray, T., & Smith, W. (2011). Towards practical evolutionary robust multi-objective optimization. Paper presented at the 2011 IEEE Congress of Evolutionary Computation (CEC).
Schmidt, M., Schöbel, A., & Thom, L. (2019). Min-ordering and max-ordering scalarization methods for multi-objective robust optimization. European Journal of Operational Research, 275(2), 446-459.
Soares, G., Parreiras, R., Jaulin, L., Vasconcelos, J., & Maia, C. (2009). Interval robust multi-objective algorithm. Nonlinear Analysis: Theory, Methods & Applications, 71(12), e1818-e1825.
Steponavice, I., & Miettinen, K. (2012). Survey on multiobjective robustness for simulation-based optimization. Paper presented at the In Talk at the 21st international symposium on mathematical programming Berlin, Germany.
Sun, G., Zhang, H., Fang, J., Li, G., & Li, Q. (2018). A new multi-objective discrete robust optimization algorithm for engineering design. Applied Mathematical Modelling, 53, 602-621.
Teich, J. (2001). Pareto-Front Exploration with Uncertain Objectives. In E. Zitzler, L. Thiele, K. Deb, C. Coello Coello, & D. Corne (Eds.), Evolutionary Multi-Criterion Optimization (Vol. 1993, pp. 314-328): Springer Berlin Heidelberg.
Xidonas, P., Mavrotas, G., Hassapis, C., & Zopounidis, C. (2017). Robust multiobjective portfolio optimization: A minimax regret approach. European Journal of Operational Research, 262(1), 299-305.
Xie, T., Jiang, P., Zhou, Q., Shu, L., Zhang, Y., Meng, X., & Wei, H. (2018). Advanced Multi-Objective Robust Optimization Under Interval Uncertainty Using Kriging Model and Support Vector Machine. Journal of Computing and Information Science in Engineering, 18(4).
Yu, H., & Liu, H. M. (2013). Robust Multiple Objective Game Theory. Journal of Optimization Theory and Applications, 159(1), 272-280. doi:10.1007/s10957-012-0234-z
Zhou, Q., Shao, X., Jiang, P., Xie, T., Hu, J., Shu, L., Gao, Z. (2018). A multi-objective robust optimization approach for engineering design under interval uncertainty. Engineering Computations.