A dynamic bi-objective model for after disaster blood supply chain network design; a robust possibilistic programming approach

Document Type: conference paper

Authors

Department of Industrial Engineering, University of Tehran, Tehran, Iran

Abstract

Health service management plays a crucial role in human life. Blood related operations are considered as one of the important components of the health services. This paper presents a bi-objective mixed integer linear programming model for dynamic location-allocation of blood facilities that integrates strategic and tactical decisions. Due to the epistemic uncertain nature of strategic decisions, in order to cope with the inherent uncertainties, a robust possibilistic programming approach is applied to the proposed model. Finally, to test the applicability of the proposed model, sensitivity analysis and some numerical examples are being proposed.

Keywords

Main Subjects


Ahmadi-Javid, A., Seyedi, P., &Syam, S. S. (2017). A survey of healthcare facility location. Computers & Operations Research79, 223-263.

 

Alavidoost, M. H., Babazadeh, H., &Sayyari, S. T. (2016). An interactive fuzzy programming approach for bi-objective straight and U-shaped assembly line balancing problem. Applied Soft Computing40, 221-235.

 

Azadeh, A., Shafiee, F., Yazdanparast, R., Heydari, J., &Fathabad, A. M. (2017). Evolutionary multi-objective optimization of environmental indicators of integrated crude oil supply chain under uncertainty. Journal of cleaner production152, 295-311.

 

Azarmand, Z., &Neishabouri, E. (2009). Location allocation problem. In Facility location (pp. 93-109). Physica, Heidelberg.

 

Beliën, J., &Forcé, H. (2012). Supply chain management of blood products: A literature review. European Journal of Operational Research217(1), 1-16.

Berzigotti, A., & Bosch, J. (2016). increased cardiac output in cirrhosis–non‐invasive assessment of regional blood flow by magnetic resonance angiography. Alimentary pharmacology & therapeutics43(12), 1340-1342.

Deb, K. (2014). Multi-objective optimization. In Search methodologies (pp. 403-449). Springer, Boston, MA.

 

Detti, P., Papalini, F., & de Lara, G. Z. M. (2017). A multi-depot dial-a-ride problem with heterogeneous vehicles and compatibility constraints in healthcare. Omega70, 1-14.

 

Fahimnia, B., Jabbarzadeh, A., Ghavamifar, A., & Bell, M. (2017). Supply chain design for efficient and effective blood supply in disasters. International Journal of Production Economics183, 700-709.

 

Farrokh, M., Azar, A., Jandaghi, G., &Ahmadi, E. (2018). A novel robust fuzzy stochastic programming for closed loop supply chain network design under hybrid uncertainty. Fuzzy Sets and Systems341, 69-91.

Gregor, P. J., Forthofer, R. N., & Kapadia, A. S. (1982). An evaluation of inventory and transportation policies of a regional blood distribution system. European Journal of Operational Research10(1), 106-113.

Heddle, N. M., Liu, Y., Barty, R., Webert, K. E., Whittaker, S., Gagliardi, K., ...& Owens, W. (2009). Factors affecting the frequency of red blood cell outdates: an approach to establish benchmarking targets. Transfusion49(2), 219-226.

Lalmazloumian, M., Wong, K. Y., Govindan, K., &Kannan, D. (2016). A robust optimization model for agile and build-to-order supply chain planning under uncertainties. Annals of Operations Research240(2), 435-470.

 

Mirmohseni, M. S., Nasseri, S. H., &Zabihi, A. (2017). An Interactive Possibilistic Programming for Fuzzy Multi Objective Solid Transportation Problem. Applied mathematical sciences11(45), 2209-2217.

Mohammed, A., & Wang, Q. (2017). The fuzzy multi-objective distribution planner for a green meat supply chain. International Journal of Production Economics184, 47-58

Møller-Jensen, L., &Kofie, R. Y. (2001). Exploiting available data sources: location/allocation modeling for health service planning in rural Ghana. GeografiskTidsskrift-Danish Journal of Geography101(1), 145-153.

 

Mousazadeh, M., Torabi, S. A., Pishvaee, M. S., &Abolhassani, F. (2018). Health service network design: a robust possibilistic approach. International Transactions in Operational Research25(1), 337-373.

 

 

Oztekin, A., Pajouh, F. M., Delen, D., & Swim, L. K. (2010). An RFID network design methodology for asset tracking in healthcare. Decision Support Systems49(1), 100-109.

 

Pishvaee, M. S., Razmi, J., &Torabi, S. A. (2012 a). Robust possibilistic programming for socially responsible supply chain network design: A new approach. Fuzzy sets and systems206, 1-20.

 

Pishvaee, M. S., Torabi, S. A., &Razmi, J. (2012 b). Credibility-based fuzzy mathematical programming model for green logistics design under uncertainty. Computers & Industrial Engineering62(2), 624-632.

Rais, A., &Viana, A. (2011). Operations research in healthcare: a survey. International transactions in operational research18(1), 1-31.

Smith‐Daniels, V. L., Schweikhart, S. B., & Smith‐Daniels, D. E. (1988). Capacity management in health care services: Review and future research directions. Decision Sciences19(4), 889-919.

 

Tofighi, S., Torabi, S. A., & Mansouri, S. A. (2016). Humanitarian logistics network design under mixed uncertainty. European Journal of Operational Research250(1), 239-250.

 

Torabi, S. A., & Hassini, E. (2008). An interactive possibilistic programming approach for multiple objective supply chain master planning. Fuzzy sets and systems159(2), 193-214.

 

Xu, J., & Zhou, X. (2013). Approximation based fuzzy multi-objective models with expected objectives and chance constraints: Application to earth-rock work allocation. Information Sciences238, 75-95.

 

Zahiri, B., Tavakkoli-Moghaddam, R., & Pishvaee, M. S. (2014). A robust possibilistic programming approach to multi-period location–allocation of organ transplant centers under uncertainty. Computers & Industrial Engineering74, 139-148.

 

Zepeda, E. D., Nyaga, G. N., & Young, G. J. (2016). Supply chain risk management and hospital inventory: Effects of system affiliation. Journal of Operations Management44, 30-47.