Afshar-Nadjafi, B. (2014). Multi-mode resource availability cost problem with recruitment and release dates for resources. Applied Mathematical Modelling, 38(21-22), 5347-5355.
Ahuja, H. N. (1976). Construction performance control by networks. New York; Toronto: Wiley.
Demeulemeester, E. (1995). Minimizing resource availability costs in time-limited project networks. Management Science, 41(10), 1590-1598.
Doersch, R. H., & Patterson, J. H. (1977). Scheduling a project to maximize its present value: A zero-one programming approach. Management Science, 23(8), 882-889.
Drexl, A., & Kimms, A. (2001). Optimization guided lower and upper bounds for the resource investment problem. Journal of the Operational Research Society, 52(3), 340-351.
Elmaghraby, S. E., & Herroelen, W. S. (1990). The scheduling of activities to maximize the net present value of projects. European Journal of Operational Research, 49(1), 35-49.
Etgar, R. (1999). Scheduling project activities to maximize the net present value the case of linear time-dependent cash flows. International Journal of Production Research, 37(2), 329-339.
Etgar, R., Shtub, A., & LeBlanc, L. J. (1997). Scheduling projects to maximize net present value—the case of time-dependent, contingent cash flows. European Journal of Operational Research, 96(1), 90-96.
Etgar, R., & Shtub, A. (1997). A branch and bound algorithm for scheduling projects to maximize net present value: the case of time dependent, contingent cash flows. International Journal of Production Research, 35(12), 3367-3378.
Grinold, R. C. (1972). The payment scheduling problem. Naval Research Logistics Quarterly, 19(1), 123-136.
Herroelen, W. S., & Gallens, E. (1993). Computational experience with an optimal procedure for the scheduling of activities to maximize the net present value of projects. European Journal of Operational Research, 65(2), 274-277.
Javanmard, S., Afshar-Nadjafi, B., & Niaki, S. T. A. (2017). Preemptive multi-skilled resource investment project scheduling problem: Mathematical modelling and solution approaches. Computers & Chemical Engineering, 96, 55-68.
Kazaz, B., & Sepil, C. (1996). Project scheduling with discounted cash flows and progress payments. Journal of the Operational Research Society, 47(10), 1262-1272.
Möhring, R. H. (1984). Minimizing costs of resource requirements in project networks subject to a fixed completion time. Operations Research, 32(1), 89-120.
Myers, R. H., Montgomery, D. C., Vining, G. G., Borror, C. M., & Kowalski, S. M. (2004). Response surface methodology: a retrospective and literature survey. Journal of quality technology, 36(1), 53-77.
Najafi, A. A., & Azimi, F. (2009). A priority rule-based heuristic for resource investment project scheduling problem with discounted cash flows and tardiness penalties. Mathematical Problems in Engineering, 2009.
Najafi, A. A., & Niaki, S. T. A. (2006). A genetic algorithm for resource investment problem with discounted cash flows. Applied Mathematics and Computation, 183(2), 1057-1070.
Najafi, A. A., Niaki, S. T. A., & Shahsavar, M. (2009). A parameter-tuned genetic algorithm for the resource investment problem with discounted cash flows and generalized precedence relations. Computers & Operations Research, 36(11), 2994-3001.
Nübel, H. (1999). A branch and bound procedure for the resource investment problem subject to temporal constraints. Inst. für Wirtschaftstheorie und Operations-Research.
Nübel, H. (2001). The resource renting problem subject to temporal constraints. OR-Spektrum, 23(3), 359-381.
Qi, J. J., Liu, Y. J., Jiang, P., & Guo, B. (2015). Schedule generation scheme for solving multi-mode resource availability cost problem by modified particle swarm optimization. Journal of Scheduling, 18(3), 285-298.
Ranjbar, M., Kianfar, F., & Shadrokh, S. (2008). Solving the resource availability cost problem in project scheduling by path relinking and genetic algorithm. Applied Mathematics and Computation, 196(2), 879-888.
Rodrigues, S. B., & Yamashita, D. S. (2010). An exact algorithm for minimizing resource availability costs in project scheduling. European Journal of Operational Research, 206(3), 562-568.
Russell, A. H. (1970). Cash flows in networks. Management Science, 16(5), 357-373.
Sabzehparvar, M., SEYED, H. S., & Nouri, S. (2008). A mathematical model for the multi-mode resource investment problem.
Sepil, C., & Ortac, N. (1997). Performance of the heuristic procedures for constrained projects with progress payments. Journal of the Operational Research Society, 48(11), 1123-1130.
Shadrokh, S., & Kianfar, F. (2007). A genetic algorithm for resource investment project scheduling problem, tardiness permitted with penalty. European Journal of Operational Research, 181(1), 86-101.
Shahsavar, M., Najafi, A. A., & Niaki, S. T. A. (2011). Statistical design of genetic algorithms for combinatorial optimization problems. Mathematical Problems in Engineering, 2011.
Smith‐Daniels, D. E., & Aquilano, N. J. (1987). Using a late‐start resource‐constrained project schedule to improve project net present value. Decision Sciences, 18(4), 617-630.
Tiwari, R. N., Dharmar, S., & Rao, J. R. (1987). Fuzzy goal programming—an additive model. Fuzzy sets and systems, 24(1), 27-34.
Vanhoucke, M., Demeulemeester, E., & Herroelen, W. (1999). Scheduling projects with linear time-dependent cash flows to maximize the net present value.
Yamashita, D. S., Armentano, V. A., & Laguna, M. (2006). Scatter search for project scheduling with resource availability cost. European Journal of Operational Research, 169(2), 623-637.
Zimmermann, J., & Engelhardt, H. (1998). Lower bounds and exact algorithms for resource leveling problems. Report WIOR-517, University Karlsruhe.
Zoraghi, N., Shahsavar, A., Abbasi, B., & Van Peteghem, V. (2017). Multi-mode resource-constrained project scheduling problem with material ordering under bonus–penalty policies. Top, 25(1), 49-79.