An Evaluation of Mahalanobis-Taguchi System and Neural Network for Multivariate Pattern Recognition

Document Type: Research Paper

Authors

1 University of Missouri – Rolla, Rolla, Missouri 65409 U.S.A.

2 Chungju National University, Chungju, 380-702 South Korea

3 Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 U.S.A.

4 Lawrence Technological University, Southfield, Michigan, U.S.A.

5 Ohken Associates, Tokyo, Japan

Abstract

The Mahalanobis-Taguchi System is a diagnosis and predictive method for analyzing patterns in multivariate cases. The goal of this study is to compare the ability of the Mahalanobis- Taguchi System and a neural-network to discriminate using small data sets. We examine the discriminant ability as a function of data set size using an application area where reliable data is publicly available. The study uses the Wisconsin Breast Cancer study with nine attributes and one class.

Keywords


[1] Asada M. (2001), Wafer yield prediction by the Mahalanobis-Taguchi system, IEEE International
Workshop on Statistical Methodology 6; 25-28.
[2] Hassoun M.H. (1995), Fundamentals of artificial neural networks, Cambridge, MA, MIT Press.
[3] Hayashi S., Tanaka Y., Kodama E. (2001), A new manufacturing control system using Mahalanobis
distance for maximizing productivity; IEEE Transactions 15(4); 59-62.
[4] Jain Anil K., Duin Robert P.W., Mao Jianchang (2000), Statistical pattern recognition: A review, IEEE
Transaction on Pattern Analysis and Machine Intelligence 22(1); 4-37.
[5] Jugulum R., Monplaisir L. (2002), Comparison between Mahalanobis-Taguchi- system and artificial
neural networks, Journal of Quality Engineering Society, 10(1); 60-73.
[6] Jugulum R., Taguchi G., Taguchi S., Wilkins J. (2003), Discussion of A review and analysis of
Mahalanobis-Taguchi System, Technometrics 45(1); 16-21.

[7] Lande U., Mahalanobis distance: A theoretical and practical approach;
http://biologi.uio.no/fellesavdelinger/finse/spatialstats/Mahalanobis%20distance.ppt (2003).
[8] Taguchi G., Chowdury S., Wu Y. (2001), The Mahalanobis Taguchi system, McGraw Hill, New York.
[9] Taguchi, G., Jugulum R. (2000), New trends in multivariate diagnosis; Indian Journal of Statistics, 62,
Series B; 233-248.
[10] Taguchi G., Jugulum R. (2002), The Mahalanobis-Taguchi strategy: A pattern technology system,
John Wiley & Sons.
[11] Taguchi S. (2000), Mahalanobis Taguchi system, Proceedings of ASI Taguchi Symposium, Detroit, MI.
[12] Woodall W. H., Koulelik R., Tsui K. L., Kim S. B., Stoumbos Z. G., Carvounis C. P. (2003), A
review and analysis of the Mahalanobis Taguchi, Technometrics, 45(1); 1-30.
[13] Wolberg W. H., Wisconsin breast cancer database;
http://www.uwplatt.edu/csse/Courses/cs303/as/data/cancer.html January 8, (1991).
[14] Wu, Y. (2004), Pattern Recognition Using Mahalanobis Distance, Journal of Quality Engineering
Forum 12(5); 787-795.