A new classification method based on pairwise SVM for facial age estimation

Document Type: Research Paper

Authors

1 Department of Industrial Engineering, Faculty of Engineering, Semnan University, Semnan, Iran

2 Faculty of Computer engineering, Amir Kabir University, Tehran, Iran

Abstract

This paper presents a practical algorithm for facial age estimation from frontal face image. Facial age estimation generally comprises two key steps including age image representation and age estimation. The anthropometric model used in this study includes computation of eighteen craniofacial ratios and a new accurate skin wrinkles analysis in the first step and a pairwise binary support vector machine (SVM) in the second one. Anthropometric model is the first model that has been provided; however, it hasn't been much considered and even hasn't been applied on any large database so far. Therefore, the algorithm is applied on FG-Net database and the average of the absolute errors (MAE) and cumulative score (CS) measures are provided to make comparison with other approaches much easier. Experimental results show that the proposed method can give MAE=6.34 and CS (<=10) =81.14 using a pairwise binary tree support vector machine (SVM).

Keywords

Main Subjects


Chao, W.-L., Liu, J.-Z. &Ding, J.-J. (2013). 'Facial age estimation based on label-sensitive learning and age-oriented regression'. Pattern Recognition, 46(3), 628-641.

Cootes, T. F., Edwards, G. J. &Taylor, C. J. (2001). 'Active Appearance Models'. IEEE Trans. Pattern Anal. Mach. Intell., 23(6), 681-685.

Dehshibi, M. M. and Bastanfard, A. (2010). 'A new algorithm for age recognition from facial images'. Signal Processing, 90(8), 2431-2444.

El Dib, M. Y. and Onsi, H. M. (2011). 'Human age estimation framework using different facial parts'. Egyptian Informatics Journal, 12(1), 53-59.

'The FG-NET Aging Database'. (2010).

Fu, Y., Guo, G. &Huang, T. S. (2010). 'Age Synthesis and Estimation via Faces: A Survey'. IEEE Transactions on Pattern Analysis and Machine Intelligence, 32(11), 1955-1976.

Chao, W.-L., Liu, J.-Z. &Ding, J.-J. (2013). 'Facial age estimation based on label-sensitive learning and age-oriented regression'. Pattern Recognition, 46(3), 628-641.

Cootes, T. F., Edwards, G. J. &Taylor, C. J. (2001). 'Active Appearance Models'. IEEE Trans. Pattern Anal. Mach. Intell., 23(6), 681-685.

Dehshibi, M. M. and Bastanfard, A. (2010). 'A new algorithm for age recognition from facial images'. Signal Processing, 90(8), 2431-2444.

El Dib, M. Y. and Onsi, H. M. (2011). 'Human age estimation framework using different facial parts'. Egyptian Informatics Journal, 12(1), 53-59.

'The FG-NET Aging Database'. (2010).

Fu, Y., Guo, G. &Huang, T. S. (2010). 'Age Synthesis and Estimation via Faces: A Survey'. IEEE Transactions on Pattern Analysis and Machine Intelligence, 32(11), 1955-1976.

Fu, Y. and Huang, T. S. (2008). 'Human Age Estimation With Regression on Discriminative Aging Manifold'. IEEE Transactions on Multimedia, 10(4), 578-584.

Fu, Y., Xu, Y. &Huang, T. S. (2007). 'Estimating Human Age by Manifold Analysis of Face Pictures and Regression on Aging Features'. 2007 IEEE International Conference on Multimedia and Expo, 1383-1386.

Geng, X., Zhou, Z.-H. &Smith-Miles, K. (2007). 'Automatic Age Estimation Based on Facial Aging Patterns'. IEEE Trans. Pattern Anal. Mach. Intell., 29(12), 2234-2240.

Geng, X., Zhou, Z.-H., Zhang, Y., Li, G. &Dai, H. (2006). 'Learning from facial aging patterns for automatic age estimation'. Proceedings of the 14th ACM international conference on Multimedia, 307-316.

Guo, G., Fu, Y., Dyer, C. R. &Huang, T. S. (2008). 'Image-Based Human Age Estimation by Manifold Learning and Locally Adjusted Robust Regression'. IEEE Transactions on Image Processing, 17(7), 1178-1188.

Guo, G., Fu, Y., Huang, T. S. &Dyer, C. R. (2008). 'Locally Adjusted Robust Regression for Human Age Estimation'. Applications of Computer Vision, 2008. WACV 2008. IEEE Workshop on, 1-6.

Guodong, G., Yun, F., Dyer, C. R. &Huang, T. S. (2008). 'A Probabilistic Fusion Approach to human age prediction'. Computer Vision and Pattern Recognition Workshops, 2008. CVPRW '08. IEEE Computer Society Conference on, 1-6.

Hayashi, J., Yasumoto, M., Ito, H., Niwa, Y. &Koshimizu, H. (2002). 'Age and gender estimation from facial image processing'. SICE 2002. Proceedings of the 41st SICE Annual Conference, 1(13-18.

Hironobu Fukai, H. T., Yasue Mitsukura, Minoru Fukumi. (2007). 'Apparent age estimation system based on age perception'. Proceedings of the SICE Annual Conference, 2808-2812.

Koruga, P., Ba, M., x010D, J, x &eva. (2011). 'Application of modified anthropometric model in facial age estimation'. ELMAR, 2011 Proceedings, 17-20.

Kwon, Y. H. and Lobo, N. d. V. (1999). 'Age Classification from Facial Images'. Computer Vision and Image Understanding, 74(1), 1-21.

Lanitis, A., Draganova, C. &Christodoulou, C. (2004). 'Comparing different classifiers for automatic age estimation'. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 34(1), 621-628.

Lanitis, A., Taylor, C. J. &Cootes, T. F. (2002). 'Toward automatic simulation of aging effects on face images'. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(4), 442-455.

Liu, J., Ma, Y., Duan, L., Wang, F. &Liu, Y. (2014). 'Hybrid constraint SVR for facial age estimation'. Signal Processing, 94(576-582.

Shuicheng, Y., Xi, Z., Ming, L., Hasegawa-Johnson, M. &Huang, T. S. (2008). 'Regression from patch-kernel'. Computer Vision and Pattern Recognition, 2008. CVPR 2008. IEEE Conference on, 1-8.

Ueki, K., Hayashida, T. &Kobayashi, T. (2006). 'Subspace-based age-group classification using facial images under various lighting conditions'. 7th International Conference on Automatic Face and Gesture Recognition (FGR06), 6 pp.-48.

Yan, S., Wang, H., Tang, X. &Huang, T. S. (2007). 'Learning Auto-Structured Regressor from Uncertain Nonnegative Labels'. 2007 IEEE 11th International Conference on Computer Vision, 1-8.