Application of MCDM methods in managerial decisions for identifying and evaluating future options: A real case study in shipbuilding industry

Document Type: Research Paper

Authors

1 Department of Industrial and Systems Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran

2 Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran

Abstract

In today's competitive world, making appropriate strategic decisions is one of the major challenges industries and businesses facing to create competitive advantages in future. MCDM approaches can provide an integrated framework for identifying, evaluating and prioritizing strategic options. In this article, we put forward a two-stage procedure organized as a hybrid methodology to show the usefulness of various MCDM methods in real-world cases. The first step is related to shaping the future options by MODM techniques, and the second step is concerned with evaluating the options by using MADM techniques (SWARA and G-COPRAS). A numerical example in shipbuilding industry is then carried out to illustrate the efficiency of the proposed methodology. Three scenarios, including “Economic”, “Eco-friendly” and “Midway” are considered for the future of merchant fleets according to the global current status. Based on SWARA implementing results, the "cost" and "employment" criteria are identified as the most important factors in the shipbuilding industry among the 12 identified criteria. According to the presented framework, the “Midway” scenario is given the highest priority. Finally, regarding to the country's situation in shipbuilding, some suggestions have been made in this area.

Keywords

Main Subjects


Acuna-Carvajal, F., Pinto-Tarazona, L., Lopez-Ospina, H., Barros-Castro, R., Quezada, L., & Palacio, K. (2019). An integrated method to plan, structure and validate a business strategy using fuzzy DEMATEL and the balanced scorecard, Expert systems with applications, 122, 351-368.
 
 
Alizadeh, R., Soltanisehat, L., Lund, P. D., & Zamanisabzi, H. (2020). Improving renewable energy policy planning and decision-making through a hybrid MCDM method. Energy Policy, 137, 111174.
 
Amer, M., Daim, T., & Jetter, A. (2013). A review of scenario planning, Futures, 46, 23–40.
 
Anandh, p., & Raju, m. (2018). an analysis of Indian shipbuilding and repair industry, 9(7), 715 – 723.
 
Ardakani, M. F., Sanayi, R. N., & Paknezhad, A., an analysis of marine traffic of Iranian commercial ports up to 2015, 6th marine industry conference.
 
Aruldoss, M., Lakshmi, T. M., & Venkatesan, V. P. (2013). A survey on multi criteria decision making methods and its applications, Information systems, 1(1), 31-43.
 
Balezentis, T., & Streimikiene, D. (2017). Multi-criteria ranking of energy generation scenarios with Monte Carlo simulation, Applied energy, 185, 862-871.
 
Balezentis, T., Chen, X., Galnaityte, A., & Namiotko, V. (2020). Optimizing crop mix with respect to economic and environmental constraints: An integrated MCDM approach. Science of The Total Environment, 705, 135896.
 
Behera, L. K., & Misra, S. N. (2012). India’s naval shipbuilding industry: Key gaps and policy options, Defence studies, 12(3), 434-451.
 
Berga, CH., Rogersa, SH., & Mineaub, M.  (2016). building scenarios for ecosystem services tools: Developing a methodology for efficient engagement with expert stakeholders, Futures, 81, 68–80.
 
Bishop, P., Hines, A., & Collins, T. (2007). The current state of scenario development: an overview of techniques. Foresight, 9(1), 5-25.
Bozorgi, M. (2009). Future Research Methods, Social science month book, 14, 14-19.
 
Brand, B., & Missaoui, R. (2014). Multi-criteria analysis of electricity generation mix scenarios in Tunisia; Renewable and sustainable energy reviews, 39, 251–261.
 
Brigham, L., (2008). Arctic shipping scenarios and coastal state challenges, WMU Journal of Maritime Affairs, 2(7), 477–484.
 
Cabral, M., Loureiro, D., Mamade, A., & Covas, D. (2014). Water demand projection in distribution system using a novel scenario planning approach; Procedia Engineering, 89, 950–957.
 
Chavan, P., & Patil, A. (2020). Taguchi-based optimization of machining parameter in drilling spheroidal graphite using combined TOPSIS and AHP method, In advanced engineering optimization through intelligent techniques, 787-797.
 
Cho, Y., & Daim, T. (2013). Technology forecasting methods. In Research and Technology Management in the Electricity Industry, Springer London.
 
Cinelli, M., Coles, S. R., & Kirwan, K. (2014). Analysis of the potentials of multi criteria decision analysis methods to conduct sustainability assessment, Ecological indicators, 46, 138-148.
 
Colak, M., & Kaya, I. (2017). Prioritization of renewable energy alternatives by using an integrated fuzzy MCDM model: A real case application for Turkey, Renewable and Sustainable Energy Reviews, 80, 840-853.
 
Dekhtyaruk, Y., Karyshev, I., Korableva, M., Velikanova, N., Edelkina, A., Karasev, O., Klubova, M., Bogomolova, A., & Dyshkant, N., (2014), Foresight in Civil Shipbuilding – 2030, Foresight-Russia, 8(2), 30–45.
 
Deng, J. L. (1982). Grey system fundamental method. Huazhong University of Science and Technology, Wuhan, China.
 
Fattahi, A. M., Noroozi, S. R., & Paknejad, A. (2003). Maritime Traffic Analysis of Iranian Commercial Ports, 6th Marine Industry Conference.
 
Fouladgar, M. M., Yazdani-Chamzini, A., & Zavadskas, E. K., (2011). An integrated model for prioritizing strategies of the Iranian mining sector: Irano kasybos sektoriaus strategijų prioriteto nustatymo integruotas modelis, Technol Econ Dev Econ, 17(3):459–83.
 
Ghenai, C., Albawab, M., & Bettayeb, M. (2020). Sustainability indicators for renewable energy systems using multi-criteria decision-making model and extended SWARA/ARAS hybrid method, Renewable Energy, 146, 580-597.
 
Ghorabaee, M. K., Amiri, M., Zavadskas, E. K., & Antucheviciene, J. (2018). A new hybrid fuzzy MCDM approach for evaluation of construction equipment with sustainability considerations, Archives of Civil and Mechanical Engineering, 18(1), 32-49.
 
Goodwin, P. (2019). Supporting multi attribute decisions in scenario planning using a simple method based on ranks, Futures & Foresight Science, e00018.
 
Goodwin, P., Wright, G. (2001). Enhancing strategy evaluation in scenario planning: a role for decision analysis, Journal of Management Studies, 38 (1), 1-16.
 
Gordon, A. V., Ramic, M., Rohrbeck, R., & Spaniol, M. J. (2020). 50 Years of corporate and organizational foresight: Looking back and going forward. Technological Forecasting and Social Change, 154, 119966.
 
Guarini, M., Battisti, F., & Chiovitti, A. (2018). A methodology for the selection of multi-criteria decision analysis methods in real estate and land management processes. Sustainability, 10(2), 507.
 
Hansen, A. M., & Larsen, S. V. (2014). Use of scenarios and strategic planning to explore an uncertain future in Greenland, Regional environmental change, 14(4), 1575-1585.
 
Hansmann, R., Mieg, H., & Frischknecht, P, (2012). Principal sustainability components: empirical analysis of synergies between the three pillars of sustainability, International Journal of Sustainable Development & World Ecology, 19(5), 451-459.
 
Heidaryd, D. J., Mohammadi, N., Vanaki, A., & Ghaffari, S. (2017). A hybrid approach for selecting appropriate technological forecasting technique, Technology Development Management, 4(4), 163-194.
 
INtepe, G., Bozdag, E., & Koc, T. (2013). The selection of technology forecasting method using a multi-criteria interval-valued intuitionistic fuzzy group decision making approach, Computers & Industrial Engineering, 65(2), 277-285.
 
Iranian Industrial Development and Renovation Organization. (2015). Analysis of the country's need for vessels, offshore structures, Repairs and scrapping vessels.
 
Jain, N., Singh, A. R., & Upadhyay, R. K. (2020). Sustainable supplier selection under attractive criteria through FIS and integrated fuzzy MCDM techniques. International Journal of Sustainable Engineering, 1-22.
 
Jesiya, N. P., & Gopinath, G. (2020). A fuzzy based MCDM–GIS framework to evaluate groundwater potential index for sustainable groundwater management-A case study in an urban-peri urban ensemble, southern India. Groundwater for Sustainable Development, 100466.
 
Kannan, D., Moazzeni, S., mostafayi Darmian, S., & Afrasiabi, A. (2020). A hybrid approach based on MCDM methods and Monte Carlo simulation for sustainable evaluation of potential solar sites in east of Iran. Journal of Cleaner Production, 279, 122368.
 
Kersuliene, V., Zavadskas, K. E., & Turskis, Z. (2010). Selection of rational dispute resolution method by applying new step‐wise weight assessment ratio analysis (SWARA), Journal of Business Economics and Management, 11(2), 243-258.
 
Khanmohammadi, E. (2019). A new approach to strategic objectives ranking based on fuzzy logarithmic least squares method and fuzzy similarity technique, Operations Research Perspectives, 100122.
 
Khedrigharibvand, H., Azadi, H., Teklemariam, D., Houshyar, E., De Maeyer, P., & Witlox, F. (2019). Livelihood alternatives model for sustainable rangeland management: a review of multi-criteria decision-making techniques. Environment, Development and Sustainability, 21(1), 11-36.
 
Khokhar, M., Hou, Y., Rafique, M. A., & Iqbal, W. (2020). Evaluating the Social Sustainability Criteria of Supply Chain Management in Manufacturing Industries: A Role of BWM in MCDM. problems of sustainable development, 15(2), 185-194.
 
Kiyani, B. (2017). A combined model of SWARA & COPRAS-G for evaluating the financing methods in knowledge-based firms with a fuzzy approach, M.Sc. thesis, Chamran University.
 
Komiyama, R., & Fujii, Y. (2015). Long-term scenario analysis of nuclear energy and variable renewables in Japan's power generation mix considering flexible power resources; Energy Policy, 83, 169-184.
 
Lee, H. C., & Chang, C. T. (2018). Comparative analysis of MCDM methods for ranking renewable energy sources in Taiwan, Renewable and sustainable energy reviews, 92, 883-896.
 
Lin, R., Liu, Y., & Ren, J. (2020). Prioritization of biofuels production pathways under uncertainties, In biofuels for a more sustainable future, 337-356.
 
Liobikiene, G., Balezentis, T., Streimkiene, D., & Chen, X. (2019). Evaluation of bioeconomy in the context of strong sustainability, Sustainable Development.
 
Lloyd’s Register report, Global marine trend 2030, Available at http://www.lr.org/en/projects/global-marine-trends-2030.aspx
 
Lopez-Ospina, H., Quezada, L. E., Barros-Castro, R. A., Gonzalez, M. A., & Palominos, P. I. (2017). A method for designing strategy maps using DEMATEL and linear programming. Management decision, 55(8), 1802-1823.
 
Macooyizad, M., (2009). Analysis of shipbuilding industry in comparison with Turkish shipbuilding, MSc Thesis, Malek Ashtar university of technology.
 
Maghsoodi, A. I., Maghsoodi, A. I., Poursoltan, P., Antucheviciene, J., & Turskis, Z. (2019). Dam construction material selection by implementing the integrated SWARA–CODAS approach with target-based attributes, Archives of civil and mechanical engineering, 19(4), 1194-1210.
 
Magruk, A. (2011). Innovative classification of technology foresight methods, Technological and economic development of economy, 17(4), 700-715.
 
Maity, S. R. Chatterjee, P. & Chakraborty, S. (2012). Cutting tool material selection using grey complex proportional assessment method, Materials & design, (36), 372–378.
 
Maritime Development Fund. (2014). Overview of Shipbuilding Industry in Iran
Marttunen, M., Lienert, J., & Belton, V. (2017). Structuring problems for Multi-Criteria Decision Analysis in practice: A literature review of method combinations, European Journal of Operational Research, 263(1), 1-17.
 
Mavi, R. K., Gah, M., Zarbakhshnia, N. (2017). Sustainable third-party reverse logistic provider selection with fuzzy SWARA and fuzzy MOORA in plastic industry, Int. J. Adv. Manuf. Technol, 91, 2401–2418.
 
Markovic, V., Stajic, L., Stevic, Z., Mitrovic, G., Novarlic, B., & Radojicic, Z. (2020). A novel integrated subjective-objective MCDM model for alternative ranking in order to achieve business excellence and sustainability. Symmetry, 12(1), 164.
 
Martin, B. (2010). The origins of the concept of ‘foresight’ in science and technology: An insider’s perspective, Technological Forecasting and Social Change, 77(9), 1438-1447.
 
Martino, J. (1993). Technological forecasting for decision making, McGraw- Hill, Inc.
Meng, Q., & Wang, T. (2011). A scenario-based dynamic programming model for multi-period liner ship fleet planning. Transportation research part E: logistics and transportation review, 47(4), 401-413.
 
Miller, P., & Swinehart, K. (2010). Technological forecasting: a strategic imperative, JGBM, 6(2), 1-5.
 
Mohammadi, A. (2014). developing a Technology Roadmap in Shipbuilding, MSc Thesis, Amir Kabir University of Technology.
 
Morlidge, S., & Player, S. (2010). Future ready: How to master business forecasting, John Wiley & Sons.
 
Montibeller, G., Gummer, H., & Tumidei, D. (2006). Combining scenario planning and multi-criteria decision analysis in practice, Multi-Criteria decision analysis, 14, 5-20.
 
Moonesan. M., (2012). Comprehensive maritime engineering book, Research center, Tehran, Second Edition.
 
Nazemi, A., Ghadiri, R. (2010), Handbook of Iran's best technologies (PAMFA) - Sea sector.
 
Pohekar, S. D., & Ramachandran, M. (2004). Application of multi-criteria decision making to sustainable energy planning—a review, Renewable and sustainable energy reviews, 8(4), 365-381.
 
Qin, S., Huang, H., Li, P., Chakma, A., Nie, H., & Lin, G. (2008). A MCDM-based expert system for climate-change impact assessment and adaptation planning – A case study for the Georgia Basin, Canada, Expert systems with applications, 34, 2164–2179.
 
Quezada, L. E., Lopez-Ospina, H. A., Palominos, P. I., & Oddershede, A. M. (2018). Identifying causal relationships in strategy maps using ANP and DEMATEL, Computers & industrial engineering, 118, 170-179.
 
Radfar, R. (2012). Fuzzy multi criteria decision making model for prioritizing the investment methods in technology transfer in shipping industries, Investment knowledge, 1(3), 179-197.
 
Rahman, M. M. (2017). An appraisal of shipbuilding prospects in Bangladesh. Procedia engineering, 194, 224-231.
 
Rajesh, G., & Malliga, P. (2018). Selection of suppliers using SWARA and COPRAS-G, Enterprise Network Management, 9(2), 169-185.
 
Ranjbar, V., Ghorbani, A., Simber, R., & Hajiani, E. (2016). Identifying and explaining factors and uncertainties affecting Iran-Gulf Cooperation Council relations over a ten-year period, Defense futures research, 1 (2), 7-36.
 
Raut, R. D., Gardas, B. B., Pushkar, S., & Narkhede, B. E. (2019). Third-party logistics service providers selection and evaluation: a hybrid AHP-DEA-COPRAS-G group decision-making approach, Procurement management, 12(6), 632-651.
 
Panahi, R., & Ebrahimi, B. (2014). Shipbuilding Industry Development, Marine Industry Development Fund Publications, First Edition .
 
Popper, R. (2008). The handbook of technology foresight: concepts and practice, Edward Elgar Publishing.
 
Qstergaard, P. A., Duic, N., Noorollahi, Y., Mikulcic, H., & Kalogirou, S. (2020). Sustainable development using renewable energy technology, Renewable Energy, 146, 2430-2437.
 
Rajabi, F., Molaeifar, H., Jahangiri, M., Taheri, S., Banaee, S., & Farhadi, P. (2020). Occupational stressors among firefighters: application of multi-criteria decision making (MCDM) Techniques. Heliyon, 6(4), e03820.
 
Ram, C., Montibeller, G., & Morton, A. (2011). Extending the use of scenario planning and MCDA for the evaluation of strategic options, Operational Research Society 62, 817–829.
 
Rezayi, B., Taajgole, S., & Moini, M. (2015). Marine Industries and Technologies, vice-presidency for science and technology, Marine Science and Technology Development Headquarters, 1st Edition.
 
Rezayi, B., voisy, S., & Moini, M. (2015). “Iran, Maritime Country”, vice-presidency for science and technology, Marine Science and Technology Development Headquarters, 1st edition.
Ribeiro, F., Ferreira, P., & Araujo, M., (2013). Evaluating future scenarios for the power generation sector using a Multi–Criteria Decision Analysis (MCDA) tool: The Portuguese case, Energy, 52, 126–136.
 
Sadeghi, H., & Kazemi, F. (2018). Developing a new assessment fuzzy model by focusing on improving the reliability of customers’ individual verbal judgment (An Internet Banking case study).
 
Saif, M. (1994). Principles of Ship Design, Amirkabir University of Technology, First Edition.
 
Satargholi, A., Mohammadi, A., Najartabaar, M., Hajmohamadi, A., & Seyedkarimi, S. (2015), Iran Marine Statistics 2015, Marine Science and Technology Development Staff, Second Edition.
 
Sharma, k. (2017). Performance, challenges and opportunities of indian ship building industry, international journal of science technology and management, 6(01), 677-683.
 
Shimbar, A., & Ebrahimi, S. B. (2020). Political risk and valuation of renewable energy investments in developing countries. Renewable Energy, 145, 1325-1333.
 
Srdjevic, B. (2007). Linking analytic hierarchy process and social choice methods to support group decision-making in water management, Decision Support Systems, 42(4), 2261-2273.
 
Stewart, T., French, S., & Rios, J. (2013). Integrating multicriteria decision analysis and scenario planning-review and extension, Omega, 41, 679–688.
 
Stojcic, M., Zavadskas, E. K., Pamucar, D., Stevic, z., & Mardani, A. (2019). Application of MCDM methods in sustainability engineering: A literature review 2008–2018, Symmetry, 11(3), 350.
 
Stout, D. (1995). Technology foresight–a view from the front, Business strategy review, 6(4), 1-16.
 
Strantzali, E., & Aravossis, K. (2016). Decision making in renewable energy investments: A review, Renewable and sustainable energy reviews, 55, 885-898.
 
Straton, A., Jackson, S., Marinoni, O., Proctor, W., & Woodward, E. (2011). Exploring and Evaluating Scenarios for a River Catchment in Northern Australia Using Scenario Development, Multi-criteria analysis and a deliberative process as a tool for water Planning, Water resource management, 25, 141–164.
 
Stevic, Z., Pamucar, D., Puska, A., & Chatterjee, P. (2020). Sustainable supplier selection in healthcare industries using a new MCDM method: Measurement of alternatives and ranking according to compromise solution (MARCOS). Computers & Industrial Engineering, 140, 106231.
 
Study on the Analysis and Evolution of International and EU Shipping, final report 2015, Available at: http://ec.europa.eu/transport/modes/maritime/studies/maritime_en.htm
Tjader, Y., May, J. H., Shang, J., Vargas, L.G., & GAO, N. (2014). Firm-level outsourcing decision making: a balanced scorecard-based analytic network process model, Int J Prod Econ, 147.
 
Tomorrow's Development Foundation, (2005), Technology futures methods
Trujillo-Cabezas, R., & Verdegay, J. L. (2020). Modeling and simulation of the future, in integrating soft computing into strategic prospective methods, 113-147.
 
Ulutaş, A. (2019). University website performance evaluation using Fuzzy SWARA and WASPAS-F. In multi-criteria decision-making models for website evaluation, 151-165.
 
Wang, H., Jiang, Z., Zhang, H., Wang, Y., Yang, Y., & Li, Y. (2019). An integrated MCDM approach considering demands-matching for reverse logistics, cleaner production, 208, 199-210.
 
Walker, T. R., Adebambo, O., Feijoo, M. A., Elhaimer, E., Hossain, T., Edwards, S. J., & Zomorodi, S. (2019). Environmental effects of marine transportation, In World Seas: An environmental evaluation, 505-530.
 
Wang, G., Li, K. X., & Xiao, Y. (2019). Measuring marine environmental efficiency of a cruise shipping company considering corporate social responsibility. Marine policy, 99, 140-147.
 
Watrobski, J., Jankowski, J., Ziemba, P., Karczmarczyk, A., & Zioło, M. (2019). Generalised framework for multi-criteria method selection. Omega, 86, 107-124.
 
Witt, T., Dumeier, M., & Geldermann, J. (2020). Combining scenario planning, energy system analysis, and multi-criteria analysis to develop and evaluate energy scenarios, Cleaner production, 118414.
 
Wright, G., & Goodwin, P. (2009). Decision making and planning under low levels of predictability: enhancing the scenario method, Forecasting, 25(4), 813-825.
 
Zavadskas E. K., & Zenonas, T. (2010). A new additive ratio assessment (ARAS) method in multicriteria decision‐making, Technological and economic development of economy, 16(2), 159-172.
 
Zavadskas, E. K., Antucheviciene, J., Vilutiene, T., & Adeli, H.  (2018). Sustainable decision-making in civil engineering, construction and building technology, Sustainability,10(1), 14 .
 
Zavadskas, E. K., Cereska, A., Matijosius, J., Rimkus, A., & Bausys, R. (2019). Internal combustion engine analysis of energy ecological parameters by neutrosophic MULTIMOORA and SWARA methods. Energies, 12(8), 1415.
 
Zavadskas, E. K. & Kaklauskas, A., (1996). Determination of an efficient contractor by using the new method of multicriteria assessment, in International Symposium, The organization and management of construction.
 
Zavadskas, E. K., Kaklauskas, A., Turskis, Z., & Tamosaitiene, J. (2008). Selection of the effective dwelling house walls by applying attributes values determined at intervals, Civil engineering and management, 14(2), 85–93.
 
Zavadskas, E. K., Kaklauskas, A., Turskis, Z., & Tamosaitiene, J. (2009). Multi-attribute decision-making model by applying grey numbers, Informatica, 20(2), 305-320.
 
Zolfani, S. H., & Chatterjee, P. (2019). Comparative evaluation of sustainable design based on Step-wise Weight Assessment Ratio Analysis (SWARA) and best worst method (BWM) methods: a perspective on household furnishing materials, Symmetry, 11(1), 74.
 
Zolfani, S., H., Rezaeiniya, N., Aghdaie M. H., & Zavadskas, E. K. (2012). Quality control manager selection based on AHP- COPRAS-G, Ekonomska istrazivanja, 25(1), 88-104