A Comparison of the Mahalanobis-Taguchi System to A Standard Statistical Method for Defect Detection

Document Type : Research Paper


1 Missouri University of Science and Technology, Rolla, Missouri 65409 USA

2 Lawrence Technological University, Southfield, Michigan, 48075 USA


The Mahalanobis-Taguchi System is a diagnosis and forecasting method for multivariate data. Mahalanobis distance is a measure based on correlations between the variables and different patterns that can be identified and analyzed with respect to a base or reference group. This paper presents a comparison of the Mahalanobis-Taguchi System and a standard statistical technique for defect detection by identifying abnormalities. The objective of this research is to provide a method for defect detection with acceptable alpha (probability of type I) and beta (probability of type II) errors.


Main Subjects

[1] Asada M. (2001), Wafer yield prediction by the Mahalanobis-Taguchi system; IIE Transactions; 25-
[2] Chatfield C., Collins A.J.(1980), Introduction to Multivariate analysis; Chapman and Hall, London.
[3] Cudney E., Hong J., Jugulum R., Paryani K., Ragsdell K., Taguchi G. (2007), An evaluation of
Mahalanobis-Taguchi system and neural network for multivariate pattern recognition; Journal of
Industrial and Systems Engineering 1(2); 139-150.
[4] Cudney E., Paryani K., Ragsdell K. (2006), Applying the Mahalanobis-Taguchi system to vehicle
handling; Concurrent Engineering: Research & Applications 14(4); 343-354.
[5] Cudney E., Paryani K., Ragsdell K. (2007), Applying the Mahalanobis-Taguchi system to vehicle ride;
Journal of Industrial and Systems Engineering 1(3); 251-259.
[6] Cudney E., Paryani K., Ragsdell K.(2008), Identifying useful variables for vehicle braking using the
adjoint matrix approach to the Mahalanobis-Taguchi System; Journal of Industrial and Systems
Engineering 1(4); 281-292.
[7] Fisher R.A. (1936), The Use of Multiple Measurements in taxonomic problems; Annals of Eugenics
7(2); 179-188.
[8] Hayashi S., Tanaka Y., Kodama E.(2001), A new manufacturing control system using Mahalanobis
distance for maximizing productivity; IEEE Transactions; 59-62.
[9] http://www.itl.nist.gov/div898/handbook/pmc/section5/pmc543.htm
[10] Jain Anil K., Duin Robert P.W., Mao Jianchang (2000), Statistical pattern recognition: A review; IEEE
Transaction on Pattern Analysis and Machine Intelligence 22(1); 4-37.
[11] Johnson R.A. Wichern D.W. (1992), Applied multivariate statistical analysis; 3rd edition, Prentice Hall,
Englewood Cliffs, New Jersey.
[12] Lande, U. (2003), Mahalanobis distance: A theoretical and practical approach;
[13] Manly Bryan F.J. (1994), Multivariate statistical methods: A primer; Chapman & Hall, London.
[14] Mason R.L., Tracy N.D., Young J.C. (1992), Multivariate control charts for individual observations;
Journal of Quality Technology 24; 88-95.
[15] Mason R.L., Tracy N.D., Young J.C. (1995), Decomposition of T2 for multivariate control chart
interpretation; Journal of Quality Technology 27; 899-108.
[16] Mardia K.V., Kent J.T., Bibby J.M. (1979), Multivariate analysis; Academic Press, New York, NY.
[17] Minitab Corporation (2005), Minitab Statistical Software, Release 14.20, State College Pennsylvania.
[18] Montgomery D.C. (1985), Statistical quality control; John Wiley & Sons.
[19] Taguchi G., Jugulum R. (2000), New trends in multivariate diagnosis; Indian Journal of Statistics
62(B); 233-248.
[20] Taguchi G., Jugulum R. (2002), The Mahalanobis-Taguchi strategy: A pattern technology system;
John Wiley & Sons Inc.
[21] Taguchi S. (2000), Mahalanobis Taguchi system; ASI Taguchi Symposium.
[22] Wu Y. (1996), Pattern recognition using Mahalanobis distance; TPD Symposium; 1-14.