A data envelopment analysis approach to evaluate efficiencies in organ allocation problem: A case study

Document Type : Research Paper


School of Industrial Engineering, Iran University of Science and Technology, Tehran, Iran


Data envelopment analysis (DEA) is a data-oriented approach to assess the performance of a set of entities known as decision-making units (DMUs), which transform multiple inputs into multiple outputs. On the other hand, the transplantation of organs is one of the most complex and challenging treatments in medicine, and organ allocation is the most important decision throughout the organ transplantation operation. Due to the enormous disparity between organ availability and demand, many individuals die while waiting for organ transplants despite major medical and technological improvements. Furthermore, kidney is the most commonly transplanted organ in the transplantation supply chain all over the world which is investigated in this paper. This research presents a two-stage network DEA model for assessing the efficiency of related DMUs. The main advantage of this study is considering network DEA with internal structures instead of black box DEA models in organ allocation problems. It should be noted that black box DEA models fail to present sufficient data for identifying the inefficiency of DMUs. In addition, it is unclear what occurs within the black box DEA models, and internal relations are not investigated. Finally, a real case study related to the organ allocation problem is presented, and the findings indicate that the proposed method in this study is strongly effective and outperforms the current kidney allocation system in Iran.


Main Subjects

Ahmadvand, S., & Pishvaee, M. S. (2018a). Design and planning of organ transplantation networks. In International Series in Operations Research and Management Science (Vol. 262, pp. 211–240). Springer, Cham. https://doi.org/10.1007/978-3-319-65455-3_9
Ahmadvand, S., & Pishvaee, M. S. (2018b). An efficient method for kidney allocation problem: a credibility-based fuzzy common weights data envelopment analysis approach. Health Care Management Science, 21(4), 587–603. https://doi.org/10.1007/s10729-017-9414-6
Akan, M. (2008). Optimizing Liver Allocation System Incorporating Disease Evolution. https://citeseerx.ist.psu.edu/viewdoc/download?doi=
Akan, M., Alagoz, O., Ata, B., Erenay, F. S., & Said, A. (2012). A broader view of designing the liver allocation system. Operations Research, 60(4), 757–770. https://doi.org/10.1287/opre.1120.1064
Al-Ebbini, L., Oztekin, A., & Chen, Y. (2016). FLAS: Fuzzy lung allocation system for US-based transplantations. European Journal of Operational Research, 248(3), 1051–1065. https://doi.org/10.1016/j.ejor.2015.08.001
Alagoz, O., Maillart, L. M., Schaefer, A. J., & Roberts, M. S. (2004). The optimal timing of living-donor liver transplantation. Management Science, 50(10), 1420–1430. https://doi.org/10.1287/mnsc.1040.0287
Alagoz, O., Maillart, L. M., Schaefer, A. J., & Roberts, M. S. (2007). Determining the acceptance of cadaveric livers using an implicit model of the waiting list. Operations Research, 55(1), 24–36. https://doi.org/10.1287/opre.1060.0329
Alagoz, O., Schaefer, A. J., & Roberts, M. S. (2009). Optimizing organ allocation and acceptance. Springer Optimization and Its Applications, 26, 1–24. https://doi.org/10.1007/978-0-387-09770-1_1
Apornak, A., Raissi, S., & Pourhassan, M. R. (2021). Solving flexible flow-shop problem using a hybrid multi criteria Taguchi based computer simulation model and DEA approach. Journal of Industrial and Systems Engineering, 13(Issue 2), 264–276. http://www.jise.ir/article_119807.html
Aubert, O., Yoo, D., Zielinski, D., Cozzi, E., Cardillo, M., Dürr, M., Domínguez-Gil, B., Coll, E., Da Silva, M. I., Sallinen, V., Lemström, K., Midtvedt, K., Ulloa, C., Immer, F., Weissenbacher, A., Vallant, N., Basic-Jukic, N., Tanabe, K., Papatheodoridis, G., … Loupy, A. (2021). COVID-19 pandemic and worldwide organ transplantation: a population-based study. The Lancet Public Health, 6(10), e709–e719. https://doi.org/10.1016/S2468-2667(21)00200-0
Bartling, T., Oedingen, C., Kohlmann, T., Schrem, H., & Krauth, C. (2020). Comparing preferences of physicians and patients regarding the allocation of donor organs: A systematic review. Transplantation Reviews, 34(1), 100515. https://doi.org/10.1016/j.trre.2019.100515
Beliën, J., De Boeck, L., Colpaert, J., Devesse, S., & Van Den Bossche, F. (2013). Optimizing the facility location design of organ transplant centers. Decision Support Systems, 54(4), 1568–1579. https://doi.org/10.1016/j.dss.2012.05.059
Bertsimas, D., Farias, V. F., & Trichakis, N. (2013). Fairness, efficiency, and flexibility in organ allocation for kidney transplantation. Operations Research, 61(1), 73–87. https://doi.org/10.1287/opre.1120.1138
Bouwman, R., Lie, J., Bomhoff, M., & Friele, D. (2013). Study on the set-up of organ donation and transplantation in the EU Member States, uptake and impact of the EU Action Plan on Organ Donation and Transplantation ( 2009-2015 ). NIVEL, 28–30. https://www.narcis.nl/publication/RecordID/publicat:1002291
Bruni, M. E., Conforti, D., Sicilia, N., & Trotta, S. (2006). A new organ transplantation location-allocation policy: A case study of Italy. Health Care Management Science, 9(2), 125–142. https://doi.org/10.1007/s10729-006-7661-z
Charnes, A., Cooper, W. W., & Rhodes, E. (1978). Measuring the efficiency of decision making units. European Journal of Operational Research, 2(6), 429–444. https://doi.org/10.1016/0377-2217(78)90138-8
Chen, Y., Cook, W. D., Li, N., & Zhu, J. (2009). Additive efficiency decomposition in two-stage DEA. European Journal of Operational Research, 196(3), 1170–1176. https://doi.org/10.1016/j.ejor.2008.05.011
Cook, W. D., & Zhu, J. (2014). DEA for two-stage networks: Efficiency decompositions and modeling techniques. In International Series in Operations Research and Management Science (Vol. 208, pp. 1–29). Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-8068-7_1
Cooper, W. W., Seiford, L. M., & joe. (2011). 2011-handbook-on-data-envelopment-analysis.pdf.
De Boer, J. D., Putter, H., Blok, J. J., Cambridge, N. A., Van Den Berg, S. D., Vogelaar, S., Berlakovich, G., Guba, M., & Braat, A. E. (2021). Development of the eurotransplant discard risk index to predict acceptance of livers for transplantation: A retrospective database analysis. Experimental and Clinical Transplantation, 19(11), 1163–1172. https://doi.org/10.6002/ect.2021.0228
Demirci, M. C., Schaefer, A. J., Edwin Romeijn, H., & Roberts, M. S. (2012). An exact method for balancing efficiency and equity in the liver allocation hierarchy. INFORMS Journal on Computing, 24(2), 260–275. https://doi.org/10.1287/ijoc.1110.0445
Farrell, M. J. (1957). The Measurement of Productive Efficiency. Journal of the Royal Statistical Society. Series A (General), 120(3), 253. https://doi.org/10.2307/2343100
Gentry, S., Chow, E., Massie, A., & Segev, D. (2015). Gerrymandering for justice: Redistricting U.S. liver allocation. Interfaces, 45(5), 462–480. https://doi.org/10.1287/inte.2015.0810
Goli, A., Ala, A., & Mirjalili, S. (2022). A robust possibilistic programming framework for designing an organ transplant supply chain under uncertainty. Annals of Operations Research 2022, 1–38. https://doi.org/10.1007/S10479-022-04829-7
Hamid, M., Barzinpour, F., Hamid, M., & Mirzamohammadi, S. (2018). A multi-objective mathematical model for nurse scheduling problem with hybrid DEA and augmented ε-constraint method: A case study. Journal of Industrial and Systems Engineering, 11(Special issue: 14th International Industrial Engineering Conference), 98–108. http://www.jise.ir/article_69388.html
Henriques, I. C., Sobreiro, V. A., Kimura, H., & Mariano, E. B. (2020). Two-stage DEA in banks: Terminological controversies and future directions. Expert Systems with Applications, 161, 113632. https://doi.org/10.1016/J.ESWA.2020.113632
HLA Matching and Antibodies. (1998). Stanford University. https://web.stanford.edu/dept/HPS/transplant/html/hla.html
IRNOPT. (2022). Iranian Network for Organ Procurement and Transplantation. https://ehdacenter.ir/archive/article/2759553
Kao, C. (2017). Network Data Envelopment Analysis (Vol. 240). Springer International Publishing. https://doi.org/10.1007/978-3-319-31718-2
Kao, C., & Hwang, S. N. (2008). Efficiency decomposition in two-stage data envelopment analysis: An application to non-life insurance companies in Taiwan. European Journal of Operational Research, 185(1), 418–429. https://doi.org/10.1016/j.ejor.2006.11.041
Kargar, B., Pishvaee, M. S., Jahani, H., & Sheu, J. B. (2020). Organ transportation and allocation problem under medical uncertainty: A real case study of liver transplantation. Transportation Research Part E: Logistics and Transportation Review, 134, 101841. https://doi.org/10.1016/j.tre.2020.101841
Kong, N., Schaefer, A. J., Hunsaker, B., & Roberts, M. S. (2010). Maximizing the efficiency of the U.S. liver allocation system through region design. Management Science, 56(12), 2111–2122. https://doi.org/10.1287/mnsc.1100.1249
Liang, L., Cook, W. D., & Zhu, J. (2008). DEA models for two-stage processes: Game approach and efficiency decomposition. Naval Research Logistics (NRL), 55(7), 643–653. https://doi.org/10.1002/NAV.20308
Liu, J. S., Lu, L. Y. Y., & Lu, W. M. (2016). Research fronts in data envelopment analysis. In Omega (United Kingdom) (Vol. 58, pp. 33–45). Pergamon. https://doi.org/10.1016/j.omega.2015.04.004
Marinho, A., & Araújo, C. A. S. (2021). Using data envelopment analysis and the bootstrap method to evaluate organ transplantation efficiency in Brazil. Health Care Management Science, 24(3), 569–581. https://doi.org/10.1007/s10729-021-09552-6
Moazeni, H., Arbabshirani, B., & Hejazi, S. R. (2022). An integrated model of network Data Envelopment Analysis and principal component analysis approach to calculate the efficiency of industrial units (Case study: Stone Industry). Journal of Industrial and Systems Engineering, 14(2), 172–192. http://www.jise.ir/article_150195.html
Omrani, H., Emrouznejad, A., Shamsi, M., & Fahimi, P. (2022). Evaluation of insurance companies considering uncertainty: A multi-objective network data envelopment analysis model with negative data and undesirable outputs. Socio-Economic Planning Sciences, 101306. https://doi.org/10.1016/j.seps.2022.101306
OPTN. (2022). National Data. https://optn.transplant.hrsa.gov/data/view-data-reports/national-data#
Peykani, P., Hosseinzadeh Lotfi, F., Sadjadi, S. J., Ebrahimnejad, A., & Mohammadi, E. (2022). Fuzzy chance-constrained data envelopment analysis: a structured literature review, current trends, and future directions. Fuzzy Optimization and Decision Making, 21(2), 197–261. https://doi.org/10.1007/S10700-021-09364-X
Peykani, P., Mohammadi, E., & Emrouznejad, A. (2021). An adjustable fuzzy chance-constrained network DEA approach with application to ranking investment firms. Expert Systems with Applications, 166, 113938. https://doi.org/10.1016/j.eswa.2020.113938
Peykani, P., Mohammadi, E., Pishvaee, M. S., Rostamy-Malkhalifeh, M., & Jabbarzadeh, A. (2018). A novel fuzzy data envelopment analysis based on robust possibilistic programming: Possibility, necessity and credibility-based approaches. RAIRO - Operations Research, 52(4), 1445–1463. https://doi.org/10.1051/ro/2018019
Rouhani, S., & Amin, S. H. (2022). A robust convex optimization approach to design a hierarchical organ transplant network: A case study. Expert Systems with Applications, 197, 116716. https://doi.org/10.1016/j.eswa.2022.116716
Sadjadi, S. J., Omrani, H., Makui, A., & Shahanaghi, K. (2011). An interactive robust data envelopment analysis model for determining alternative targets in Iranian electricity distribution companies. Expert Systems with Applications, 38(8), 9830–9839. https://doi.org/10.1016/J.ESWA.2011.02.047
Savaşer, S., Kınay, Ö. B., Kara, B. Y., & Cay, P. (2019). Organ transplantation logistics: a case for Turkey. OR Spectrum, 41(2), 327–356. https://doi.org/10.1007/s00291-018-0538-y
Stahl, J. E., Kong, N., Shechter, S. M., Schaefer, A. J., & Roberts, M. S. (2005). A methodological framework for optimally reorganizing liver transplant regions. Medical Decision Making, 25(1), 35–46. https://doi.org/10.1177/0272989X04273137
Su, X., & Zenios, S. A. (2005). Patient choice in kidney allocation: A sequential stochastic assignment model. In Operations Research (Vol. 53, Issue 3, pp. 443–455). https://doi.org/10.1287/opre.1040.0180
Su, X., & Zenios, S. A. (2006). Recipient choice can address the efficiency-equity trade-off in kidney transplantation: A mechanism design model. Management Science, 52(11), 1647–1660. https://doi.org/10.1287/mnsc.1060.0541
Tavana, M., Izadikhah, M., Di Caprio, D., & Farzipoor Saen, R. (2018). A new dynamic range directional measure for two-stage data envelopment analysis models with negative data. Computers & Industrial Engineering, 115, 427–448. https://doi.org/10.1016/J.CIE.2017.11.024
UNOS. (2022). United Network for Organ Sharing. https://unos.org/data/
WHO. (2022). World Health Organization. https://www.who.int/health-topics/transplantation#tab=tab_1
Wolfe, R. A., McCullough, K. P., Schaubel, D. E., Kalbfleisch, J. D., Murray, S., Stegall, M. D., & Leichtman, A. B. (2008). Calculating life years from transplant (LYFT): Methods for kidney and kidney-pancreas candidates. American Journal of Transplantation, 8(4 PART 2), 997–1011. https://doi.org/10.1111/j.1600-6143.2008.02177.x
Zahiri, B., Tavakkoli-Moghaddam, R., Mohammadi, M., & Jula, P. (2014). Multi objective design of an organ transplant network under uncertainty. Transportation Research Part E: Logistics and Transportation Review, 72, 101–124. https://doi.org/10.1016/j.tre.2014.09.007
Zahiri, B., Tavakkoli-Moghaddam, R., & Pishvaee, M. S. (2014). A robust possibilistic programming approach to multi-period location-allocation of organ transplant centers under uncertainty. Computers and Industrial Engineering, 74(1), 139–148. https://doi.org/10.1016/j.cie.2014.05.008
Zenios, S. A. (2006). Models for Kidney Allocation. In Operations Research and Health Care (pp. 537–554). Springer, Boston, MA. https://doi.org/10.1007/1-4020-8066-2_21
Zenios, S. A., Chertow, G. M., & Wein, L. M. (2000). Dynamic allocation of kidneys to candidates on the transplant waiting list. Operations Research, 48(4), 549–569. https://doi.org/10.1287/opre.48.4.549.12418
Volume 14, Issue 4 - Serial Number 4
November 2022
Pages 138-157
  • Receive Date: 26 November 2022
  • Revise Date: 10 February 2023
  • Accept Date: 21 February 2023
  • First Publish Date: 21 February 2023