Solving linear equation system based on Z-numbers using big-M method

Document Type : Research Paper


Faculty of Science, Urmia University of Technology, Urmia, Iran


In real world, many decisions are made at any given moment, usually with uncertainty. Although there are many ways and tools to overcome these uncertainties, a powerful tool can be Z-numbers. In this study, inspiring Otadi-Mosleh and Big-M method, an extended model is proposed to solve the Z-number matrix equation. Also, numerical examples are provided to show the performance of this model.


Main Subjects

Abbasbandy, S., Ezzati, R., Jafarian, A. (2006). LU decomposition method for solving fuzzy system of linear equations. Applied Mathematics and Computation, 172, 633–643. http://doi:10.1016/j.amc.2005.02.018
Abbasbandy, S., Jafarian, A., Ezzati, R. (2005). Conjugate gradient method for fuzzy symmetric positive definite system of linear equations. Applied Mathematics and Computation, 171, 1184–1191.
Abbasbandy, S., Otadi, M., Mosleh, M. (2008). Minimal solution of general dual fuzzy linear systems. Chaos, Solitons and  Fractals, 37, 1113–1124.
Abbasi, M., Pishvaee, M. S., Bairamzadeh, S. (2020). Land suitability assessment for Paulownia cultivation using combined GIS and Z-number DEA: A case study. Computers and Electronics in Agriculture, 176, 105-666.
Akbarian Sarvari, N., Yazdanparast, R., Momeni, O., Heydarian, D., Jolai, F. (2019). Location optimizationof agricultural residues-based biomass plant using Z-number DEA. Journal of Industrial and System Engineering, 12, 39-65.
Aliev, R.A., Alizadeh, A.V., Huseynov, O.H., Jabbarova, K.I. (2015). Z-number-based linear programming. International Journal of Intelligent Systems, 30, 563–589.
Aliev, R.A., Zeinalova, L.M. (2014). Decision making under Z-information. In Human centric decision-making models for social sciences (pp. 233-252). Springer, Berlin, Heidelberg.
Asady, B., Abbasbandy, S., Alavi, M. (2005). Fuzzy general linear systems. Applied Mathematics and computation, 169, 34–40.
Azadeh, A., Saberi, M., Atashbar, N. Z., Chang, E., Pazhoheshfar, P. (2013). Z-AHP: A Z-number extension of fuzzy analytical hierarchy process. In 2013 7th IEEE International Conference on Digital Ecosystems and Technologies (DEST) (pp. 141-147). IEEE.
Bazaraa, M.S., Jarvis, J.J., Sherali, H.D. (1990). Linear Programming and Network Flows, Second ed., John Wiley Sons.
Bobar, Z., Božanić, D., Djurić, K., Pamučar, D. (2020). Ranking and assessment of the efficiency of social media using the Fuzzy AHP-Z-number model -Fuzzy MABAC. Acta Polytechnica Hungaric, 17, 43-70.
Celikyilmaz, A., Turksen, I. B. (2009). Modelling uncertainty with fuzzy logic. Studies in Fuzziness and Soft computing, 240, 149-215.
Coppi, R., Gil, M.A., Kiers, H.A. (2006). The fuzzy approach to statistical analysis. Computational Statistics and Data Analysis, 51, 1-14.
Daryakenari, N., Allahviranloo, T., Nouri, M. (2020). Providing a model for predicting futures contract of gold coin price by using models based on Z-numbers. Mathematical Sciences, 1-14.
Dehghan, M., Hashemi, B. (2006). Solution of the fully fuzzy linear systems using the decomposition procedure. Applied Mathematics and Computation, 182, 1568–1580.
Dubois, D., Prade, H. (1980). Systems of linear fuzzy constraints. Fuzzy Sets and Systems, 3, 37–48.
Feuring, T., Lippe, W. M. (1995). Fuzzy neural networks are universal approximations. In IFSA world congress (Vol. 2, No. 1, pp. 659-663).
Friedman, M., Ming, Ma., Kandel, A. (1998). Fuzzy linear systems. Fuzzy Sets and Systems, 96, 201–209.
Ghanbari, R., Mahdavi-Amiri, N. (2010). New solutions of L-R fuzzy linear systems using ranking functions and ABS algorithms. Applied Mathematical Modelling, 34, 3363-3375.
Jafari, R., Razvarz, S., Gegov, A., Paul, S. (2020). Modelling of uncertain nonlinear system with Z-numbers. In Encyclopaedia of Information Science and Technology, Fifth Edition (pp. 290-314). IGI Global. https://doi: 10.4018/978-1-7998-3479-3.ch022
Jafari, R., Yu, W., Li, X. (2017). Numerical solution of fuzzy equations with Z-numbers using neural networks. Intelligent Automation and Soft Computing, 1-7.
Jain, L. C., Martin, N. M. (Eds.). (1998). Fusion of neural networks, fuzzy systems, and genetic algorithms: industrial applications (Vol. 4). CRC press
Kang, B., Wei, D., Li, Y., Deng, Y. (2012). A method of converting Z-number to classical fuzzy number. Journal of Information and Computational Science, 9, 703-709.
Kaufmann, A., Gupta, M.M. (1985). Introduction to fuzzy Arithmetic Theory and Applications, Van Nostrand Reinhold, New York.
Kumar, A., Kaur, J., Singh, P. (2011). A new method for solving fully fuzzy linear programming problems. Applied Mathematical Modelling, 35, 817-823.
Murty, K. (1984). Linear Programming, First edition., John Wiley Sons.
Muzzioli, S., Reynaerts, H. (2006). Fuzzy linear systems of the form . Fuzzy Sets and Systems, 157, 939–951.
Najafi, H.S., Edalatpanah, A., Dutta, H. (2016). A nonlinear model for fully fuzzy linear programming with fully unrestricted variables and parameters. Alexandria Engineering Journal, 55, 2589-2595.
Nguyen, H. T., Sugeno, M. (Eds.). (2012). Fuzzy systems: modelling and control (Vol. 2). Springer Science Business Media.
Otadi, M., Mosleh, M. (2012). Solving fully fuzzy matrix equations. Applied Mathematical Modelling, 36, 6114-6121.
Sadi-Nezhad, S., Sotoudeh-Anvari, A. (2016). A new data envelopment analysis under uncertain environment with respect to fuzziness and an estimation of reliability. OPSEARCH, 53, 103–115.
Wang, X., Zhong, Z., Ha, M. (2001). Iteration algorithms for solving a system of fuzzy linear equations. Fuzzy Sets and Systems, 119, 121–128.
Zadeh, L.A. (2011). A note on Z-numbers. Information Sciences, 181, 2923-2932.
Zadeh, L.A. (1965). Fuzzy sets. Information and Control, 8, 338-353.
Zhang, H., Liu, D. (2006). Fuzzy modelling and fuzzy control, Springer Science Business Media.