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Abstract

In this paper, we consider the flow-shop scheduling problem with unrelated
parallel machines at each stage as well as sequence-dependent setup times under
minimization of the sum of earliness and tardiness. Processing times, setup times
and due-dates are known in advance. To solve the problem, we introduce a
hybrid memetic algorithm and a particle swarm optimization combined with
genetic operators. An application of simulated annealing is also presented for the
evaluation of the proposed algorithm. A Taguchi design is also conducted to set
the parameters. Finally, a comparison is made via 16 small size and 24 large size
test problems for 10 times each. The results of one-way ANOVA applied in our
test problems, demonstrate that the proposed algorithm performs as efficient as
the HSA qualitatively and with 63.77% decline in elapsed time.

Keywords: scheduling; hybrid flow-shop; unrelated machines; sequence
dependent setup time; earliness-tardiness.

1- Introduction

Hybrid flow-shops (HFS) also known as flexible flow-shops (FFSP) or multi-processor
flow-shops are common manufacturing environments in which a number of jobs are to be
processed in a series of production stages, each of which has multiple machines operating in
parallel. Some stages may have only one facility, but at least one stage must have more than one
facility parallel with others. The hybrid characteristic of a flow-shop can be seen in various
industries. For instance, Yaurima et al. (2009) addressed HFS for television printed circuit-
board (PCB) production. Most researches in the literature are dedicated to HFS with identical
parallel machines at each stage. However, in real production environments, due to the high cost
of replacement of the older facilities with the new ones, newer and more efficient facilities are
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usually in parallel with older and slower facilities,. Moreover, scheduling problem with
sequence-dependent setup times (SDST) is found in many industries. We can refer to dying
operation as an example. Therefore, the hybrid flow-shop scheduling problem with unrelated
machines and sequence-dependent setup times is considered in this paper.

In this paper, we are interested to study the SDST hybrid flow-shop scheduling problem with
unrelated machines and Earliness-Tardiness (ET) objective function. This function is used on
one hand to minimize inventory or deterioration costs and on the other hand, to reduce customer
dissatisfaction by meeting their jobs' due-dates. A few researches in the literature addressed ET
objective function (almost 1% of the scheduling problems according to Ruiz and Vazquez-
Rodriguez (2010)) and to the best of our knowledge, no research studied HFS with unrelated
machines and ET penalties simultaneously. The schematic figure of the hybrid flow-shop
problem is demonstrated in figure 1.

Machine 1 Machine 1
Machine 2 Machine 2

Jobs ) — ..

Machine m; Machine ms
N U,
Stage 1 Stage m

Figurel.Schematic figure of the hybrid flow-shop environment

As the single criterion HFS problem, made up of two stages with at least two machines
available in one of the stages with make span criterion is an NP-hard problem, the bi-criteria
scheduling problem can be assumed to be NP-hard also (Gupta, 1988). So developing heuristics
and metaheuristics methods can provide acceptable results for this problem. As the simple
genetic algorithm and the original PSO may not provide satisfactory results, they are hybridized
with a local search algorithm. PSO is chosen due to its long computational time and for its rapid
convergence. The PSO used in this article is a developed version initialized by Tasgetiren et al.
(2004) which enables the use of original PSO in scheduling problems. It is also hybridised with
genetic operators which are chosen by Taguchi method. An application of SA is developed in
order to validate the obtained results. A new EDD based heuristic is also presented in order to
generate the initial solution. Moreover, a heuristic algorithm is proposed and is hybridised with
the metaheuristcs to find the schedule for the overall problem.

The remainder of this paper is organized as follows. In the next section, an overview
regarding the problem is provided. Section 3 is dedicated to the description of the HFS problem
and the MIP model. In section 4, 5 and 6, the hybrid memetic algorithm and the applications of
SA and PSO are described. Parameter calibration and computational results are also provided in
section 7. Finally, section 8 concludes the paper.

2- Literature review

Various forms of the HFS problem have been studied in the literature. The literature is
reviewed according to the topic and the approaches used in this article. The literature review is
summarized in table 1.
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Environment

Number

Sequence-

Performance

Solution

of stages dependent measure approach Author
Several
HFS with Identical >=2 v C heuristics, a Kurz and
parallel machines - max MILP model Askin(2004)
and RKGA
HFS with identical Immune Zandieh et al
parallel machines >=2 Y Crrax algorithm (2006)
HFS with identical
parallel machines, _ Zandieh et
machine release >=2 Y C GA al.(2010)
dates and time lags
. . Davoudpour
1
HerSc':llvlveIIﬂ:nI:Ce;itrzgzl >=2 Y E"+T"+C"+d’ a%iﬁti; and Ashrafi
(2009)
Fr!:rse;\;llvelltr:nlgsmrlwzzl 5= N S — thAr'i(-jrgAijanS Janiak et al.
and machine release N EP+T5+WT yh DAV, (2007)
euristics
dates
HFS with identical _ - Farkhzand and
machines >=2 N ET Heuristic Heydari (2008)
HFS with identical _ Multi-phase Behnamian et
parallel machines >=2 Y {Crrax, £T} method al. (2009)
A discrete
HFS with identical o version of .
machines and >=2 Y E +T?2 coIon!a_I Behngmlan and
limi M + competitive Zandieh (2011)
imited waiting time .
algorithm
(CCA)
HFS with unrelated
machines and — MILP, Jungwattanakit
machine release >=2 Y Craxt(1-a)U heuristics, GA, et al. (2005)
SA, TS
dates
HFS wnh unrelated A MILP model, _
machines and >=2 v c 1) T dispatchin Jungwattanakit
machine release N aCact(1-t) p g et al. (2008)
rules, GA
dates
HFS with unrelated A MILP model,
machines and _ — heuristics, Jungwattanakit
machine release >=2 Y aCrmaxt(1-a)U dispatching et al. (2009)
dates rules, GA
HFS with unrelated gﬂiﬁiﬁ?ﬁﬁg Ruiz and
_machines and >=2 Y Cmox formulation, Maroto (2006)
eligibility constraint GA
HFS with unrelated o Naderi et al
machines and >=2 Y {F,T} SA '
e ' (2009)
transportation times
HFS with unrelated hy:g!gcrt?\lljét" Rashidi et
machines and >=2 Y {Cmax, Tmax} . . al.(2010)
. parallel genetic
processor blocking ;
algorithm

1C "is the total weighted completion time

2WT " is the total weighted waiting time




70

Tablel.Litrature review continued

Environment Number Sequence- Performance Solution
Author
of stages dependent measure approach
HFS with unrelated
machines and
precedence .
constraints, time >=2 Y Cmax GA Ur!lngs and
. Ruiz (2010)
lags, machine
eligibility and
release times
PSO combined
: . _ —w with local Tasgetiren et al.
Single machine 1 N T search (2004)
algorithms
Single and discrete version Liao et al
Flow shop >=2 N multiple of a PSO with '
- (2007)
objectives local search
A combination
Job-shop \_Nlth .fuzzy B N oo of PSO \_Nlth Niu et al. (2008)
processing time genetic
operators
_ A hybrid two Zhang et al.
Flow shop >=2 N Cmax phases PSO (2010)

The research studies described above and the review paper presented by Ruiz and
Vazquez-Rodriguez (2010) demonstrate that to the best of our knowledge, no studies considered
unrelated machines and ET objective function in the HFS scheduling problem simultaneously.
On the other hand, according to the literature review, SA and GA are the most popular
metaheuristics used to solve the HFS problem, especially those problems with unrelated
machines. Thus, we apply the mentioned algorithms to tackle the complexity of the problem. As
mentioned before, an application of a PSO algorithm is also applied due to its rapid
convergence and on the other hand due to the long running time of the other algorithms.

3- Notations and formulation

3-1- Assumptions
We introduce the following assumptions for the problem:

(1) The processing times and setup times of the jobs on each machine at each stage and
their due-dates are deterministic and known in advance.

(2) The number of jobs, the number of machines and the number of stages are fixed.

(3) Preemption is not allowed.

(4) Once a job is taken in to processing, it must finish its processing completely before
moving to the next stage.

(5) No splitting is allowed. It means that a job must be processed just on one machine at
each stage.

(6) The jobs’ release dates in the first stage are all zero.

(7) Setup times are sequence-dependent. There is also a setup time before starting the first
job in the permutation of jobs in the first stage.

(8) Machines are always available without any breakdown.

(9) The machines at each stage are unrelated and the processing time of each job is
calculated by dividing its processing time by the machine speed.
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3-2- Notations

To describe the mathematical model, following notations are introduced:
k.,j=Job index
J=Total number of jobs
s =Stage index
m=Machine index
Ms=Number of machines in stage s
Psin=Processing time of job j on machine m in stage s
supsm=Setup time from job k to job j on machine m in stage s
M=A large positive number
S=Total number of stages
Csin=Completion time of job j on machine m in stage s
Ksi=Departure time of job j from stage s

3 {1 , If job j is processed on machine min stage s,

" 10 ,Otherwise.
_ |1 ,If job jis processed directly after job k on machine min stage s,
%m0, Otherwise.

di=due-date of job j
Ej=earliness of job j
T; =tardiness of job j

3-3- Mixed integer linear programming model

In this section, we introduce a mixed integer linear programming model for the problem
which is derived and developed from Crowder (2006):

MinZ = Zjl:(Ej +T;) 1)
=

s.t:

KSJ.+EJ.-TJ.=dj , Vj,8=S§; )
E;>d,-K; ,Vj,s=S; (3)
TJ.zKSJ.—dj ,Vj,s=S§; (4)
Cyn = Py + Wi *sUpg, -+ Vj,i#j,m=1,..,M, s=1; ®)
Cyn-CantM*(L- Wy, )= Py + W *supg, Vs, j,i=j,m=l,.,M; (6)
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Cam - K(s-l)j = stm -M *(1' X

sjm

) + Wi *sUpg, Vs=Lj,i= jm=L.. M

sjm
Cyn <K Vs, jym=1,..,M;

sim — s

CSjmzKSj-M*(l-xsjm) 1vsaj1m:1)---,Ms;

<

S,

Xgm =1 ,Vs,j=0;

3
.L

J
XSjm-Zwsijm:O 1i¢j1vsaj¢07m:1,...,MS;
j=1

s

J
XSim-ZWsiijO liijyvs,i,mzl,...,M .
=1

D Wi =0 iz ], Vsm=1.,M;

s

The pairs of constraints (3), (16) and (4), (15) assure the proper minimization of the
earliness and tardiness and constraint (2) reflects the earliness and tardiness for each job with
respect to due-date. Constraint (5) guarantees that the completion time of job j be greater than or
equal to the processing and setup time of job j in the first stage. With constraint (6), overlapping
processing of jobs on the same machine in a stage is prevented. It also assures that the jobs are
not interrupted during processing. Constraint (7) is used to ensure that the completion time of
each job is greater than or equal to the completion time of the job in the previous stage plus the
processing and setup time of the job in the current stage. Constraints (8) and (9) set the value for
Ksj as the time that job j leaves stage s. Constraint (10) is used to ensure that each job is
processed on one and only one machine per stage. Constraint (11) assures that each job must
follow another job i. Constraint (12) stipulates each job i might or might not be followed by
another job, but it can be followed by at most one job. In constraints (13) and (14), in order to
calculate the setup times for the first job processed on each machine, job 0 is considered to be
processed first on every machine in each stage with zero processing time. This job does not

()

(8)

)

(10)

(11)

(12)

(13)

(14)

(15)

(16)
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really exist and is a dummy job. For instance, if job 5 is the first job that is taken in to process,
job 0 is considered before job 5 and the setup time required is denoted by SUp e, -

4- The proposed hybrid memetic algorithm

The most important advantage of a GA is its capability of parallel search in the search
space. It starts with a set of possible solutions, called population which can be generated
randomly or by using some heuristics. Each individual in the population is called
chromosome which is made up of genes. The individuals in the population are evaluated
by fitness measure. In each generation, two types of genetic operators called crossover
and mutation are used for evolution of the current population. A genetic algorithm
hybridized with local search methods is called a memetic algorithm. Due to the fact that
the performance of the simple genetic algorithm (GA) can be weak in this problem it is
hybridized with a local search to enhance its characteristics. The resultant algorithm is
called a hybrid memetic Algorithm (HMA).

Notice that the HMA as well as the HSA algorithm and the proposed PSO algorithm are used
to determine the first stage sequence. This sequence will then be used as an entry to the heuristic
algorithm to construct the schedule for the overall problem. The heuristic will be discussed later
in section 4.3.

4-1- Representation

To solve a problem using MA or GA, the decision of how to represent a solution is a
prerequisite action. Using job permutation in the first stage is common and straightforward in
many previous works in GAs for flow-shop scheduling problems. As an example, for five jobs,
this representation can be encoded as [5 2 1 4 3]. (Jungwattanakit et al., 2005, 2008 and 2009)

4-2- Initialization

Initial population can be generated randomly or by using some heuristics. We use random
generation to initialize the population which is more common.

4-3-The heuristic to calculate fitness function

For each individual in the population, a heuristic algorithm is applied to find the complete
schedule for the overall problem and to calculate the cost function whenever is required.

The proposed heuristic algorithm consists of two parts: The first part of the algorithm aims at
completing the jobs as soon as possible and in the second part of the algorithm, starting and
completion times of the jobs in the last stage is recalculated in order to minimize the sum of
earliness and tardiness. The pseudo code of this heuristic is as follows:

e The first part of the algorithm:
Input: The first stage sequence

Set the release date of each job at the first stage to be zero.(r(s, j) =0,s=1, j=1,...,J)

For stage 1 to S:
- Ifs=1
= Consider the first stage sequence
— Elseifs<>1



74

= Determine the sequence of the jobs in stages by using the FIFO rule.
- End
— For every machine m in stage s, set the available time of each machine to be zero:

AV(m,s)=0,Vvm=1,...,Mq
For job 1to J:
- LetC, be the completion time of job j on machine m in stage s,
SUPx,, be the setup time of job j provided that the previous job is

changed to job j and PFsjm. Calculate the completion time of each

job on each machine in the current stage as follows, and then
choose the machine with minimum completion time.

Cgm = Max{AV (m,s),r(s, j)}+ Py, +sup..

jm*

Name the selected machine asm .
— Update the available time of the selected machine in stage sand
release date of job j in stage s.

—  Store the completion time of job j, C; as Csjmx .

— Calculate the sum of earliness and tardiness.

End
End

e The second part of the algorithm:

In this stage of the algorithm, the starting times of the jobs on the machines in the last stage are
modified regarding to the due-dates in order to minimize earliness-tardiness.
For the last stage and each machine:

Let = be the permutation of jobs scheduled to be processed on machine m
ﬂ:{ﬂml,ﬂ V4 }) and B;denote the group of jobs to be processed consecutively on

m21+eees W reee
machine m after jth job in the permutation without any idle time and consider LB, be the
position of the last operation inB;and EB; < B; denote the subset of early jobs in B;and

ID(B,)denote the machine idle time after groupB;. In addition, consider SEB;to be the

smallest earliness of early jobs in the group.
There are two conditions which should be considered:

(1) E(m,;) > 0 (if the jth job is early) ,
(2) Number of early jobs > number of tardy jobs

If these two conditions are satisfied, the group B together with the jth job is shifted to right by
time t which is calculated using the following equation: t = min{SEB,,E(x, ), ID(B;)}

Then, group B;and the values of E, SEB; and ID(B;) must be updated and earliness-tardiness
penalty is recalculated. This procedure will be continued until one of the conditions is violated.
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4-4-Crossover

In this algorithm, two kinds of crossover operators are used, named as the combined order and
position-based crossover (OPX crossover) presented by Jungwattanakit et al. (2009) and a
straightforward and simple crossover called Adapted Single Point crossover (ASP crossover)
which is the adapted version of the single point crossover used in Random Key Genetic
Algorithm (RKGA) or Binary Genetic Algorithm (BGA).

To apply ASP crossover, two individuals are selected using roulette wheel selection, then
one position in the chromosome is randomly chosen. Child one is the head of parent one and the
rest of the child structure is completed by inserting the remaining jobs in the same order as the
second parent. In the same way, child two is the head of parent two and the child structure is
completed by inserting the remaining jobs in the same order as the first parent. Figure 2 depicts
how ASP crossover works.

'

Parentl 1] 2 3 4 5 1| 2 3] 4] > Parentl
—
Child1 1 2 3 3 4 3 2 1 3 4 Child2
—M
Parent? 5123|421 s 2] 341 Parent2
-
Figure2.ASP Crossover
4-5-Mutation

Mutation is an operator which is used in MA and GA to avoid getting trapped in local
optimum. In this paper, three mutation operators, called insertion, inversion and swap mutation
are considered which are widely used in the literature.

4-6-Termination criterion

The cost function does not change after a number of iterations. Hence, a termination criterion
is required. In this paper, the simplest criterion is considered which is "stop after some
predetermined number of generations".

4-7- Proposed local search procedure

As mentioned before, few experiments show that the performance of simple GA can be
weaker than other similar algorithms. Thus, we apply a local search in each generation of the
algorithm and to the solution found at the end of the algorithm.

To apply the local search in each generation, a number of individuals are selected at random
from the population. The local search procedure is first applied to the individuals (the schedule
of the first stage) with the following neighbourhoods and then it is applied to the schedule of the
last stage attained by the heuristic method:

(1) A machine and two jobs processed on it are selected at random and the jobs are
interchanged.
(2) A machine and a job processed on it are selected at random. The selected job is inserted
in another random position on the selected machine.
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(3) Two machines in parallel and one job processed on each of them are selected randomly.
Then the jobs are interchanged.

(4) Two machines are selected at random and a job on the first machine is selected and
inserted in a random position on the second machine.

5- An improved hybrid Simulated annealing

In this section, a SA algorithm which is a popular local search metaheuristic is hybridized
with the local search method presented in the previous section. Representation, evaluation and
other parts of the algorithm except initialization and the use of the local search method are
similar to the HMA.

For initialization, three methods called random initialization, NEH heuristic and a new EDD-
based heuristic are considered. The EDD-based heuristic is chosen among other methods by
applying Taguchi method. The so-called EDD-based heuristic is described as follows:

— Determine the sequence of jobs according to the EDD rule.
— Interchange the first two jobs.
— Choose the sequence with minimum cost function.
— Fori=1:J
= Insert the next job between previous jobs and choose the sequence with
minimum cost function.
- End

Finally, the local search method used in the HMA is applied just on the solution found
by this algorithm. The termination criterion is also as the same as the one used in the HMA.

6- The proposed Particle Swarm Optimization

Another algorithm is a PSO algorithm hybridized with genetic operators (called
GPSO).Notice that the representation of this algorithm is different from the algorithms
mentioned in the previous sections and is derived from Tasgetirenet al. (2004) which enables
the original continuous particle swarm optimization. Thus, in order to choose the best crossover
and mutation operators, in addition to the operators used in the HMA, a new mutation operator
is considered called the regeneration mutation. By applying this mutation, two positions are
chosen within the particle position at random. Then, two random numbers are regenerated and
placed within the selected positions. In this way, a new particle position is generated.

The termination criterion is the same as the previous algorithms and the heuristic in section
4.3 is used to obtain the schedule for the overall problem.

7- Experiments

7-1- Parameter calibration

Before presenting and comparing the results of our algorithms, the best parameter
combination must be chosen for each algorithm. Hence, we perform a Taguchi design to set the
parameters.

For the HMA, 10 is selected for the population size(npop), inverse/insertion/swap for
mutation type, OPX/ASP crossover for crossover type, 0.4 for mutation rate (Pm), 0.9 for
crossover rate (P¢), 0.2 for local search rate(Piocal search) and10 for neighbourhood length(Inner N
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length). Figures 3 and 4 which are the main effects plot for SN ratios and main effects plot for
means show these results.
In the same way for the HSA, EDD-based heuristic is selected for generating initial solution,

10 for neighbourhood length, (Tf j%””” for temperature reduction rate, 500 for initial
TO

temperature, and 20 for maximum number of iterations per temperature.
For the GPSO, 40 is selected for initial population size, inverse and regeneration mutation
for mutation type, OPX for crossover type, 0.3 for mutation rate, 0.7 for crossover rate, 2 for

Ciand C;,0.99 forW (-J,J) for accepted range of particle position and (-2J,2J) for accepted
range of particle velocity.
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Figure3.Main Effects Plot for SN ratios for the HMA

3Maxlt is the maximum number of iterations
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Main Effects Plot for Means
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Figure4.Main Effects Plot for Means for the HMA

7-2- Data generations and settings

Ultimately, an experiment is conducted to test the performance of the proposed algorithms.
Data required for the problem consists of the number of jobs, the number of stages, the number
of machines in each stage, the value of the processing times, setup times which are generated
according to Jung wattanakit et al. (2005, 2008 and 2009).

7-3- Performance analysis

All methods presented above except for the GPSO algorithm produce acceptable results with
regard to the computational time in comparison with the exact method. GA performs weaker
than SA in this problem and even worse than the GPSO algorithm. Hence, the performance of
the proposed algorithms is compared with the MIP model for small size problems and with the
HSA both for small and large size problems.

While an optimal solution is obtainable using the MIP model, for medium and large size
problems, solutions are very difficult to find. Hence, this paper compares the performance of all
proposed metaheuristics by using the relative performance deviation (RPD) which is calculated
as follows:

RPD = (sol —ming, )/min, (17)

Where ming, is the minimum function value obtained by all algorithms and sol is the

solution obtained by a particular of the proposed metaheuristics. The results are demonstrated in
tables 1 and 2.



7-3-1- Small size problems

For small size problems, 16 types of problems are generated and are executed 10 times in

order to reduce error of random numbers. Then, averages of results are reported.

Table 2 gives the average of the obtained results for small problems. The first item of the
second column gives the number of jobs and the second item gives the number of stages (the
number of jobs*the number of stages). The next columns give the results and the CPU time of
the algorithms.

The results demonstrated in table 2show that the GAMS take large CPU time even in small
size problems. According to table 2 and figure 5, the results of different algorithms are quite

comparable; however, GPSO has attained the worst solution in some problems.

Table 2. A comparison between the MIP model and the proposed algorithms for small problems

problean RIS HRIO HIL P50
Ho. sime Ohj. T Ohj. tore Ohyj. e Ohij. titre
1 L] 1] 0.1a 1] =0.07 1] =1.04 1] =0.1
2 4w 1ra 526 121 =1.19 121 =1.34 181 =1.11
3 4u5 o 214216 16 =2.48 16 =11.38 16 =1.14
4 ey o5 30949 Q5 =0 067 o5 =Ar9 100 =0.1
5 440 1] 0.249 1] =1.15 1] =1.35 1] =1.12
] e g 0.733 10 =11.1% 10 =136 10 =1.12
7 5u5 1] 5417 1] =1.65 1] =176 1] =1.25
g L] 6 16,660 10 =11.86G 10 =11.42 10 =1.16G
o 4uy 1] 13.221 1] =11.28 1] =57 .4 1] =1.21
10 L] 1] 0.452 1] =1.37 1] =41.9 1] =1.15
11 4w 12 1.529 20 =11.14 20 AT a2 =1.16
12 4vq 19 3674 19 =1.37 1a =142 19 =1.17
13 5Hg g 1.755 a =137 g =11.42 a =1.16
14 vy 1] 0.74% 1] =0079 1] =0.37 1] =1.12
15 5u5 259 319431 263 =20233 263 =57 48 269 =11.06
15! 5Hy 34 207075 24 =154 24 =1.72 24 =1.31
17 5wy 12 2063 7 12 =1 .57 12 =1.654 12 =02

7-3-2- Large size problems

In this section, 24 medium and large size problems differing in the parameters are generated
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and are executed 10 times and averages of results are shown in table 3.Then, the average of the
RPDs and the CPU time are used for comparison as can be seen in figure 6. Moreover, we apply
an analysis of variance (ANOVA) with 95% confidence level in which different algorithms are
considered as factors and averaged RPD as a response variable in order to analyse the results
more precisely.

Table 3. A comparison between the averaged RPD and the average running time
of different algorithms for medium and large size problems.

alzoriften
Tutatice HhG HSL GPS0
FED ArreTage time FID Arreraze tine FID ArreTage tire
hLN 1] 1132700 000z 2031057 0.0z 302429
Sva, 02l 1133889 0 121 5249 0023 224919
M0, 1] 2324250 0aaat 00,2058 00l 452471
50, 1] 219 za04 0 52260 1] 44 5354
SHm, 0 4501384 nooay 11967 .5 HNIPE; a9 Agld
50, 0.1z 424 1380 n09s 14421 .5 0135 1019415
1044, n.oog 2161408 ] 3328104 002 50.734
104, 0.01a 2285433 0.0z ITe.AETE 0.12 57.1036
10#10, 0.053 4603810 0.04 G71.25 0036 1000733
10#10, 0.055 4441171 0.0z G131 0064 029471
10420, 0023 11732 00la 111205 0026 1620529
10#20, ool 64353 nnil 12657 n.04 124 3565
EILY LRI 1586 IIEY) anaaray 0n9gq 717293
EILY 0,039 16072 IFIEX] 2210773 0058 2912483
300, 005 I6T4h 0046 4550027 0073 G10.0317
30%10, 0.01s 18775 00la 4312 003 457.1351
EULOTH 0.061 2047 5 IFIEY] 130204 0056 10225
30m20, n.03a T4113 no2a A 0056 038 3468
S0, 0.044 26831 0026 4002 56 0057 5262653
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Maiin Effects Plot for response
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Figure 5. Main Effects Plot for response

To conclude, The HSA algorithm outperforms other algorithms qualitatively and the GPSO
is the fastest algorithm; however, the results show that the GPSO gets trapped in local optima
and using genetic operators does not seem to improve the results significantly. The results of
one-way ANOVA and the Tukey method which is shown in figure 7, demonstrate that there is a
large discrepancy between the HSA and the GPSO algorithm. Although a difference between
the HSA and the HMA is spotted in the main effects plot for means, the difference is not
significant according to the Tukey method. On the other hand, the HMA performs 63.77% faster
than the HSA. Therefore, the HMA is preferred.
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One-way AHOVA: response versus factor
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Figure 7 .The results of one-way ANOVA and Tukey method

8- Conclusion

This paper is dedicated to study hybrid flow-shop scheduling problem with unrelated parallel
machines per stage with sequence-dependent setup times. The objective is to minimize the sum
of earliness and tardiness. For each job, the due-date, the processing times and setup times are
fixed. The problem is formulated as a MIP model. Then, for this NP-hard problem, an
application of GA and a GPSO algorithm are approached. The GPSO is a PSO algorithm
combined with genetic operators. Just a few experiments show that a simple GA does not give
near optimal solutions, even by applying the local search to the best solution. So that the local
search is used both in each generation and on the best answer found by the MA algorithm which
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is a GA combined with a local search. Moreover, an HSA algorithm which is widely used in the
literature is developed in order to validate the results. The HSA starts with an initial solution
generated by the proposed EDD-based heuristic and the local search is applied on the solution
found at the end of the algorithm. In all the algorithms presented above, a heuristic algorithm is
also applied to find the complete schedule for the overall problem. Finally, the results of one
way ANOVA demonstrate that there is not much difference between the results of the proposed
HMA and the HSA algorithm. Furthermore, the elapsed time for the HMA is 66.73% less. Thus,
the HMA is superior in our test problems.
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