
67

Journal of Industrial and Systems Engineering
Vol. 8, No. 2, pp 67-85
Spring 2015

A comparison of algorithms for minimizing the sum of earliness and
tardiness in hybrid flow-shop scheduling problem

 (Unrelated parallel machines and sequence-dependent setup times)

F. Rajaee Abyaneh1*, S. Gholami2

1Department of Industrial Engineering, K.N.ToosiUniversity of Technology, Tehran, Iran

far_raj@yahoo.com

2Faculty of Industrial Engineering, K.N.ToosiUniversity of Technology, Tehran, Iran

Abstract

In this paper, we consider the flow-shop scheduling problem with unrelated
parallel machines at each stage as well as sequence-dependent setup times under
minimization of the sum of earliness and tardiness. Processing times, setup times
and due-dates are known in advance. To solve the problem, we introduce a
hybrid memetic algorithm and a particle swarm optimization combined with
genetic operators. An application of simulated annealing is also presented for the
evaluation of the proposed algorithm. A Taguchi design is also conducted to set
the parameters. Finally, a comparison is made via 16 small size and 24 large size
test problems for 10 times each. The results of one-way ANOVA applied in our
test problems, demonstrate that the proposed algorithm performs as efficient as
the HSA qualitatively and with 63.77% decline in elapsed time.

Keywords: scheduling; hybrid flow-shop; unrelated machines; sequence
dependent setup time; earliness-tardiness.

1- Introduction

Hybrid flow-shops (HFS) also known as flexible flow-shops (FFSP) or multi-processor
flow-shops are common manufacturing environments in which a number of jobs are to be
processed in a series of production stages, each of which has multiple machines operating in
parallel. Some stages may have only one facility, but at least one stage must have more than one
facility parallel with others. The hybrid characteristic of a flow-shop can be seen in various
industries. For instance, Yaurima et al. (2009) addressed HFS for television printed circuit-
board (PCB) production. Most researches in the literature are dedicated to HFS with identical
parallel machines at each stage. However, in real production environments, due to the high cost
of replacement of the older facilities with the new ones, newer and more efficient facilities are

*Corresponding author.
ISSN: 1735-8272, Copyright c 2015 JISE. All rights reserved

mailto:far_raj@yahoo.com

68

usually in parallel with older and slower facilities,. Moreover, scheduling problem with
sequence-dependent setup times (SDST) is found in many industries. We can refer to dying
operation as an example. Therefore, the hybrid flow-shop scheduling problem with unrelated
machines and sequence-dependent setup times is considered in this paper.

In this paper, we are interested to study the SDST hybrid flow-shop scheduling problem with
unrelated machines and Earliness-Tardiness (ET) objective function. This function is used on
one hand to minimize inventory or deterioration costs and on the other hand, to reduce customer
dissatisfaction by meeting their jobs' due-dates. A few researches in the literature addressed ET
objective function (almost 1% of the scheduling problems according to Ruiz and Vázquez-
Rodríguez (2010)) and to the best of our knowledge, no research studied HFS with unrelated
machines and ET penalties simultaneously. The schematic figure of the hybrid flow-shop
problem is demonstrated in figure 1.

Figure1.Schematic figure of the hybrid flow-shop environment

As the single criterion HFS problem, made up of two stages with at least two machines
available in one of the stages with make span criterion is an NP-hard problem, the bi-criteria
scheduling problem can be assumed to be NP-hard also (Gupta, 1988). So developing heuristics
and metaheuristics methods can provide acceptable results for this problem. As the simple
genetic algorithm and the original PSO may not provide satisfactory results, they are hybridized
with a local search algorithm. PSO is chosen due to its long computational time and for its rapid
convergence. The PSO used in this article is a developed version initialized by Tasgetiren et al.
(2004) which enables the use of original PSO in scheduling problems. It is also hybridised with
genetic operators which are chosen by Taguchi method. An application of SA is developed in
order to validate the obtained results. A new EDD based heuristic is also presented in order to
generate the initial solution. Moreover, a heuristic algorithm is proposed and is hybridised with
the metaheuristcs to find the schedule for the overall problem.

The remainder of this paper is organized as follows. In the next section, an overview
regarding the problem is provided. Section 3 is dedicated to the description of the HFS problem
and the MIP model. In section 4, 5 and 6, the hybrid memetic algorithm and the applications of
SA and PSO are described. Parameter calibration and computational results are also provided in
section 7. Finally, section 8 concludes the paper.

2- Literature review

 Various forms of the HFS problem have been studied in the literature. The literature is
reviewed according to the topic and the approaches used in this article. The literature review is
summarized in table 1.

Jobs

Machine 1

Machine 2

Machine m1

...

Machine 1

Machine 2

Machine mS

Stage m Stage 1

... ...

69

Table1.Litrature review

Environment Number
of stages

Sequence-
dependent

Performance
measure

Solution
approach Author

HFS with Identical
parallel machines >=2 Y maxC

Several
heuristics, a
MILP model
and RKGA

Kurz and
Askin(2004)

HFS with identical
parallel machines

>=2 Y maxC Immune

algorithm
Zandieh et al.

(2006)

HFS with identical
parallel machines,
machine release

dates and time lags

>=2 Y maxC GA Zandieh et
al.(2010)

HFS with identical
parallel machines >=2 Y

1

zvwh dCTE +++
GRASP

algorithm

Davoudpour
and Ashrafi

(2009)
HFS with identical
parallel machines

and machine release
dates

>=2 N 2 vwh WTTE ++
SA, TS, and

hybrid SA/TS,
heuristics

Janiak et al.
(2007)

HFS with identical
machines >=2 N ET Heuristic Farkhzand and

Heydari (2008)
HFS with identical
parallel machines >=2 Y { maxC , ET} Multi-phase

method
Behnamian et

al. (2009)

HFS with identical
machines and

limited waiting time
>=2 Y 2TE +

A discrete
version of
colonial

competitive
algorithm

(CCA)

Behnamian and
Zandieh (2011)

HFS with unrelated
machines and

machine release
dates

>=2 Y αCmax+(1-α)U
MILP,

heuristics, GA,
SA, TS

Jungwattanakit
et al. (2005)

HFS with unrelated
machines and

machine release
dates

>=2 Y αCmax+(1-α)U
A MILP model,

dispatching
rules, GA

Jungwattanakit
et al. (2008)

HFS with unrelated
machines and

machine release
dates

>=2 Y αCmax+(1-α)U

A MILP model,
heuristics,

dispatching
rules, GA

Jungwattanakit
et al. (2009)

HFS with unrelated
machines and

eligibility constraint
>=2 Y Cmax

Mathematical
programming
formulation,

GA

Ruiz and
Maroto (2006)

HFS with unrelated
machines and

transportation times
>=2 Y { TF , } SA Naderi et al.

(2009)

HFS with unrelated
machines and

processor blocking
>=2 Y {Cmax, Tmax}

hybrid multi-
objective

parallel genetic
algorithm

Rashidi et
al.(2010)

1 vC is the total weighted completion time
2 v
WT is the total weighted waiting time

70

Environment Number
of stages

Sequence-
dependent

Performance
measure

Solution
approach Author

HFS with unrelated
machines and
precedence

constraints, time
lags, machine
eligibility and
release times

>=2 Y Cmax GA Urlings and
Ruiz (2010)

Single machine =1 N wT

PSO combined
with local

search
algorithms

Tasgetiren et al.
(2004)

Flow shop >=2 N
Single and
multiple

objectives

discrete version
of a PSO with
local search

Liao et al.
(2007)

Job-shop with fuzzy
processing time _ N Cmax

A combination
of PSO with

genetic
operators

Niu et al. (2008)

Flow shop >=2 N Cmax
A hybrid two
phases PSO

Zhang et al.
(2010)

The research studies described above and the review paper presented by Ruiz and

Vázquez-Rodríguez (2010) demonstrate that to the best of our knowledge, no studies considered
unrelated machines and ET objective function in the HFS scheduling problem simultaneously.
On the other hand, according to the literature review, SA and GA are the most popular
metaheuristics used to solve the HFS problem, especially those problems with unrelated
machines. Thus, we apply the mentioned algorithms to tackle the complexity of the problem. As
mentioned before, an application of a PSO algorithm is also applied due to its rapid
convergence and on the other hand due to the long running time of the other algorithms.

3- Notations and formulation

3-1- Assumptions

We introduce the following assumptions for the problem:

(1) The processing times and setup times of the jobs on each machine at each stage and
their due-dates are deterministic and known in advance.

(2) The number of jobs, the number of machines and the number of stages are fixed.
(3) Preemption is not allowed.
(4) Once a job is taken in to processing, it must finish its processing completely before

moving to the next stage.
(5) No splitting is allowed. It means that a job must be processed just on one machine at

each stage.
(6) The jobs’ release dates in the first stage are all zero.
(7) Setup times are sequence-dependent. There is also a setup time before starting the first

job in the permutation of jobs in the first stage.
(8) Machines are always available without any breakdown.
(9) The machines at each stage are unrelated and the processing time of each job is

calculated by dividing its processing time by the machine speed.

Table1.Litrature review continued

71

3-2- Notations

To describe the mathematical model, following notations are introduced:
k,j=Job index
J=Total number of jobs
s =Stage index
m=Machine index
Ms=Number of machines in stage s
Psjm=Processing time of job j on machine m in stage s
supskjm=Setup time from job k to job j on machine m in stage s
M=A large positive number
S=Total number of stages
Csjm=Completion time of job j on machine m in stage s
Ksj=Departure time of job j from stage s





=
 Otherwise., 0

, stagein machineon processed is job If , 1 smj
X sjm





=
Otherwise., 0

, stagein m machineon jobafter directly processed is job If, 1 skj
Wskjm

dj=due-date of job j
Ej=earliness of job j
Tj =tardiness of job j

3-3- Mixed integer linear programming model

 In this section, we introduce a mixed integer linear programming model for the problem
which is derived and developed from Crowder (2006):

)(=Min
J

1j
jj TEZ ∑

=

+ (1)

s.t:

;,, Ssj j=dj-Tj+EsjK =∀ (2)

 s=Sj KdE sj jj ;,, - ∀≥ (3)

;,, SsjjdsjKjT =∀−≥ (4)

 ,s=M…m=j ij *supWPC ssijmsijmsjmsjm 1;,1,,,, ≠∀+≥ (5)

;,1,,, 1,1M ssijmsijmsjmsijmsimsjm M…j ,m=ij s *sup+WP)-W*(+-CC ≠≠∀≥ (6)

72

;11, *+) -(1*-- ssijmsijmsjmsjm(s-1)jsjm ,…,Mj,m=,j,issupWXMPKC ≠≠∀≥ (7)

;,…1,=,,, ssjsjm Mmjs KC ∀≤ (8)

;,…1,= ,,,) -(1* ssjmsjsjm MmjsX-MKC ∀≥ (9)

0;,, 1=
1

≠∀∑
=

jsX
sM

m
sjm (10)

;,…1,=0,,, 0= -
1

s

J

j
sijmsjm Mms,jjiWX ≠∀≠∑

=

 (11)

;,…1,=,, 0-
1j

s

J

sijmsim Ms,i,mjiWX ∀≠≥∑
=

 (12)

;,...,1,,,0W
J

1i
si0m sMmsji =∀≠=∑

=

 (13)

;,...,1,,,10 sms MmjsX =∀= (14)

0≥jT (15)

0≥jE (16)

The pairs of constraints (3), (16) and (4), (15) assure the proper minimization of the
earliness and tardiness and constraint (2) reflects the earliness and tardiness for each job with
respect to due-date. Constraint (5) guarantees that the completion time of job j be greater than or
equal to the processing and setup time of job j in the first stage. With constraint (6), overlapping
processing of jobs on the same machine in a stage is prevented. It also assures that the jobs are
not interrupted during processing. Constraint (7) is used to ensure that the completion time of
each job is greater than or equal to the completion time of the job in the previous stage plus the
processing and setup time of the job in the current stage. Constraints (8) and (9) set the value for
Ksj as the time that job j leaves stage s. Constraint (10) is used to ensure that each job is
processed on one and only one machine per stage. Constraint (11) assures that each job must
follow another job i. Constraint (12) stipulates each job i might or might not be followed by
another job, but it can be followed by at most one job. In constraints (13) and (14), in order to
calculate the setup times for the first job processed on each machine, job 0 is considered to be
processed first on every machine in each stage with zero processing time. This job does not

73

really exist and is a dummy job. For instance, if job 5 is the first job that is taken in to process,
job 0 is considered before job 5 and the setup time required is denoted by s05msup .

4- The proposed hybrid memetic algorithm

 The most important advantage of a GA is its capability of parallel search in the search
space. It starts with a set of possible solutions, called population which can be generated
randomly or by using some heuristics. Each individual in the population is called
chromosome which is made up of genes. The individuals in the population are evaluated
by fitness measure. In each generation, two types of genetic operators called crossover
and mutation are used for evolution of the current population. A genetic algorithm
hybridized with local search methods is called a memetic algorithm. Due to the fact that
the performance of the simple genetic algorithm (GA) can be weak in this problem it is
hybridized with a local search to enhance its characteristics. The resultant algorithm is
called a hybrid memetic Algorithm (HMA).

Notice that the HMA as well as the HSA algorithm and the proposed PSO algorithm are used
to determine the first stage sequence. This sequence will then be used as an entry to the heuristic
algorithm to construct the schedule for the overall problem. The heuristic will be discussed later
in section 4.3.

4-1- Representation
 To solve a problem using MA or GA, the decision of how to represent a solution is a
prerequisite action. Using job permutation in the first stage is common and straightforward in
many previous works in GAs for flow-shop scheduling problems. As an example, for five jobs,
this representation can be encoded as [5 2 1 4 3]. (Jungwattanakit et al., 2005, 2008 and 2009)

4-2- Initialization

 Initial population can be generated randomly or by using some heuristics. We use random
generation to initialize the population which is more common.

4-3-The heuristic to calculate fitness function

 For each individual in the population, a heuristic algorithm is applied to find the complete
schedule for the overall problem and to calculate the cost function whenever is required.

The proposed heuristic algorithm consists of two parts: The first part of the algorithm aims at
completing the jobs as soon as possible and in the second part of the algorithm, starting and
completion times of the jobs in the last stage is recalculated in order to minimize the sum of
earliness and tardiness. The pseudo code of this heuristic is as follows:

• The first part of the algorithm:

Input: The first stage sequence

Set the release date of each job at the first stage to be zero.),...,1,1,0),((Jjsjsr ===

For stage 1 to S:
− If s=1

 Consider the first stage sequence
− Else if s<>1

74

 Determine the sequence of the jobs in stages by using the FIFO rule.
− End
− For every machine m in stage s, set the available time of each machine to be zero:

SMmsmAV ,...,1,0),(=∀=

For job 1 to J:
− Let sjmC be the completion time of job j on machine m in stage s,

s*jmsup be the setup time of job j provided that the previous job is

changed to job j and sjmP . Calculate the completion time of each
job on each machine in the current stage as follows, and then
choose the machine with minimum completion time.

jmssjmsjm PjsrsmAVC *sup)},(),,(max{ ++= ;

Name the selected machine as *m .
− Update the available time of the selected machine in stage sand

release date of job j in stage s.
− Store the completion time of job j, jC as *sjmC .

− Calculate the sum of earliness and tardiness.

End
End

• The second part of the algorithm:

In this stage of the algorithm, the starting times of the jobs on the machines in the last stage are
modified regarding to the due-dates in order to minimize earliness-tardiness.

For the last stage and each machine:

Let π be the permutation of jobs scheduled to be processed on machine m
{ },...,....,, 21 mjmm ππππ =) and jB denote the group of jobs to be processed consecutively on

machine m after jth job in the permutation without any idle time and consider jLB be the

position of the last operation in jB and jj BEB ⊆ denote the subset of early jobs in jB and

)(jBID denote the machine idle time after group jB . In addition, consider jSEB to be the
smallest earliness of early jobs in the group.
There are two conditions which should be considered:

(1) 0)(mjE π (if the jth job is early) ,
(2) Number of early jobs > number of tardy jobs

If these two conditions are satisfied, the group jB together with the jth job is shifted to right by

time t which is calculated using the following equation:)}(),(,min{ jmjj BIDπESEBt =

Then, group jB and the values of E, jSEB and)(jBID must be updated and earliness-tardiness
penalty is recalculated. This procedure will be continued until one of the conditions is violated.

75

4-4-Crossover

 In this algorithm, two kinds of crossover operators are used, named as the combined order and
position-based crossover (OPX crossover) presented by Jungwattanakit et al. (2009) and a
straightforward and simple crossover called Adapted Single Point crossover (ASP crossover)
which is the adapted version of the single point crossover used in Random Key Genetic
Algorithm (RKGA) or Binary Genetic Algorithm (BGA).

To apply ASP crossover, two individuals are selected using roulette wheel selection, then
one position in the chromosome is randomly chosen. Child one is the head of parent one and the
rest of the child structure is completed by inserting the remaining jobs in the same order as the
second parent. In the same way, child two is the head of parent two and the child structure is
completed by inserting the remaining jobs in the same order as the first parent. Figure 2 depicts
how ASP crossover works.

Figure2.ASP Crossover

4-5-Mutation

 Mutation is an operator which is used in MA and GA to avoid getting trapped in local
optimum. In this paper, three mutation operators, called insertion, inversion and swap mutation
are considered which are widely used in the literature.

4-6-Termination criterion

 The cost function does not change after a number of iterations. Hence, a termination criterion
is required. In this paper, the simplest criterion is considered which is "stop after some
predetermined number of generations".

4-7- Proposed local search procedure

 As mentioned before, few experiments show that the performance of simple GA can be
weaker than other similar algorithms. Thus, we apply a local search in each generation of the
algorithm and to the solution found at the end of the algorithm.

To apply the local search in each generation, a number of individuals are selected at random
from the population. The local search procedure is first applied to the individuals (the schedule
of the first stage) with the following neighbourhoods and then it is applied to the schedule of the
last stage attained by the heuristic method:

(1) A machine and two jobs processed on it are selected at random and the jobs are
interchanged.
(2) A machine and a job processed on it are selected at random. The selected job is inserted

in another random position on the selected machine.

76

(3) Two machines in parallel and one job processed on each of them are selected randomly.
Then the jobs are interchanged.

(4) Two machines are selected at random and a job on the first machine is selected and
inserted in a random position on the second machine.

5- An improved hybrid Simulated annealing

 In this section, a SA algorithm which is a popular local search metaheuristic is hybridized
with the local search method presented in the previous section. Representation, evaluation and
other parts of the algorithm except initialization and the use of the local search method are
similar to the HMA.
 For initialization, three methods called random initialization, NEH heuristic and a new EDD-
based heuristic are considered. The EDD-based heuristic is chosen among other methods by
applying Taguchi method. The so-called EDD-based heuristic is described as follows:

− Determine the sequence of jobs according to the EDD rule.
− Interchange the first two jobs.
− Choose the sequence with minimum cost function.
− For i=1:J

 Insert the next job between previous jobs and choose the sequence with
minimum cost function.

− End

Finally, the local search method used in the HMA is applied just on the solution found
by this algorithm. The termination criterion is also as the same as the one used in the HMA.

6- The proposed Particle Swarm Optimization

 Another algorithm is a PSO algorithm hybridized with genetic operators (called
GPSO).Notice that the representation of this algorithm is different from the algorithms
mentioned in the previous sections and is derived from Tasgetirenet al. (2004) which enables
the original continuous particle swarm optimization. Thus, in order to choose the best crossover
and mutation operators, in addition to the operators used in the HMA, a new mutation operator
is considered called the regeneration mutation. By applying this mutation, two positions are
chosen within the particle position at random. Then, two random numbers are regenerated and
placed within the selected positions. In this way, a new particle position is generated.

 The termination criterion is the same as the previous algorithms and the heuristic in section
4.3 is used to obtain the schedule for the overall problem.

7- Experiments

7-1- Parameter calibration

 Before presenting and comparing the results of our algorithms, the best parameter
combination must be chosen for each algorithm. Hence, we perform a Taguchi design to set the
parameters.

For the HMA, 10 is selected for the population size(npop), inverse/insertion/swap for
mutation type, OPX/ASP crossover for crossover type, 0.4 for mutation rate (Pm), 0.9 for
crossover rate (Pc), 0.2 for local search rate(Plocal search) and10 for neighbourhood length(Inner N

77

length). Figures 3 and 4 which are the main effects plot for SN ratios and main effects plot for
means show these results.

In the same way for the HSA, EDD-based heuristic is selected for generating initial solution,
10 for neighbourhood length, MaxIt

f
T

T
1

0






 3

for temperature reduction rate, 500 for initial

temperature, and 20 for maximum number of iterations per temperature.
For the GPSO, 40 is selected for initial population size, inverse and regeneration mutation

for mutation type, OPX for crossover type, 0.3 for mutation rate, 0.7 for crossover rate, 2 for
C1and C2 ,0.99 for dampW , (-J,J) for accepted range of particle position and (-2J,2J) for accepted
range of particle velocity.

Figure3.Main Effects Plot for SN ratios for the HMA

3MaxIt is the maximum number of iterations

78

Figure4.Main Effects Plot for Means for the HMA

7-2- Data generations and settings

 Ultimately, an experiment is conducted to test the performance of the proposed algorithms.
Data required for the problem consists of the number of jobs, the number of stages, the number
of machines in each stage, the value of the processing times, setup times which are generated
according to Jung wattanakit et al. (2005, 2008 and 2009).

7-3- Performance analysis

 All methods presented above except for the GPSO algorithm produce acceptable results with
regard to the computational time in comparison with the exact method. GA performs weaker
than SA in this problem and even worse than the GPSO algorithm. Hence, the performance of
the proposed algorithms is compared with the MIP model for small size problems and with the
HSA both for small and large size problems.

While an optimal solution is obtainable using the MIP model, for medium and large size
problems, solutions are very difficult to find. Hence, this paper compares the performance of all
proposed metaheuristics by using the relative performance deviation (RPD) which is calculated
as follows:

() solsol minminsolRPD −= (17)

Where solmin is the minimum function value obtained by all algorithms and sol is the
solution obtained by a particular of the proposed metaheuristics. The results are demonstrated in
tables 1 and 2.

79

7-3-1- Small size problems

 For small size problems, 16 types of problems are generated and are executed 10 times in
order to reduce error of random numbers. Then, averages of results are reported.

Table 2 gives the average of the obtained results for small problems. The first item of the
second column gives the number of jobs and the second item gives the number of stages (the
number of jobs*the number of stages). The next columns give the results and the CPU time of
the algorithms.

The results demonstrated in table 2show that the GAMS take large CPU time even in small
size problems. According to table 2 and figure 5, the results of different algorithms are quite
comparable; however, GPSO has attained the worst solution in some problems.

Table 2. A comparison between the MIP model and the proposed algorithms for small problems

7-3-2- Large size problems

 In this section, 24 medium and large size problems differing in the parameters are generated

80

and are executed 10 times and averages of results are shown in table 3.Then, the average of the
RPDs and the CPU time are used for comparison as can be seen in figure 6. Moreover, we apply
an analysis of variance (ANOVA) with 95% confidence level in which different algorithms are
considered as factors and averaged RPD as a response variable in order to analyse the results
more precisely.

Table 3. A comparison between the averaged RPD and the average running time
of different algorithms for medium and large size problems.

81

Figure 5. Main Effects Plot for response

To conclude, The HSA algorithm outperforms other algorithms qualitatively and the GPSO
is the fastest algorithm; however, the results show that the GPSO gets trapped in local optima
and using genetic operators does not seem to improve the results significantly. The results of
one-way ANOVA and the Tukey method which is shown in figure 7, demonstrate that there is a
large discrepancy between the HSA and the GPSO algorithm. Although a difference between
the HSA and the HMA is spotted in the main effects plot for means, the difference is not
significant according to the Tukey method. On the other hand, the HMA performs 63.77% faster
than the HSA. Therefore, the HMA is preferred.

Figure 6.Comparison of averaged RPD versus problem size

82

Figure 7 .The results of one-way ANOVA and Tukey method

8- Conclusion

 This paper is dedicated to study hybrid flow-shop scheduling problem with unrelated parallel
machines per stage with sequence-dependent setup times. The objective is to minimize the sum
of earliness and tardiness. For each job, the due-date, the processing times and setup times are
fixed. The problem is formulated as a MIP model. Then, for this NP-hard problem, an
application of GA and a GPSO algorithm are approached. The GPSO is a PSO algorithm
combined with genetic operators. Just a few experiments show that a simple GA does not give
near optimal solutions, even by applying the local search to the best solution. So that the local
search is used both in each generation and on the best answer found by the MA algorithm which

83

is a GA combined with a local search. Moreover, an HSA algorithm which is widely used in the
literature is developed in order to validate the results. The HSA starts with an initial solution
generated by the proposed EDD-based heuristic and the local search is applied on the solution
found at the end of the algorithm. In all the algorithms presented above, a heuristic algorithm is
also applied to find the complete schedule for the overall problem. Finally, the results of one
way ANOVA demonstrate that there is not much difference between the results of the proposed
HMA and the HSA algorithm. Furthermore, the elapsed time for the HMA is 66.73% less. Thus,
the HMA is superior in our test problems.

References

Acosta, J. H. T., González, V. A. P., & Bello, C. A. L. (2013). A Genetic Algorithm for
Simultaneous Scheduling Problem in Flexible Flow Shop Environments with Unrelated Parallel
Machines, Setup Time and Multiple Criteria. International Conference on Advanced
Manufacturing Engineering and Technologies. 203-210.

Attar, S.F., Mohammadi, M., & Tavakkoli-Moghaddam, R. (2009). Hybrid flexible flow-shop
scheduling problem with unrelated parallel machines and limited waiting times.Int J Adv Manuf
Technol, 68, 1583-1599.

Behnamian, j., Ghomi, S. M. T. F., & Zandieh, M. (2009). A multi-phase covering Pareto-
optimal front method to multi-objective scheduling in a realistic hybrid flowshop using a hybrid
metaheuristic. Expert Syst Appl, 35, 11057-11069.

Behnamian, J., & Zandie, M. (2011). A discrete colonial competitive algorithm for hybrid
flowshop scheduling to minimize earliness and quadratic tardiness penalties. Expert Syst Appl,
38, 14490-14498.

Behnamian, J., & Zandie, M. (2012).Earliness and Tardiness minimizing on a realistic hybrid
flowshop scheduling with learning effect by advanced metaheuristic.Arab J Sci Eng, 38, 1229-
1242.

Crowder, B. (2006). Minimizing the Makespan in a Flexible Flowshop with Sequence
Dependent Setup Times, Uniform Machines, and Limited BuffersMinimizing the Makespan in a
Flexible Flowshop with Sequence Dependent Setup Times, Uniform Machines, and Limited
Buffers. West Virginia University, virginia.
Dai, M., Tang, D., Zheng, K. & Cai, Q. (2013). An improved Genetic-Simulated Annealing
Algorithm based on a Hormone Modulation Mechanism for a flexible flow-shop scheduling
problem. Advances in Mechanical Engineering, 2013, 13 pages, doi:10.1155/2013/124903.

Davoudpour, H., & Ashrafi, M. (2009). Solving multi -objective SDST flexible flow shop using
GRASP algorithm. Int J Adv Manuf Tech, 44, 737-747.

Farkhzad, M. B., & Heydari, M. (2008). A heuristic algorithm for hybrid flow-shop production
scheduling to minimize the sum of the earliness and tardiness costs. JCIIE, 25, 105-115.

Gupta, J. N. D. (1988). Two-stage, hybrid flowshop scheduling problem. J Oper Res Soc, 39,
359-364.

Haddad, M.N., Cota, L.P., Souza, M.J.F. & Maculan, N. (2014). A Heuristic Algorithm based
on Iterated Local Search and Variable Neigbourhood Descent for solving the unrelated parallel
machine scheduling problem with setup times. Proceedings of the 16th International Conference
on Enterprise Information Systems, 376-383.

84

Janiak, A., Kozan, E., Lichtenstein, M., & Eguz, C. (2007). Metaheuristic approaches to the
hybrid flow shop scheduling problem with a cost-related criterion. Int J Prod Econ, 105(2), 407-
424.

Jolai, F., Rabiee, M. & Asefi, H. (2012). A novel hybrid meta-heuristic algorithm for a no-wait
flexible flow shop scheduling problem with sequence dependent setup times. International
Journal of Production Research, 50(24), 7447-7466.

Jungwattanakit, J., Reodecha, M., Chaovalitwongse, P., & Werner, F. (2005). An Evaluation of
Sequencing Heuristics for Flexible Flowshop Scheduling Problems with Unrelated Parallel
Machines and Dual Criteria. Otto-von-Guericke-Universitat Magdeburg, 28(5), 1-23.
Jungwattanakit, J., Reodecha, M., Chaovalitwongse, P., & Werner, F. (2008). Algorithms for
flexible flow shop problems with unrelated parallel machines, setup times, and dual criteria. Int
J Adv Manuf Tech, 37, 354-370.

Jungwattanakit, J., Reodecha, M., Chaovalitwongse, P., & Werner, F. (2009). A comparison of
scheduling algorithms for flexible flow shop problems with unrelated parallel machines, setup
times, and dual criteria. Comput Oper Res, 36(2), 358-378.

Kurz, M. E., & Askin, R. G. (2004). Scheduling flexible flow lines with sequence-dependent
setup times. Euro JOper Res, 159, 66-82.

Liao, C.-J., Tsengb, C.-T., & Luarn, P. (2007). A discrete version of particle swarm
optimization for flowshop scheduling problems. Comput Oper Res, 34, 3099-3111.

Naderi, B., M. Z., , A. K. G. B., & , V. R. (2009). An improved simulated annealing for hybrid
flowshops with sequence-dependent setup and transportation times to minimize total completion
time and total tardiness. Expert Syst Appl, 36(6), 9625–9633.

Nahavandi, N., & Gangraj, E. A. (2014). A New Lower Bound for Flexible Flow Shop Problem
with Unrelated Parallel Machines. International Journal of Industrial Engineering, 25(1), 65-
70.

Niu, Q., Jiao, B., & Gu, X. (2008). Particle swarm optimization combined with genetic
operators for job shop scheduling problem with fuzzy processing time. Appl Math Comput, 205,
148-158.

Rabiee, M., Rad, R. S., Mazinani, M., & Shafaei, R. (2014). An intelligent hybrid meta-
heuristic for solving a case of no-wait two-stage flexible flow shop scheduling problem with
unrelated parallel machines. The International Journal of Advanced Manufacturing Technology,
71(5-8), 1229-1245.

Rashidi, E., Jahandar, M., & Zandieh, M. (2010). An improved hybrid multi -objective parallel
genetic algorithm for hybrid flow shop scheduling with unrelated parallel machines. Int J Adv
Manuf Tech, 49, 1129-1139.
Ruiz, R., & Maroto, C. (2006). A genetic algorithm for hybrid flowshops with sequence
dependent setup times and machine eligibility. Eur J Oper Res, 169, 781-800.

Ruiz, R., & Vázquez-Rodríguez, J. A. (2010). The hybrid flow shop scheduling problem. Eur J
Oper Res, 205, 1-18.

Soltani, S. A., & Karimi, B. (2014). Cyclic hybrid flow shop scheduling problem with limited
buffers and machine eligibility constraints. The International Journal of Advanced
Manufacturing Technology, 1-17.

85

Tasgetiren, M. F., Liang, Y.-C., Sevlili, M., & Gencyilmaz, G. (2004). Particle Swarm
Optimization Algorithm for Single Machine Total Weighted Tardiness Problem. Paper presented
at the 2004 IEEE.

Urlings, T., Ruiz, R., & Şerifoğlu, F. S. (2010). Genetic algorithms with different representation
schemes for complex hybrid flexible flow line problems. IJMHeur, 1(1), 30-54.

Yaurima, V., Burtseva, L., & Tchernykh, A. (2009). Hybrid flowshop with unrelated machines,
sequence-dependent setup time, availability constraints and limited buffers. Comput Oper Res,
56(4), 1452–1463.

Zandieh, M., FatemiGhomi, S. M. T., & MoattarHusseini, S. M. (2006). An immune algorithm
approach to hybrid flow shops scheduling with sequence-dependent setup times. Appl Math
Comput, 180(1), 111-127.

Zandieh, M., Mozaffari, E., & Gholami, M. (2010). A robust genetic algorithm for scheduling
realistic hybrid flexible flow line problems. J Intell Manufa, 21, 731-743.

Zhang, C., Ning, J., & Ouyang, D. (2010). A hybrid alternate two phases particle swarm
optimization algorithm for flow shop scheduling problem. Comput. Ind. Eng., 58, 1-11.

	1- Introduction
	2- Literature review
	3- Notations and formulation
	3-1- Assumptions
	3-2- Notations
	3-3- Mixed integer linear programming model

	4- The proposed hybrid memetic algorithm
	4-1- Representation
	4-2- Initialization
	4-3-The heuristic to calculate fitness function
	4-4-Crossover
	4-5-Mutation
	4-6-Termination criterion
	4-7- Proposed local search procedure

	5- An improved hybrid Simulated annealing
	6- The proposed Particle Swarm Optimization
	7- Experiments
	7-1- Parameter calibration
	7-2- Data generations and settings
	7-3- Performance analysis
	7-3-1- Small size problems
	7-3-2- Large size problems

	8- Conclusion
	References

