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Abstract 

In this paper, we consider the flow-shop scheduling problem with unrelated 
parallel machines at each stage as well as sequence-dependent setup times under 
minimization of the sum of earliness and tardiness. Processing times, setup times 
and due-dates are known in advance. To solve the problem, we introduce a 
hybrid memetic algorithm and a particle swarm optimization combined with 
genetic operators. An application of simulated annealing is also presented for the 
evaluation of the proposed algorithm. A Taguchi design is also conducted to set 
the parameters. Finally, a comparison is made via 16 small size and 24 large size 
test problems for 10 times each. The results of one-way ANOVA applied in our 
test problems, demonstrate that the proposed algorithm performs as efficient as 
the HSA qualitatively and with 63.77% decline in elapsed time. 

Keywords: scheduling; hybrid flow-shop; unrelated machines; sequence 
dependent setup time; earliness-tardiness. 

 
1- Introduction 

Hybrid flow-shops (HFS) also known as flexible flow-shops (FFSP) or multi-processor 
flow-shops are common manufacturing environments in which a number of jobs are to be 
processed in a series of production stages, each of which has multiple machines operating in 
parallel. Some stages may have only one facility, but at least one stage must have more than one 
facility parallel with others. The hybrid characteristic of a flow-shop can be seen in various 
industries. For instance, Yaurima et al. (2009) addressed HFS for television printed circuit-
board (PCB) production. Most researches in the literature are dedicated to HFS with identical 
parallel machines at each stage. However, in real production environments, due to the high cost 
of replacement of the older facilities with the new ones, newer and more efficient facilities are  
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usually in parallel with older and slower facilities,. Moreover, scheduling problem with 
sequence-dependent setup times (SDST) is found in many industries. We can refer to dying 
operation as an example. Therefore, the hybrid flow-shop scheduling problem with unrelated 
machines and sequence-dependent setup times is considered in this paper.  

In this paper, we are interested to study the SDST hybrid flow-shop scheduling problem with 
unrelated machines and Earliness-Tardiness (ET) objective function. This function is used on 
one hand to minimize inventory or deterioration costs and on the other hand, to reduce customer 
dissatisfaction by meeting their jobs' due-dates. A few researches in the literature addressed ET 
objective function (almost 1% of the scheduling problems according to Ruiz and Vázquez-
Rodríguez (2010)) and to the best of our knowledge, no research studied HFS with unrelated 
machines and ET penalties simultaneously.  The schematic figure of the hybrid flow-shop 
problem is demonstrated in figure 1. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure1.Schematic figure of the hybrid flow-shop environment 

 

As the single criterion HFS problem, made up of two stages with at least two machines 
available in one of the stages with make span criterion is an NP-hard problem, the bi-criteria 
scheduling problem can be assumed to be NP-hard also (Gupta, 1988). So developing heuristics 
and metaheuristics methods can provide acceptable results for this problem. As the simple 
genetic algorithm and the original PSO may not provide satisfactory results, they are hybridized 
with a local search algorithm. PSO is chosen due to its long computational time and for its rapid 
convergence. The PSO used in this article is a developed version initialized by Tasgetiren et al. 
(2004) which enables the use of original PSO in scheduling problems. It is also hybridised with 
genetic operators which are chosen by Taguchi method. An application of SA is developed in 
order to validate the obtained results. A new EDD based heuristic is also presented in order to 
generate the initial solution. Moreover, a heuristic algorithm is proposed and is hybridised with 
the metaheuristcs to find the schedule for the overall problem. 

The remainder of this paper is organized as follows. In the next section, an overview 
regarding the problem is provided. Section 3 is dedicated to the description of the HFS problem 
and the MIP model. In section 4, 5 and 6, the hybrid memetic algorithm and the applications of 
SA and PSO are described. Parameter calibration and computational results are also provided in 
section 7. Finally, section 8 concludes the paper. 

2- Literature review 

   Various forms of the HFS problem have been studied in the literature. The literature is 
reviewed according to the topic and the approaches used in this article. The literature review is 
summarized in table 1. 

 

Jobs 

Machine 1 

Machine 2 

Machine m1 

... 

Machine 1 

Machine 2 

Machine mS 

Stage m Stage 1 

... ... 
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Table1.Litrature review 

Environment Number 
of stages 

Sequence-
dependent 

Performance 
measure 

Solution 
approach Author 

HFS with Identical 
parallel machines >=2 Y maxC  

Several 
heuristics, a 
MILP model 
and RKGA 

Kurz and 
Askin(2004) 

HFS with identical 
parallel machines 

 
>=2 Y maxC  Immune 

algorithm 
Zandieh et al. 

(2006) 

HFS with identical 
parallel machines, 
machine release 

dates and time lags 

>=2 Y maxC  GA Zandieh et 
al.(2010) 

HFS with identical 
parallel machines >=2 Y 

1

zvwh dCTE +++  
GRASP 

algorithm 

Davoudpour 
and Ashrafi 

(2009) 
HFS with identical 
parallel machines 

and machine release 
dates 

>=2 N 2 vwh WTTE ++  
SA, TS, and 

hybrid SA/TS, 
heuristics 

Janiak et al. 
(2007) 

HFS with identical 
machines >=2 N ET Heuristic Farkhzand and 

Heydari (2008) 
HFS with identical 
parallel machines >=2 Y { maxC , ET} Multi-phase 

method 
Behnamian et 

al. (2009) 

HFS with identical 
machines and 

limited waiting time 
>=2 Y 2TE +  

A discrete 
version of 
colonial 

competitive 
algorithm 

(CCA) 

Behnamian and 
Zandieh (2011) 

HFS with unrelated 
machines and 

machine release 
dates 

>=2 Y αCmax+(1-α)U  
MILP, 

heuristics, GA, 
SA, TS 

Jungwattanakit 
et al. (2005) 

HFS with unrelated 
machines and 

machine release 
dates 

>=2 Y αCmax+(1-α)U  
A MILP model, 

dispatching 
rules, GA 

Jungwattanakit 
et al. (2008) 

HFS with unrelated 
machines and 

machine release 
dates 

>=2 Y αCmax+(1-α)U  

A MILP model, 
heuristics, 

dispatching 
rules, GA 

Jungwattanakit 
et al. (2009) 

HFS with unrelated 
machines and 

eligibility constraint 
>=2 Y Cmax 

Mathematical 
programming 
formulation, 

GA 

Ruiz and 
Maroto (2006) 

HFS with unrelated 
machines and 

transportation times 
>=2 Y { TF , } SA Naderi et al. 

(2009) 

HFS with unrelated 
machines and 

processor blocking 
>=2 Y {Cmax, Tmax} 

hybrid multi-
objective 

parallel genetic 
algorithm 

Rashidi et 
al.(2010) 

 

1 vC is the total weighted completion time    
2 v
WT is the total weighted waiting time 
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Environment Number 
of stages 

Sequence-
dependent 

Performance 
measure 

Solution 
approach Author 

HFS with unrelated 
machines and 
precedence 

constraints, time 
lags, machine 
eligibility and 
release times 

>=2 Y Cmax GA Urlings and 
Ruiz (2010) 

Single machine  =1 N wT  

PSO combined 
with local 

search 
algorithms 

Tasgetiren et al. 
(2004) 

Flow shop >=2 N 
Single and 
multiple 

objectives 

discrete version 
of a PSO with 
local search 

Liao et al. 
(2007) 

Job-shop with fuzzy 
processing time _ N Cmax 

A combination 
of PSO with 

genetic 
operators 

Niu et al. (2008) 

Flow shop >=2 N Cmax 
A hybrid two 
phases PSO 

Zhang et al. 
(2010) 

 
 
 
The research studies described above and the review paper presented by Ruiz and 

Vázquez-Rodríguez (2010) demonstrate that to the best of our knowledge, no studies considered 
unrelated machines and ET objective function in the HFS scheduling problem simultaneously. 
On the other hand, according to the literature review, SA and GA are the most popular 
metaheuristics used to solve the HFS problem, especially those problems with unrelated 
machines. Thus, we apply the mentioned algorithms to tackle the complexity of the problem. As 
mentioned before, an application of a PSO algorithm is also applied due to its rapid 
convergence and on the other hand due to the long running time of the other algorithms. 

3- Notations and formulation 

3-1- Assumptions 

We introduce the following assumptions for the problem: 

(1) The processing times and setup times of the jobs on each machine at each stage and 
their due-dates are deterministic and known in advance. 

(2) The number of jobs, the number of machines and the number of stages are fixed. 
(3) Preemption is not allowed. 
(4) Once a job is taken in to processing, it must finish its processing completely before 

moving to the next stage. 
(5) No splitting is allowed. It means that a job must be processed just on one machine at 

each stage. 
(6) The jobs’ release dates in the first stage are all zero. 
(7) Setup times are sequence-dependent. There is also a setup time before starting the first 

job in the permutation of jobs in the first stage. 
(8) Machines are always available without any breakdown. 
(9) The machines at each stage are unrelated and the processing time of each job is 

calculated by dividing its processing time by the machine speed. 

Table1.Litrature review continued 

 



71 
 

3-2- Notations 

To describe the mathematical model, following notations are introduced: 
k,j=Job index 
J=Total number of jobs 
s =Stage index 
m=Machine index 
Ms=Number of machines in stage s 
Psjm=Processing time of job j on machine m in stage s 
supskjm=Setup time from job k to job j on machine m in stage s 
M=A large positive number 
S=Total number of stages 
Csjm=Completion time of job j on machine m in stage s 
Ksj=Departure time of job j from stage s 





=
                                                               Otherwise.,     0

, stagein   machineon  processed is  job If ,     1 smj
X sjm  





=
Otherwise.,    0

, stagein  m machineon   jobafter directly  processed is  job If,     1 skj
Wskjm  

dj=due-date of job j 
Ej=earliness of job j 
Tj =tardiness of job j 

3-3- Mixed integer linear programming model 

   In this section, we introduce a mixed integer linear programming model for the problem 
which is derived and developed from Crowder (2006): 

)(=Min
J

1j
jj TEZ ∑

=

+  (1) 

s.t:  

;,, Ssj     j=dj-Tj+EsjK =∀  (2) 

 s=Sj   KdE sj jj ;,, - ∀≥  (3) 

;,, SsjjdsjKjT =∀−≥  (4) 

  ,s=M…m=j ij  *supWPC ssijmsijmsjmsjm 1;,1,,,, ≠∀+≥  (5) 

;,1,,, 1,1M ssijmsijmsjmsijmsimsjm M…j ,m=ij s     *sup+WP )-W*(+-CC ≠≠∀≥  (6) 
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;11,    *+) -(1*-- ssijmsijmsjmsjm(s-1)jsjm ,…,Mj,m=,j,issupWXMPKC ≠≠∀≥  (7) 

;,…1,=,,,       ssjsjm Mmjs KC ∀≤  (8) 

;,…1,= ,,,         ) -(1* ssjmsjsjm MmjsX-MKC ∀≥  (9) 

0;,,   1= 
1

≠∀∑
=

jsX
sM

m
sjm  (10) 

;,…1,=0,,,    0= -
1

s

J

j
sijmsjm Mms,jjiWX ≠∀≠∑

=

 (11) 

;,…1,=,,    0-
1j

s

J

sijmsim Ms,i,mjiWX ∀≠≥∑
=

 (12) 

;,...,1,,,0W
J

1i
si0m sMmsji =∀≠=∑

=

 (13) 

;,...,1,,,10 sms MmjsX =∀=  (14) 

0≥jT  (15) 

0≥jE  (16) 

The pairs of constraints (3), (16) and (4), (15) assure the proper minimization of the 
earliness and tardiness and constraint (2) reflects the earliness and tardiness for each job with 
respect to due-date. Constraint (5) guarantees that the completion time of job j be greater than or 
equal to the processing and setup time of job j in the first stage. With constraint (6), overlapping 
processing of jobs on the same machine in a stage is prevented. It also assures that the jobs are 
not interrupted during processing. Constraint (7) is used to ensure that the completion time of 
each job is greater than or equal to the completion time of the job in the previous stage plus the 
processing and setup time of the job in the current stage. Constraints (8) and (9) set the value for 
Ksj as the time that job j leaves stage s. Constraint (10) is used to ensure that each job is 
processed on one and only one machine per stage. Constraint (11) assures that each job must 
follow another job i. Constraint (12) stipulates each job i might or might not be followed by 
another job, but it can be followed by at most one job. In constraints (13) and (14), in order to 
calculate the setup times for the first job processed on each machine, job 0 is considered to be 
processed first on every machine in each stage with zero processing time. This job does not 
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really exist and is a dummy job. For instance, if job 5 is the first job that is taken in to process, 
job 0 is considered before job 5 and the setup time required is denoted by s05msup .  

4- The proposed hybrid memetic algorithm 

    The most important advantage of a GA is its capability of parallel search in the search 
space. It starts with a set of possible solutions, called population which can be generated 
randomly or by using some heuristics. Each individual in the population is called 
chromosome which is made up of genes. The individuals in the population are evaluated 
by fitness measure. In each generation, two types of genetic operators called crossover 
and mutation are used for evolution of the current population. A genetic algorithm 
hybridized with local search methods is called a memetic algorithm. Due to the fact that 
the performance of the simple genetic algorithm (GA) can be weak in this problem it is 
hybridized with a local search to enhance its characteristics. The resultant algorithm is 
called a hybrid memetic Algorithm (HMA). 

Notice that the HMA as well as the HSA algorithm and the proposed PSO algorithm are used 
to determine the first stage sequence. This sequence will then be used as an entry to the heuristic 
algorithm to construct the schedule for the overall problem. The heuristic will be discussed later 
in section 4.3. 

4-1- Representation 
   To solve a problem using MA or GA, the decision of how to represent a solution is a 
prerequisite action. Using job permutation in the first stage is common and straightforward in 
many previous works in GAs for flow-shop scheduling problems. As an example, for five jobs, 
this representation can be encoded as [5 2 1 4 3]. (Jungwattanakit et al., 2005, 2008 and 2009) 

4-2- Initialization 

   Initial population can be generated randomly or by using some heuristics. We use random 
generation to initialize the population which is more common. 

4-3-The heuristic to calculate fitness function 

   For each individual in the population, a heuristic algorithm is applied to find the complete 
schedule for the overall problem and to calculate the cost function whenever is required. 

The proposed heuristic algorithm consists of two parts: The first part of the algorithm aims at 
completing the jobs as soon as possible and in the second part of the algorithm, starting and 
completion times of the jobs in the last stage is recalculated in order to minimize the sum of 
earliness and tardiness. The pseudo code of this heuristic is as follows: 

• The first part of the algorithm: 

Input: The first stage sequence   

Set the release date of each job at the first stage to be zero. ),...,1,1,0),(( Jjsjsr ===  

For stage 1 to S: 
− If s=1 

 Consider the first stage sequence 
− Else if s<>1 
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 Determine the sequence of the jobs in stages by using the FIFO rule. 
− End  
− For every machine m in stage s, set the available time of each machine to be zero: 

SMmsmAV ,...,1,0),( =∀=  

For job 1 to J: 
− Let sjmC be the completion time of job j on machine m in stage s,

s*jmsup  be the setup time of job j provided that the previous job is 

changed to job j and sjmP . Calculate the completion time of each 
job on each machine in the current stage as follows, and then 
choose the machine with minimum completion time. 

jmssjmsjm PjsrsmAVC *sup)},(),,(max{ ++= ; 

Name the selected machine as *m . 
− Update the available time of the selected machine in stage sand 

release date of job j in stage s. 
− Store the completion time of job j, jC as *sjmC . 

− Calculate the sum of earliness and tardiness. 

End 
End 
 

• The second part of the algorithm: 

In this stage of the algorithm, the starting times of the jobs on the machines in the last stage are 
modified regarding to the due-dates in order to minimize earliness-tardiness. 

For the last stage and each machine: 

Let π be the permutation of jobs scheduled to be processed on machine m
{ },...,....,, 21 mjmm ππππ = ) and jB denote the group of jobs to be processed consecutively on 

machine m after jth job in the permutation without any idle time and consider jLB  be the 

position of the last operation in jB and jj BEB ⊆ denote the subset of early jobs in jB and 

)( jBID denote the machine idle time after group jB . In addition, consider jSEB to be the 
smallest earliness of early jobs in the group.  
There are two conditions which should be considered: 

(1) 0)( mjE π  (if the jth job is early) , 
(2) Number of early jobs > number of tardy jobs 

If these two conditions are satisfied, the group jB together with the jth job is shifted to right by 

time t which is calculated using the following equation: )}(),(,min{ jmjj BIDπESEBt =  

Then, group jB and the values of E, jSEB and )( jBID must be updated and earliness-tardiness 
penalty is recalculated. This procedure will be continued until one of the conditions is violated. 
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4-4-Crossover 

   In this algorithm, two kinds of crossover operators are used, named as the combined order and 
position-based crossover (OPX crossover) presented by Jungwattanakit et al. (2009) and a 
straightforward and simple crossover called Adapted Single Point crossover (ASP crossover) 
which is the adapted version of the single point crossover used in Random Key Genetic 
Algorithm (RKGA) or Binary Genetic Algorithm (BGA). 

To apply ASP crossover, two individuals are selected using roulette wheel selection, then 
one position in the chromosome is randomly chosen. Child one is the head of parent one and the 
rest of the child structure is completed by inserting the remaining jobs in the same order as the 
second parent. In the same way, child two is the head of parent two and the child structure is 
completed by inserting the remaining jobs in the same order as the first parent. Figure 2 depicts 
how ASP crossover works. 

 
Figure2.ASP Crossover 

4-5-Mutation 

   Mutation is an operator which is used in MA and GA to avoid getting trapped in local 
optimum. In this paper, three mutation operators, called insertion, inversion and swap mutation 
are considered which are widely used in the literature. 

4-6-Termination criterion 

  The cost function does not change after a number of iterations. Hence, a termination criterion 
is required. In this paper, the simplest criterion is considered which is "stop after some 
predetermined number of generations". 

4-7- Proposed local search procedure 

   As mentioned before, few experiments show that the performance of simple GA can be 
weaker than other similar algorithms. Thus, we apply a local search in each generation of the 
algorithm and to the solution found at the end of the algorithm. 

To apply the local search in each generation, a number of individuals are selected at random 
from the population. The local search procedure is first applied to the individuals (the schedule 
of the first stage) with the following neighbourhoods and then it is applied to the schedule of the 
last stage attained by the heuristic method: 

(1) A machine and two jobs processed on it are selected at random and the jobs are 
interchanged. 
(2) A machine and a job processed on it are selected at random. The selected job is inserted 

in another random position on the selected machine. 
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(3) Two machines in parallel and one job processed on each of them are selected randomly. 
Then the jobs are interchanged. 

(4) Two machines are selected at random and a job on the first machine is selected and 
inserted in a random position on the second machine. 

5- An improved hybrid Simulated annealing  

    In this section, a SA algorithm which is a popular local search metaheuristic is hybridized 
with the local search method presented in the previous section. Representation, evaluation and 
other parts of the algorithm except initialization and the use of the local search method are 
similar to the HMA.  
   For initialization, three methods called random initialization, NEH heuristic and a new EDD-
based heuristic are considered. The EDD-based heuristic is chosen among other methods by 
applying Taguchi method. The so-called EDD-based heuristic is described as follows: 

− Determine the sequence of jobs according to the EDD rule. 
− Interchange the first two jobs. 
− Choose the sequence with minimum cost function. 
− For i=1:J 

 Insert the next job between previous jobs and choose the sequence with 
minimum cost function. 

− End 

Finally, the local search method used in the HMA is applied just on the solution found 
by this algorithm. The termination criterion is also as the same as the one used in the HMA. 
 

6- The proposed Particle Swarm Optimization 

   Another algorithm is a PSO algorithm hybridized with genetic operators (called 
GPSO).Notice that the representation of this algorithm is different from the algorithms 
mentioned in the previous sections and is derived from Tasgetirenet al. (2004) which enables 
the original continuous particle swarm optimization. Thus, in order to choose the best crossover 
and mutation operators, in addition to the operators used in the HMA, a new mutation operator 
is considered called the regeneration mutation. By applying this mutation, two positions are 
chosen within the particle position at random. Then, two random numbers are regenerated and 
placed within the selected positions. In this way, a new particle position is generated. 

   The termination criterion is the same as the previous algorithms and the heuristic in section 
4.3 is used to obtain the schedule for the overall problem. 

7- Experiments 

7-1- Parameter calibration 

   Before presenting and comparing the results of our algorithms, the best parameter 
combination must be chosen for each algorithm. Hence, we perform a Taguchi design to set the 
parameters. 

For the HMA, 10 is selected for the population size(npop), inverse/insertion/swap for 
mutation type, OPX/ASP crossover for crossover type, 0.4 for mutation rate (Pm), 0.9 for 
crossover rate (Pc), 0.2 for local search rate(Plocal search) and10 for neighbourhood length(Inner N 



77 
 

length). Figures 3 and 4 which are the main effects plot for SN ratios and main effects plot for 
means show these results. 

In the same way for the HSA, EDD-based heuristic is selected for generating initial solution, 
10 for neighbourhood length, MaxIt

f
T

T
1

0






 3

 
for temperature reduction rate, 500 for initial 

temperature, and 20 for maximum number of iterations per temperature. 
For the GPSO, 40 is selected for initial population size, inverse and regeneration mutation 

for mutation type, OPX for crossover type, 0.3 for mutation rate, 0.7 for crossover rate, 2 for 
C1and C2 ,0.99 for dampW , (-J,J) for accepted range of particle position and (-2J,2J) for accepted 
range of particle velocity. 

 
 
 

 

 

Figure3.Main Effects Plot for SN ratios for the HMA 

 

3MaxIt is the maximum number of iterations 
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Figure4.Main Effects Plot for Means for the HMA 

7-2- Data generations and settings 

   Ultimately, an experiment is conducted to test the performance of the proposed algorithms. 
Data required for the problem consists of the number of jobs, the number of stages, the number 
of machines in each stage, the value of the processing times, setup times which are generated 
according to Jung wattanakit et al. (2005, 2008 and 2009). 

7-3- Performance analysis  

    All methods presented above except for the GPSO algorithm produce acceptable results with 
regard to the computational time in comparison with the exact method. GA performs weaker 
than SA in this problem and even worse than the GPSO algorithm. Hence, the performance of 
the proposed algorithms is compared with the MIP model for small size problems and with the 
HSA both for small and large size problems.  

While an optimal solution is obtainable using the MIP model, for medium and large size 
problems, solutions are very difficult to find. Hence, this paper compares the performance of all 
proposed metaheuristics by using the relative performance deviation (RPD) which is calculated 
as follows: 

( ) solsol minminsolRPD −=                                                                                                  (17) 

Where solmin is the minimum function value obtained by all algorithms and sol is the 
solution obtained by a particular of the proposed metaheuristics. The results are demonstrated in 
tables 1 and 2. 
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7-3-1- Small size problems 

   For small size problems, 16 types of problems are generated and are executed 10 times in 
order to reduce error of random numbers. Then, averages of results are reported. 

Table 2 gives the average of the obtained results for small problems. The first item of the 
second column gives the number of jobs and the second item gives the number of stages (the 
number of jobs*the number of stages). The next columns give the results and the CPU time of 
the algorithms. 

The results demonstrated in table 2show that the GAMS take large CPU time even in small 
size problems. According to table 2 and figure 5, the results of different algorithms are quite 
comparable; however, GPSO has attained the worst solution in some problems. 

 

Table 2. A comparison between the MIP model and the proposed algorithms for small problems 

 

 

7-3-2- Large size problems 

    In this section, 24 medium and large size problems differing in the parameters are generated 
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and are executed 10 times and averages of results are shown in table 3.Then, the average of the 
RPDs and the CPU time are used for comparison as can be seen in figure 6. Moreover, we apply 
an analysis of variance (ANOVA) with 95% confidence level in which different algorithms are 
considered as factors and averaged RPD as a response variable in order to analyse the results 
more precisely.  

Table 3. A comparison between the averaged RPD and the average running time 
of different algorithms for medium and large size problems. 
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Figure 5. Main Effects Plot for response 

To conclude, The HSA algorithm outperforms other algorithms qualitatively and the GPSO 
is the fastest algorithm; however, the results show that the GPSO gets trapped in local optima 
and using genetic operators does not seem to improve the results significantly. The results of 
one-way ANOVA and the Tukey method which is shown in figure 7, demonstrate that there is a 
large discrepancy between the HSA and the GPSO algorithm. Although a difference between 
the HSA and the HMA is spotted in the main effects plot for means, the difference is not 
significant according to the Tukey method. On the other hand, the HMA performs 63.77% faster 
than the HSA. Therefore, the HMA is preferred. 

 

 

Figure 6.Comparison of averaged RPD versus problem size 
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Figure 7 .The results of one-way ANOVA and Tukey method 

8- Conclusion 

    This paper is dedicated to study hybrid flow-shop scheduling problem with unrelated parallel 
machines per stage with sequence-dependent setup times. The objective is to minimize the sum 
of earliness and tardiness. For each job, the due-date, the processing times and setup times are 
fixed. The problem is formulated as a MIP model. Then, for this NP-hard problem, an 
application of GA and a GPSO algorithm are approached. The GPSO is a PSO algorithm 
combined with genetic operators. Just a few experiments show that a simple GA does not give 
near optimal solutions, even by applying the local search to the best solution. So that the local 
search is used both in each generation and on the best answer found by the MA algorithm which 



83 
 

is a GA combined with a local search. Moreover, an HSA algorithm which is widely used in the 
literature is developed in order to validate the results. The HSA starts with an initial solution 
generated by the proposed EDD-based heuristic and the local search is applied on the solution 
found at the end of the algorithm. In all the algorithms presented above, a heuristic algorithm is 
also applied to find the complete schedule for the overall problem. Finally, the results of one 
way ANOVA demonstrate that there is not much difference between the results of the proposed 
HMA and the HSA algorithm. Furthermore, the elapsed time for the HMA is 66.73% less. Thus, 
the HMA is superior in our test problems. 
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