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Abstract 
 

Cancer is one of the major causes of death all over the globe and radiotherapy is 
considered as one of its most effective treatment methods. Designing a radiotherapy 
treatment plan was done entirely manually in the past. Recently, Intensity 
Modulated Radiation Therapy (IMRT) was introduced as a new technology with 
advanced medical equipment in the recent years. IMRT provides the opportunity to 
deliver complex dose distributions to cancer cells while sparing the vital tissues and 
cells from the harmful effects of radiations. Designing an IMRT treatment plan is a 
very complex matter due to the numerous calculations and parameters which must 
be decided for. Such treatment plan is designed in three separate phases: 1) 
selecting the number and the angle of the beams, 2) extracting the intensity matrix 
or the corresponding dose map of each beam, and 3) realizing each intensity matrix. 
The third phase has been studied in this research and a nonlinear mathematical 
model has been proposed for multileaf collimators. The proposed model has been 
linearized through two methods and an algorithm has been developed on its basis in 
order to solve the model with cardinality objective function. Obtained results are 
then compared with similar studies in the literature which reveals the capability of 
proposed method.  
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1. Introduction  

Cancer is one of the most common diseases among the world and one of the most effective 
cures for it is radio therapy(Taşkın and Cevik, 2013). Designing a treatment plan was done 
completely manually in the past but a little more than ten years ago, as technology and medical 
equipment advanced,intensity modulated radiation therapy (IMRT) was introduced and the 
results of using it indicated its significant effects on the dose that the cancer cells received while 
the vital and natural tissues were being spared(Meyer et al., 2006). This was due to the fact that it 
had a greater potential in comparison with the other methods regarding proportionality of dose 
distribution with the target mass. However, it increased the number of treatment options and 
parameters (which had to be decided) so much such that it caused manual and wholesome 
designing of a treatment plan impossible; since there were numerous calculations to be done. 
Therefore one such treatment planning is done in three different phases: 1) selecting the number 
and the angle of the beams, 2) extracting the intensity pattern or the corresponding dose map of 
each beam, and 3) realizing each intensity matrix. The reader can refer to works done byEhrgott 
et al. (2008) and Schlegel and Mahr (2007) in order to obtain more information. 

The third phase problem (i.e. realization problem) includes decomposing the intensity matrix 
obtained from phases one and two to matrix shapes or segments which can be formed in 
radiation therapy machines. The aim of the realization or segmentation problem, in general, is to 
minimize the treatment time due to the risk of involuntary movements of the patient, making him 
or her more comfortable, and also efficient use of the equipments along treatment. Multileaf 
collimators (MLC) are the main instruments for realization of intensity matrix radiation therapy 
machines which have been used in IMRT since 1996 (Meyer et al., 2006). MLC is an instrument 
with mobile paired metal leaves within grooves which prevents beams outside the dose area from 
reaching the body.  

The issue that makes the intensity matrix decomposition difficult, is the physical limitations 
related to collimators in producing shape matrixes. For instance, the distance between the two 
opposing leaves remains open in each line in MLCs. In Figure 1 for example realization of one 
matrix has been done through breaking it down into three matrixes which the black areas in three 
squares correspond to the left and right leaves of MLC. The beams pass through the open areas 
between the leaves (perpendicular to the sheet of segments). It should be noted that the dose area 
is divided into small parts called bixel as shown in Figure 1.  
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Figure 1.Intensity matrix decomposition through the use of MLC (Ehrgott et al., 2008). 

 
Using modern treatment planning algorithms in IMRT from 2002 to 2005,the planning time 

has decreased from 4 hours to 2 hours and the treatment time (executing the treatment plan) by 
four times in average (Meyer et al., 2006). This was due to the fact that the average number of 
essential segments for realizing intensity matrixes decreased by approximately 50% for instance 
(Meyer et al., 2006). 

Decomposing the intensity matrix has been presented in the literature with three major 
objectives: 1) Beam On Time (BOT), 2) Decomposition Cardinality (DC), and 3) a combination 
of the two aforementioned objectives called Total Treatment Time (TTT). Numerous researches 
have been carried out on the first objective function (Ahuja and Hamacher, 2005, Siochi, 1999, 
Engel, 2005) and efficient algorithms have been presented for them even in cases containing 
additional physical constraints(Boland et al., 2004). In contrast, proposing an efficient algorithm 
which can optimally solve the intensity matrix decomposition problems with the least number of 
segments (i.e. cardinality objective function) is a difficult matter. So that it is strictly NP-hard 
even for matrixes with only one row or one column (Baatar et al., 2005, Collins et al., 2007). 
This objective function aims at minimizing the number of essential segments for realization of 
the intensity matrix.  

Baatar et al. (2005)indicated that the DC problem can be solved in polynomial time only 
under conditions where the intensity matrix is an integer coefficient of a binary matrix. Therefore 
the initial studies aimed at minimizing cardinality among solutions with the best beam on time 
(Engel, 2005, Kalinowski, 2009). However later finding the optimal solution of these problems 
gained more importance.  

Mak(2007) used integer programming to accurately solve the DC problem which included 
many variables and this made it difficult to solve for real size data. Baatar et al. (2007) also 
developed a model known as Counter Model for solving beam on time and decomposition 
cardinality problems lexicographically. The model has been analyzed by Cambazard et al. (2010) 
later. They modeled the decomposing the intensity matrix to binary matrixes with consecutive-
ones (C1) property through turning it into the shortest path problem. They solved their model by 
using column generation and Dantzing-Wolfe decomposition methods and showed that it was 
more efficient in comparison with the algorithms proposed by Taskin et al. (2010). 
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An exact algorithm has recently been introduced by Ernst et al. (2009) which researched for a 
feasible sequence for all rows of the matrix through generating Monitor Unit (MU) sequences 
heuristically. This algorithm would start with an initial solution and would gradually decrease the 
segments. This algorithm became a major inspiration for other algorithms which considered the 
total treatment time as well as cardinality objective function. Taskin et al. (2010)considered the 
objective function of TTT problem as a weighted sum of beam on time and decomposition 
cardinality and developed a decomposition algorithm which was compatible with cardinality 
objective functions and total treatment time under the influence of Ernst et al.’s (Ernst et al., 
2009)algorithm. They generated a set of candidate MU values each of which could be dedicated 
to one segment. This series was named allowable intensity multi set and if there is decomposition 
for a row in a subset of that allowable MU values set, that would be a compatible MU sequence 
with that row. It is obvious that if the values of an allowable intensity multi set are compatible 
with all the rows of a matrix, they would be a feasible set. They claimed for the first time that 
they have presented an exact algorithm for solving problems with practical dimension through a 
combination of integer programming and combinatorial search techniques. They reported the 
results obtained from application of their algorithm on 25 real clinical data and also 100 random 
data. Mason et al. (2012)eventually generalized Ernst et al.’s work to the TTT problem. They 
proposed a similar algorithm which searched for a feasible sequence for all the rows of the 
matrix through starting with a heuristically initial solution such as TNMU-NS(Engel, 2005) and 
generating MU sequences based on that solution. 

In this paper, a nonlinear mathematical model has been proposed in order to decompose an 
intensity matrix through multileaf collimators with two DC and TTT objective functions. This 
model has been linearized through two approaches and an algorithm has been developed based 
on them for the purposes of solving the problem with the cardinality objective function and the 
obtained results have been compared with similar studies in the literature. 

The rest of the paper is organized as follows. The model and its linearization procedure have 
been described in section 2. Solving method presented for DC objective function has been 
explained in section 3 and numerical results is analyzed in section 4. Conclusions and 
suggestions for future researches are presented in section 5.  

2. Model Description 

2.1. The mathematical model 
The presented model is explained as below: 

Sets: 
𝑖𝑖 The set of rows of the intensity matrix or dose map;𝑖𝑖 = 1, … ,𝑀𝑀 
𝑗𝑗 The set of columns of the intensity matrix or dose map;𝑗𝑗 = 1, … ,𝑁𝑁 
𝑠𝑠 The set of segments;𝑠𝑠 = 1, … , 𝑆𝑆 

 
Parameters: 
𝑎𝑎𝑖𝑖𝑖𝑖 prescribed dose to bixel(𝑖𝑖, 𝑗𝑗) 

 
Variables: 
𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖 1 if the bixel (𝑖𝑖, 𝑗𝑗) is open in segment 𝑠𝑠 and 0 otherwise, 
𝑦𝑦𝑠𝑠 1 if segment 𝑠𝑠 is used and 0 otherwise, 
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𝑙𝑙𝑖𝑖𝑖𝑖𝑖𝑖 1 if the 𝑖𝑖th left leaf covers up to column 𝑗𝑗 in segment 𝑠𝑠 and 0 otherwise, 
𝑟𝑟𝑖𝑖𝑖𝑖𝑖𝑖 1 if the 𝑖𝑖th right leaf covers up to column 𝑗𝑗 in segment 𝑠𝑠 and 0 otherwise, 
𝑏𝑏𝑠𝑠 Weight of segment 𝑠𝑠 
 

Mathematical model: 

(1)  𝑀𝑀𝑀𝑀𝑀𝑀            �𝑦𝑦𝑠𝑠
𝑠𝑠

 

(2) ∀ 𝑖𝑖, 𝑗𝑗 𝑠𝑠. 𝑡𝑡         �𝑏𝑏𝑠𝑠𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖
𝑠𝑠

= 𝑎𝑎𝑖𝑖𝑖𝑖 

(3) ∀ 𝑖𝑖, 𝑗𝑗, 𝑠𝑠 𝑙𝑙𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑟𝑟𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖 = 1 

(4) ∀𝑖𝑖, 𝑗𝑗 < 𝑀𝑀, 𝑠𝑠 𝑙𝑙𝑖𝑖,𝑗𝑗+1,𝑠𝑠 ≤ 𝑙𝑙𝑖𝑖,𝑗𝑗,𝑠𝑠 

(5) ∀𝑖𝑖, 𝑗𝑗 < 𝑀𝑀, 𝑠𝑠 𝑟𝑟𝑖𝑖𝑖𝑖𝑖𝑖 ≤ 𝑟𝑟𝑖𝑖,𝑗𝑗+1,𝑠𝑠 

(6) ∀𝑠𝑠, ��𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖
𝑗𝑗𝑖𝑖

≤ 𝑀𝑀𝑀𝑀𝑦𝑦𝑠𝑠 

(7) ∀𝑖𝑖, 𝑗𝑗, 𝑠𝑠 𝑏𝑏𝑠𝑠 ≥ 0, 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖 ,𝑦𝑦𝑠𝑠, 𝑙𝑙𝑖𝑖𝑖𝑖𝑖𝑖, 𝑟𝑟𝑖𝑖𝑖𝑖𝑖𝑖 ∈ {0, 1} 

 
 
Equation (1) indicates the cardinality objective function and constraint (2) which is the only 

nonlinear expression of the model guarantees the realization of prescribed dose. Constraints (3-5) 
simulate the collimator’s leafs and guarantee C1 property in each row of the segments and 
constraint (6) counts the number of segments. The total number of nonzero elements of the 
intensity matrix can replace 𝑀𝑀 × 𝑁𝑁term which is equal to the total number of the bixels of the 
intensity matrix in order to tighten solution space.  

 
The total treatment time objective function has been considered mostly as a weight 

combination of setup time and the beam on time assuming a constant time for setup of each 
segment, in the literature(Taşkın et al., 2012, Mason et al., 2012, Cambazard et al., 2012). Here 
the total treatment time objective function can be written as follows with the same assumption:  

 

(8) 𝑀𝑀𝑀𝑀𝑀𝑀     𝑤𝑤1�𝑦𝑦𝑠𝑠
𝑠𝑠

+ 𝑤𝑤2�𝑏𝑏𝑠𝑠
𝑠𝑠

 

 
Where𝑤𝑤1represents each segment’s setup time and 𝑤𝑤2 is an amount of time which is needed to 
deliver one monitor unit. 

 

2.2. Mathematical model linearization  
The above mentioned model can be linearized through adding a subscript which indicates the 

amount of monitor unit of each segment. This type of linearization guarantees the integrality of 
beam on time values but increases the number of variables exponentially. Therefore determining 
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a good upper bound for the monitor units can significantly increase its efficiency. The largest 
element of the intensity matrix (𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚 = max

𝑖𝑖,𝑗𝑗
�𝑎𝑎𝑖𝑖𝑖𝑖�) is an obvious bound for the monitor units of 

the segments. The linearized model is presented as below: 
 

Sets: 
𝑏𝑏 Set of weights 𝑏𝑏 = 1, … ,𝐵𝐵 

Variables: 
𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 1 if the bixel(𝑖𝑖, 𝑗𝑗) is open in segment 𝑠𝑠 with beam on time amount  𝑏𝑏,and 0 

otherwise, 
𝑦𝑦𝑠𝑠𝑠𝑠 1 if segment 𝑠𝑠 with its beam on time amount equals to𝑏𝑏 is used, and 0 otherwise, 
𝑙𝑙𝑖𝑖𝑖𝑖𝑖𝑖 1 if the 𝑖𝑖th left leaf covers segment 𝑠𝑠 up to column 𝑗𝑗, and 0 otherwise, 
𝑟𝑟𝑖𝑖𝑖𝑖𝑖𝑖 1 if the 𝑖𝑖th right leaf covers segment 𝑠𝑠 up to column 𝑗𝑗, and 0 otherwise 

 
Mathematical model: 

(9)  𝑀𝑀𝑀𝑀𝑀𝑀 ��𝑦𝑦𝑠𝑠𝑠𝑠
𝑏𝑏𝑠𝑠

 

(10) ∀ 𝑖𝑖, 𝑗𝑗 𝑠𝑠. 𝑡𝑡         ��𝑏𝑏𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝑏𝑏𝑠𝑠

= 𝑎𝑎𝑖𝑖𝑖𝑖 

(11) ∀ 𝑖𝑖, 𝑗𝑗, 𝑠𝑠 𝑙𝑙𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑟𝑟𝑖𝑖𝑖𝑖𝑖𝑖 + �𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝑏𝑏

= 1 

(12) ∀𝑖𝑖, 𝑗𝑗 < 𝑁𝑁, 𝑠𝑠 𝑙𝑙𝑖𝑖,𝑗𝑗+1,𝑠𝑠 ≤ 𝑙𝑙𝑖𝑖,𝑗𝑗,𝑠𝑠 

(13) ∀𝑖𝑖, 𝑗𝑗 < 𝑁𝑁, 𝑠𝑠 𝑟𝑟𝑖𝑖𝑖𝑖𝑖𝑖 ≤ 𝑟𝑟𝑖𝑖,𝑗𝑗+1,𝑠𝑠 

(14) ∀𝑠𝑠, 𝑏𝑏 ��𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝑗𝑗𝑖𝑖

≤ 𝑀𝑀𝑀𝑀𝑦𝑦𝑠𝑠𝑠𝑠 

(15) ∀𝑠𝑠 �𝑦𝑦𝑠𝑠𝑠𝑠
𝑏𝑏

≤ 1 

(16) ∀ 𝑖𝑖, 𝑗𝑗, 𝑠𝑠 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ,𝑦𝑦𝑠𝑠𝑠𝑠 , 𝑙𝑙𝑖𝑖𝑖𝑖𝑖𝑖, 𝑟𝑟𝑖𝑖𝑖𝑖𝑖𝑖 ∈ {0, 1} 

 
The objective function and all the constraints have the same corresponding role in both 

models. The difference is that additive constraint (15) has been added to the linear model. The 
solution violating this constraint might not be actually infeasible but obviously in the optimal 
solution each of the segments appears once. This constraint can tighten the feasible space of the 
model. 

On the other hand, the above mentioned nonlinear model can be linearized through another 
method by changing the variable and adding three constraints. This time we should only define a 
new positive variable as 𝑧𝑧𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑏𝑏𝑠𝑠𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖, 𝑖𝑖 ∈ {1,2, … ,𝑀𝑀} , 𝑗𝑗 ∈ {1, 2, … ,𝑁𝑁} , and 𝑠𝑠 ∈
{1, 2, … , 𝑆𝑆}which is applied with four linear constraints (17- 21) while replacing constraint (2). 
The variable𝑧𝑧𝑖𝑖𝑖𝑖𝑖𝑖 can be defined as the dose which would be delivered to bixel(𝑖𝑖, 𝑗𝑗) in segment 𝑠𝑠.  
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(17) ∀ 𝑖𝑖, 𝑗𝑗 �𝑧𝑧𝑖𝑖𝑖𝑖𝑖𝑖
𝑠𝑠

= 𝑎𝑎𝑖𝑖𝑖𝑖 

(18) ∀ 𝑖𝑖, 𝑗𝑗, 𝑠𝑠 𝑧𝑧𝑖𝑖𝑖𝑖𝑖𝑖 ≤ 𝑏𝑏𝑠𝑠 

(19) ∀ 𝑖𝑖, 𝑗𝑗, 𝑠𝑠 𝑧𝑧𝑖𝑖𝑖𝑖𝑖𝑖 + ℳ(1 − 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖) ≥ 𝑏𝑏𝑠𝑠 

(20) ∀ 𝑖𝑖, 𝑗𝑗, 𝑠𝑠 𝑧𝑧𝑖𝑖𝑖𝑖𝑖𝑖 ≤ ℳ𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖 

(21) ∀ 𝑖𝑖, 𝑗𝑗, 𝑠𝑠 𝑧𝑧𝑖𝑖𝑖𝑖𝑖𝑖 ≥ 0 

 
Where 𝑀𝑀is an enough positive large number in constraints (19) and (20) and can be replaced 

by 𝛼𝛼𝑚𝑚𝑚𝑚𝑚𝑚. However it is clear that setting the smaller value to this number, can caused the 
solution space to be tightened(Taşkın et al., 2012). Constraints (18) and (19) guarantee that if 
bixel(𝑖𝑖, 𝑗𝑗) is open in segment 𝑠𝑠(𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖 =  1) a dose equal to 𝑏𝑏𝑠𝑠 will surely pass through it (𝑧𝑧𝑖𝑖𝑖𝑖𝑖𝑖 =
𝑏𝑏𝑠𝑠) and if it is closed (𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖 =  0) constraint (20) is activated and the passing dose will drop to 
zero.  

3. The presented solution 

The details of the presented algorithm based on the developed model will be explained in this 
section. The matrix’s rows are first organized based on decreasing order ofTNMU(Engel, 2005) 
complexity C(A) and the most complex row, 𝑖𝑖* (the first row in rank) will be selected. The 
minimum decomposition cardinality of each row will be calculated through the Benders’ 
decomposition method and so the lower bound of the cardinality of the total decomposition of 
the matrix (𝑘𝑘) will be obtained. Then through limiting the number of segment sets of the 
presented mathematical model to the lower bound (S:= 𝑘𝑘), the number of the rows to one (𝑀𝑀 =
1), and removing the objective function it would be possible to simultaneously examine the 
feasibility of the monitor units sequence𝑏𝑏𝑠𝑠,𝑠𝑠 ∈ {1, … , 𝑆𝑆}, which are generated through two related 
methods. In such manner that the sequences of monitor units 𝑏𝑏�𝑠𝑠 are entered as parameter to a 
linear system of inequalities including (3-5) and the following constraint and its feasibility will 
be examined for all the rows one by one by tracking the predetermined manner:  

(22) ∀ 𝑖𝑖, 𝑗𝑗 �𝑏𝑏�𝑠𝑠𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖
𝑠𝑠

= 𝐼𝐼𝑖𝑖𝑖𝑖 

It is obvious that if a given sequence is feasible for all rows, it would be feasible for the entire 
matrix as well, and therefore a decomposition would be obtained with cardinality𝑆𝑆. Hence the 
process of generating new monitor unit sequences (𝑏𝑏𝑠𝑠) and increasing the bound of the number 
of segments must continue until we reach to one such sequence. The methods of generating new 
monitor unit sequences (𝑏𝑏𝑠𝑠) guarantee the optimality of this process.  

Monitor unit sequence generating methods play the main role in this algorithm and have a 
significant effect on the time needed to reach a feasible answer. The first linearized model has 
the capability to make taboo the determined sequence𝑇𝑇𝑇𝑇𝑠𝑠 ،𝑠𝑠 ∈ {1, … , 𝑆𝑆}for the model through 
adding a constraint like (56). Which means it prevents the model from reaching these sequences 
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as asolution. The observations have indicated that the feasible monitor sequences are very similar 
to one another in such manner that they differ from each other by ±1 unit correspondingly 
(Mason et al., 2012). Therefore the obtained sequences can be used to generate new sequences. 
The algorithm will be explained in detail in the following section. 

3.1. Solving a single row model through Benders decomposition method  
The amount of computation and required memory is one of the important points in modeling 

and solving optimization problems which increases significantly as the number of variables and 
constraints increase. Thus the traditional methods which made all the decisions simultaneously 
through solving an integrated optimization model became inefficient as the variables and 
constraints increased and they were replaced by multistage algorithms such as Benders 
decomposition (Benders, 2005, Pishvaee et al., 2014). Unlike the traditional methods these 
algorithms divide the decision making process into a number of stages. In the first stage of the 
Benders decomposition, the master problem, which includes a set of variables (mostly integer), is 
solved and the values of other variables are determined in the second stage through solving the 
sub-problem. In the sub-problem the values of the master problem variables are substituted as 
known parameters. Therefore if the sub-problem becomes infeasible with those values, the 
master problem will be directed toward feasible region of the whole problem through adding one 
or more cuts which are resulted from the dual of sub-problem. And so a number of small 
problems will be solved instead of a large problem which is plausible due to the large amount of 
computational resources needed for solving large problems.  

Taking into consideration the fact that it has been shown that the DC problem is NP-hard even 
for single row matrixes (Baatar et al., 2005), the Benders decomposition approach can aid 
shortening the time and decreasing the memory needed for solving single row problems. Taskin 
et al. (2012)used this method to solve their model as well. As mentioned previously we must 
reach to the minimum cardinality of decomposing each and every row of the matrix in order to 
obtain the lower bound for entire matrix decomposition cardinality. 

Consider linearized model (23-32). This model has been adapted to problems with single row 
matrixes. A linear model for an𝑀𝑀 × 𝑁𝑁size intensity matrix and the upper bound (i.e. the number 
of essential segments for decomposing)𝑆𝑆, has 4𝑀𝑀𝑀𝑀𝑀𝑀 + 2𝑆𝑆 variables and 6𝑀𝑀𝑀𝑀𝑀𝑀 + 𝑀𝑀𝑀𝑀 + 2𝑆𝑆 
constraints. This number decreases by more than 𝑀𝑀 times when it turned into single row state. 
As a result the conditions are set for solving the problem through Benders decomposition 
method.  

Variables: 

1 if bixel(𝑖𝑖, 𝑗𝑗) is open in segment s and 0 otherwise, 𝑥𝑥𝑗𝑗𝑗𝑗 

Delivered dose to bixel(𝑖𝑖, 𝑗𝑗) through segment 𝑠𝑠, 𝑧𝑧𝑗𝑗𝑗𝑗 

1 if segment 𝑠𝑠 is used and 0 otherwise, 𝑦𝑦𝑠𝑠 
1 if the left leaf in segment 𝑠𝑠 covers up to column 𝑗𝑗 and 0 otherwise, 𝑙𝑙𝑗𝑗𝑗𝑗 

1 if the right leaf in segment 𝑠𝑠 covers up to column 𝑗𝑗 and 0 otherwise, 𝑟𝑟𝑗𝑗𝑗𝑗 

The monitor unit amount of segment 𝑠𝑠 𝑏𝑏𝑠𝑠 
Mathematical model: 

(23)  𝑀𝑀𝑀𝑀𝑀𝑀            �𝑦𝑦𝑠𝑠
𝑠𝑠
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(24) ∀ 𝑗𝑗 𝑠𝑠. 𝑡𝑡.    �𝑧𝑧𝑗𝑗𝑗𝑗
𝑠𝑠

= 𝑎𝑎𝑗𝑗 

(25) ∀ 𝑗𝑗, 𝑠𝑠 𝑧𝑧𝑗𝑗𝑗𝑗 ≤ 𝑏𝑏𝑠𝑠 

(26) ∀ 𝑗𝑗, 𝑠𝑠 𝑧𝑧𝑗𝑗𝑗𝑗 + 𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚(1 − 𝑥𝑥𝑗𝑗𝑗𝑗) ≥ 𝑏𝑏𝑠𝑠 

(27) ∀ 𝑗𝑗, 𝑠𝑠 𝑧𝑧𝑗𝑗𝑗𝑗 ≤ 𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚𝑥𝑥𝑗𝑗𝑗𝑗 

(28) ∀ 𝑗𝑗, 𝑠𝑠 𝑙𝑙𝑗𝑗𝑗𝑗 + 𝑟𝑟𝑗𝑗𝑗𝑗 + 𝑥𝑥𝑗𝑗𝑗𝑗 = 1 

(29) ∀ 𝑗𝑗 < 𝑀𝑀, 𝑠𝑠 𝑙𝑙𝑗𝑗+1,𝑠𝑠 ≤ 𝑙𝑙𝑗𝑗𝑗𝑗 

(30) ∀ 𝑗𝑗 < 𝑀𝑀, 𝑠𝑠 𝑟𝑟𝑗𝑗𝑗𝑗 ≤ 𝑟𝑟𝑗𝑗+1,𝑠𝑠 

(31) ∀𝑠𝑠 �𝑥𝑥𝑗𝑗𝑗𝑗
𝑗𝑗

≤ 𝑀𝑀𝑀𝑀𝑦𝑦𝑠𝑠 

(32) ∀𝑗𝑗, 𝑠𝑠 𝑏𝑏𝑠𝑠, 𝑧𝑧𝑗𝑗𝑗𝑗 ≥ 0, 𝑥𝑥𝑗𝑗𝑗𝑗, 𝑦𝑦𝑠𝑠, 𝑙𝑙𝑗𝑗𝑗𝑗, 𝑟𝑟𝑗𝑗𝑗𝑗 ∈ {0, 1} 
 
We consider binary variables as complicated variables since when binary variables were set 

by values, the model turns into a simple linear model which can be solved by well-known 
approaches such as simplex. And so the model is divided into two problems according to the 
Benders decomposition method: 1) a master problem (MP) which includes binary variables 
(𝑥𝑥𝑗𝑗𝑗𝑗 ,𝑦𝑦𝑠𝑠, 𝑙𝑙𝑗𝑗𝑗𝑗, 𝑟𝑟𝑗𝑗𝑗𝑗) and 2) a sub-problem (SP) which includes real variables (𝑧𝑧𝑗𝑗𝑗𝑗, 𝑏𝑏𝑠𝑠). 

Sub-problem (33-38) is obtained through assuming the binary variables as parameter and 
separating constraints including real variables. Since the real variables have no role in the 
cardinality objective function, the sub-problem will in fact be limited to finding feasible solution.  

(33)  SP:              𝑀𝑀𝑀𝑀𝑀𝑀         0 

(34) ∀ 𝑗𝑗 𝑠𝑠. 𝑡𝑡.   �𝑧𝑧𝑗𝑗𝑗𝑗
𝑠𝑠

= 𝑎𝑎𝑗𝑗 

(35) ∀ 𝑗𝑗, 𝑠𝑠 𝑧𝑧𝑗𝑗𝑗𝑗 + 𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚(1 − 𝑥𝑥�𝑗𝑗𝑗𝑗) ≥ 𝑏𝑏𝑠𝑠 

(36) ∀ 𝑗𝑗, 𝑠𝑠 𝑏𝑏𝑠𝑠 − 𝑧𝑧𝑗𝑗𝑗𝑗 ≥ 0 

(37) ∀ 𝑗𝑗, 𝑠𝑠 −𝑧𝑧𝑗𝑗𝑗𝑗 ≥ −𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚𝑥𝑥�𝑗𝑗𝑗𝑗 

(38) ∀𝑗𝑗, 𝑠𝑠 𝑏𝑏𝑠𝑠, 𝑧𝑧𝑗𝑗𝑗𝑗 ≥ 0 

 
The master problem can be modeled as below too: 
 

(39)  MS:           𝑀𝑀𝑀𝑀𝑀𝑀            ∑ 𝑦𝑦𝑠𝑠𝑠𝑠  

(40)  𝑠𝑠. 𝑡𝑡.    𝑥𝑥𝑗𝑗𝑗𝑗 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 

(41) ∀ 𝑗𝑗, 𝑠𝑠 𝑙𝑙𝑗𝑗𝑗𝑗 + 𝑟𝑟𝑗𝑗𝑗𝑗 + 𝑥𝑥𝑗𝑗𝑗𝑗 = 1 
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(42) ∀ 𝑗𝑗 < 𝑀𝑀, 𝑠𝑠 𝑙𝑙𝑗𝑗+1,𝑠𝑠 ≤ 𝑙𝑙𝑗𝑗𝑗𝑗 

(43) ∀ 𝑗𝑗 < 𝑀𝑀, 𝑠𝑠 𝑟𝑟𝑗𝑗𝑗𝑗 ≤ 𝑟𝑟𝑗𝑗+1,𝑠𝑠 

(44) ∀𝑠𝑠 �𝑥𝑥𝑗𝑗𝑗𝑗
𝑗𝑗

≤ 𝑀𝑀𝑀𝑀𝑦𝑦𝑠𝑠 

 
As mentioned before the sub-problem directs the master problems toward the feasible region 

of the entire problem through adding constraints in a repetitive process. In line with that if the 
sub-problem bears feasible solution for 𝑥𝑥� values a feasible solution has been obtained for the 
entire problem. If not, meaning if the sub-problem is infeasible for 𝑥𝑥�, we must delete it from the 
feasible space of the master problem. Benders decomposition uses the linear programming 
duality theorem to do that.  

Suppose 𝛼𝛼𝑗𝑗1, 𝛼𝛼𝑗𝑗𝑗𝑗2 , 𝛼𝛼𝑗𝑗𝑗𝑗3 , and 𝛼𝛼𝑗𝑗𝑗𝑗4 are the dual variables corresponding with constraints(33-37) 
respectively. The duality of the sub-problem (DSP) can be modeled as below:  

(45)  DSP:     𝑚𝑚𝑚𝑚𝑚𝑚 ∑ 𝑎𝑎𝑗𝑗𝛼𝛼𝑗𝑗1𝑗𝑗 + ∑ ∑ −𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚(1 − 𝑥𝑥�𝑗𝑗𝑗𝑗)𝛼𝛼𝑗𝑗𝑗𝑗2𝑠𝑠𝑗𝑗 + ∑ ∑ −𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚𝑥𝑥�𝑗𝑗𝑗𝑗𝛼𝛼𝑗𝑗𝑗𝑗4𝑠𝑠𝑗𝑗  

(46) ∀𝑠𝑠 𝑠𝑠. 𝑡𝑡.  −�𝛼𝛼𝑗𝑗𝑗𝑗2

𝑗𝑗

+ �𝛼𝛼𝑗𝑗𝑗𝑗3

𝑗𝑗

≤ 0 

(47) ∀ 𝑗𝑗, 𝑠𝑠                         𝛼𝛼𝑗𝑗1 + 𝛼𝛼𝑗𝑗𝑗𝑗2 − 𝛼𝛼𝑗𝑗𝑗𝑗3 − 𝛼𝛼𝑗𝑗𝑗𝑗4 ≤ 0 

(48) ∀𝑗𝑗, 𝑠𝑠                        𝛼𝛼𝑗𝑗1 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓,𝛼𝛼𝑗𝑗𝑗𝑗2 ,𝛼𝛼𝑗𝑗𝑗𝑗3 ,𝛼𝛼𝑗𝑗𝑗𝑗4 ≥ 0 

 
If SP becomes feasible for 𝑥𝑥�then MP will also be feasible and the optimal solution has been 

obtained. But in case the SP does not lead to a feasible solution, the DSP model will be infinite 
(for 𝑥𝑥�). That is because the DSP model is clearly a feasible model and according to the weak 
duality theorem it will be infinite if its primal model is infeasible. And so the obtained result 
(𝛼𝛼1,𝛼𝛼2,𝛼𝛼3,𝛼𝛼4) will be an infinite vector, i.e.: 

�𝑎𝑎𝑗𝑗𝛼𝛼𝑗𝑗1

𝑗𝑗

+ ��−𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚(1 − 𝑥𝑥�𝑗𝑗𝑗𝑗)𝛼𝛼𝑗𝑗𝑗𝑗2

𝑠𝑠𝑗𝑗

+ ��−𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚𝑥𝑥�𝑗𝑗𝑗𝑗𝛼𝛼𝑗𝑗𝑗𝑗4

𝑠𝑠𝑗𝑗

→ ∞ 

 
Therefore all the feasible solutions (𝑥𝑥) must satisfy the followingconstraint: 

(49) �𝑎𝑎𝑗𝑗𝛼𝛼�𝑗𝑗1

𝑗𝑗

+ ��−𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚(1 − 𝑥𝑥𝑗𝑗𝑗𝑗)𝛼𝛼�𝑗𝑗𝑗𝑗2

𝑠𝑠𝑗𝑗

+ ��−𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚𝑥𝑥𝑗𝑗𝑗𝑗𝛼𝛼�𝑗𝑗𝑗𝑗4

𝑠𝑠𝑗𝑗

≤ 0 

 
Where (𝛼𝛼�1,𝛼𝛼�2,𝛼𝛼�3,𝛼𝛼�4)is the infinite (normalized) direction vector which is obtained through 
solving the feasibility problem or linear system including the set of constraints (45-48) and the 
following constraint: 

(50) �𝑎𝑎𝑗𝑗𝛼𝛼𝑗𝑗1

𝑗𝑗

+ ��−𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚(1 − 𝑥𝑥�𝑗𝑗𝑗𝑗)𝛼𝛼𝑗𝑗𝑗𝑗2

𝑠𝑠𝑗𝑗

+ ��−𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚𝑥𝑥�𝑗𝑗𝑗𝑗𝛼𝛼𝑗𝑗𝑗𝑗4

𝑠𝑠𝑗𝑗

= 1 

The mentioned constraint is known as Gleeson-Ryan (Gleeson and Ryan, 1990) normalization 
constraint. Of course the presence of an objective function such (51)tightens the feasibility space 
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of the entire problem (Bai and Rubin, 2009). This is because when there is one such objective 
function the number of (37) set constraints which are equally satisfied, reaches its highest level. 
This term is added to objective function of DSP lexicographically. 

(51) 𝑚𝑚𝑚𝑚𝑚𝑚    ��𝛼𝛼𝑗𝑗𝑗𝑗4

𝑠𝑠𝑗𝑗

 

Valid inequalities: regarding transferring a number of constraints to the sub-problem, the 
feasible space will become much vaster for the MP and it also increases the number of essential 
iterations to reach the optimal solution. Therefore adding constraints which can tighten the 
feasible space of MP independent of real variables (𝑧𝑧, 𝑏𝑏) will lead the algorithm getting to the 
solution faster. The valid inequalities which are obtained for this model will be explained here: 

• Regarding the fact that the aim is to minimize the number of segments, each 
bixel(1, 𝑗𝑗), 𝑗𝑗 ∈ {1, … ,𝑁𝑁} can at most be opened in the 𝑎𝑎𝑗𝑗 number of segments. Since 
the weight or the monitor unit of each open bixel can at least be equal to 1 and 
therefore we have: 

(52) ∀𝑗𝑗 �𝑥𝑥𝑗𝑗𝑗𝑗
𝑠𝑠

≤ 𝑎𝑎𝑗𝑗 

This constraint mostly tightens the feasible region through bixels which𝑎𝑎𝑗𝑗 ∈ {0,1}.  
• On the other hand, the bixel(1, 𝑗𝑗)must at least be opened in one segment for each 

𝑎𝑎𝑗𝑗>0. And also bixels which are 𝑎𝑎𝑗𝑗 > 𝑎𝑎𝑗𝑗−1 + 𝑎𝑎𝑗𝑗+1in a manner that at least one of 
𝑎𝑎𝑗𝑗+1or 𝑎𝑎𝑗𝑗−1is nonzero could be opened in two segments in the optimal solution and 
therefore: 

(53) ∀𝑗𝑗 ∈ �𝑗𝑗|𝑎𝑎𝑗𝑗 > 0� �𝑥𝑥𝑗𝑗𝑗𝑗
𝑠𝑠

≥ 𝑜𝑜𝑜𝑜𝑜𝑜𝑗𝑗  
 

 

 
Where 𝑜𝑜𝑜𝑜𝑜𝑜𝑗𝑗  𝑖𝑖𝑖𝑖: 

𝑜𝑜𝑜𝑜𝑜𝑜𝑗𝑗 = �
1      ;𝑎𝑎𝑗𝑗 > 0,                                                           
2      ;𝑎𝑎𝑗𝑗 > 𝑎𝑎𝑗𝑗−1 + 𝑎𝑎𝑗𝑗+1 𝑎𝑎𝑎𝑎𝑎𝑎  𝑎𝑎𝑗𝑗−1 + 𝑎𝑎𝑗𝑗+1 > 0 

 
• Also the following constraint can be written for bixels 𝑎𝑎𝑗𝑗whenever 𝑎𝑎𝑗𝑗−1 + 𝑎𝑎𝑗𝑗+1 = 0 

(54) ∀𝑗𝑗 ∈ �𝑗𝑗|𝑎𝑎𝑗𝑗−1 + 𝑎𝑎𝑗𝑗+1 = 0� �𝑥𝑥𝑗𝑗𝑗𝑗
𝑠𝑠

≤ 1 

 
Along with constraint (53), this constraint causes that the bixels which are limited to 𝑎𝑎𝑗𝑗 =

0 bixels on both sides can only be opened in one segment.   
 
The steps of the presented Benders decomposition algorithm are described in Pseudocode 1. 
 

Pseudocode 1. The pseudo code of the presented Benders’ algorithm  
{Initialization} 
x← initial feasible integer solution 
LB← 0 
UB← 0 
while UB≠LB 
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Solve SP 
If SP is unbounded 

Get unbounded ray (𝛼𝛼�1,𝛼𝛼�2,𝛼𝛼�3,𝛼𝛼�4) 
Add cut (48) to MP 

End if 
Solve MP 
LB← Objective function value 

End while 
 

3.2. Methods of generating new monitor sequences  
The methods which generate new monitor units sequences play the main role in the presented 

algorithm. The method introduced by Mason et al. (2012) will be combined along this line with 
another method which will be explained below in order to promote each other reciprocally. 

First method: Mason et al. (2012) claimed that new feasible sequences of monitor units can 
be generated through having a sequence, because of the similarity. For example consider the two 
following sequences for 8 × 20matrix with 𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚 = 10: 

First sequence: 6, 5, 4, 4, 4, 3, 3, 3, 3, 2, 2, 2, 2, 1, 1, 1 
Second sequence: 6, 6, 5, 4, 4, 3, 3, 3, 2, 2, 1, 1, 1, 1, 1, 1, 1. 
Although the first sequence has one element lesser than the second sequence their values are 

very similar. As we compare these values one by one we can see that they differ by ±1. 
Therefore if 𝛼𝛼𝑖𝑖𝑘𝑘∗ is the 𝑖𝑖thvalue of a feasible monitor unit sequence with 𝑘𝑘 segments, sequences 
with the 𝑖𝑖th values(𝛼𝛼𝑖𝑖𝑘𝑘∗,𝛼𝛼𝑖𝑖𝑘𝑘∗ + 1,𝛼𝛼𝑖𝑖𝑘𝑘∗ − 1,𝛼𝛼𝑖𝑖𝑘𝑘∗ + 2,𝛼𝛼𝑖𝑖𝑘𝑘∗ − 2, … )can be new potential sequences 
for this problem.  

On the other hand, the algorithm begins the search from the lower bound of the number of 
segments. Therefore if a new feasible solution with 𝑆𝑆 number of segments is not found, we will 
move on the solutions with 𝑆𝑆 + 1 number of segments. Since we have all the feasible sequences 
with S segments for row 𝑖𝑖*, the new monitor sequences can also be generated through adding a 
value in the rational range to them. 

Second method: the number of segments is bounded to a determined value in the presented 
algorithm through adding constraint (55) to the single row mathematical model (10-15) in each 
iteration. This specific value starts from the lower bound of the number of segments and 
increases the size of the unit along a repetitive process till it reaches a feasible solution. The 
sequences which are infeasible for other rows and as a result for the entire matrix are turned into 
taboo by means of constraint (56) in this repetitive process and they are then deleted from the 
solution space of the mathematical model.  

(55)  �𝑦𝑦𝑠𝑠𝑠𝑠
(𝑠𝑠,𝑏𝑏)

= 𝑆𝑆 

(56)  � 𝑦𝑦𝑠𝑠𝑠𝑠
{(𝑠𝑠,𝑏𝑏)|𝑇𝑇𝑇𝑇𝑠𝑠=𝑏𝑏}

< 𝑆𝑆 

 
Where 𝑇𝑇𝑇𝑇𝑠𝑠indicates the feasible solution of the 𝑖𝑖∗th row which is infeasible for the other rows and 
must therefore be deleted from the solution space. Constraint (56) forces change in at least one 
value of taboo sequences. Of course after the mathematical model is solved and the obtained 
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sequences were identified as infeasible for other rows, it will, by itself, enter the black list in the 
next iterations of algorithm.  

It must be noted that each different permutation of a feasible sequence for the 𝑖𝑖∗th row can be 
another potential solution for that row. Therefore turning a sequence into taboo may lead to same 
sequence with different order which has no role in the other rows becoming feasible or 
infeasible. Therefore, we add constraint (57) to the mathematical model as well in order to delete 
a large number of repetitive solutions. 

(57) ∀𝑠𝑠 < 𝑆𝑆 �𝑏𝑏 × 𝑦𝑦𝑠𝑠𝑠𝑠
𝑏𝑏

≥�𝑏𝑏 × 𝑦𝑦𝑠𝑠+1,𝑏𝑏
𝑏𝑏

 

This constraint creates a decreasing order in the values of the monitor unit sequences which leads 
to the deletion of its repetitive permutations from the solution space and only the feasibility of 
one permutation of a unique answer will be examined for the other rows. 

It is obvious that if the single row model (10-15) will become infeasible in the presence of 
constraint (56), it means that all the solution space has entered the black list and no sequence 
with 𝑆𝑆number of segment can be found for this matrix. Under such condition, as mentioned 
previously, the algorithm adds a unit to the number of segments and continues searching among 
the solutions with 𝑆𝑆 + 1 segments. 

3.3. The proposed algorithm  
The steps of the presented algorithm are as explained below: 

• Step 0: Get the intensity matrix𝐼𝐼: 
• Step 1: consider 𝑘𝑘 as the lower bound of the number of segments and specify the row 

𝑖𝑖∗ (the largest number obtained by solving each and every one of the rows through 
Benders decomposition method). 

• Step 2: consider 𝑘𝑘 and 𝑘𝑘∗as the lower bound of the number of segments. 
• Step 3: repeat the following steps up to reaching a feasible monitor unit sequence: 

3.1) Consider segments as equal to 𝑘𝑘 and generate the new sequences through both 
methods in parallel. 

3.2) If the second method of generating new sequences becomes infeasible go to 
step four. 

3.3) Examine the feasibility of the new sequences for the other rows through 
checking feasibility of the single row model by a standard solver (Section 3). 

3.4) As soon as a new sequence is proved to be infeasible for a row, exempt it from 
being examined for the other rows, and add it to the black list. Otherwise, if it was 
feasible for all rows, put it 𝑏𝑏𝑠𝑠∗ and consider 𝑘𝑘∗ equal to 𝑘𝑘 and move to step five. 

• Step 4: consider 𝑘𝑘 as equal to 𝑘𝑘 + 1, delete the black list and go to step 3 
• Step 5: the end. 

 
This algorithm begins the search with the lower bound𝑘𝑘of the segment number and looks for 

a feasible sequence in the entire matrix through examining different sequences for each and 
every one of the rows. The infeasible sequences will turn into a taboo in a mathematical model 
and when this model becomes infeasible, meaning that there is no new feasible sequence, one 
unit is added to the number of segments and searching continues in the same manner. 
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4. Numerical Results  

The proposed algorithm is programed and obtained results from applying the algorithm on 15 
clinical cases presented by Taşkın et al.(2010) and also 150 random cases are compared with 
recent similar researches. 

Results of proposed algorithm are given in contrast to study done by Taşkın et al.(2010) for 
15 real cases in Table 1. The first column is problem identifier and the second column shows the 
dimension of problem (𝑀𝑀 × 𝑁𝑁 × 𝐿𝐿) in which L stands for maximum value of intensity matrix 
elements. In addition, computational time and objective function (numbers of segments) are 
depicted in third and fourth column, respectively.  

According to fourth column, both the algorithms provide the same results but average 
computational time is reduced as much as 25% because of reduction in computational time in 
nine of the cases. Minimum and median computational times are also reduced in comparison 
with the best results obtained from literature. But the maximum computational time is not 
improved using this algorithm. Since the best results of proposed algorithm differ from ones 
obtained in the literature, it is perceived that for specific kinds of problems, the complexity of 
both algorithms is increased. In order to investigate the reasons of these exceptional cases and 
their occurrence reasons, it is needed to be aware of substituted linear solver. 

150 random examples generated uniformly in interval [0, 𝐿𝐿] and different sizes are solved by 
proposed algorithm in order to check its behavior in a variety of sizes. Table 2 shows the results 
of these experiments in four indexes of computational time. 

With respect to results shown in Table 2, it seems that the algorithm has a stable behavior in 
variation of parameter 𝐿𝐿. In such a manner that the mean of computational time for cases with 
same matrix dimension (𝑀𝑀 = 𝑁𝑁 = 5) and two different values of𝐿𝐿 (3 and 18) differs by only 
1.5353 seconds. But plotting the computation time vs. parameter 𝐿𝐿(Figure 1) indicates an 
exponential behavior for algorithm.  

The computation time vs. two different dimensions of intensity matrix in a constant amount of 
𝐿𝐿has been plotted in order to analyze its effect as well (Figure 2). Figure 2 not only shows an 
exponential behavior for differences of computational time but also reveals such a manner for 
different values of 𝐿𝐿 as well as Figure 1. 
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Table 1. The results of algorithm in comparison with (Taşkın et al., 2010) 
The results of proposed 

algorithm  
The results of)Taşkın et al., 
2010( 
 Problem size  

Prob. ID 
Obj. Value Com. time(s)  Obj. Value Com. time(s)  L N M  

10 0.2760  10 2.3  20 14 15  C1B1 
8 1.2727  8 1.1  20 15 11  C1B2 
9 66.633  9 4.5  20 15 15  C1B3 
11 1.7046  11 27.1  20 15 15  C1B4 
8 0.0114  8 1.3  20 15 11  C1B5 
12 0.2142  12 14.9  20 20 18  C2B1 
11 8.6853  11 6.9  20 19 17  C2B2 
11 0.0602  11 9.9  20 18 18  C2B3 
12 0.2915  12 16.8  20 18 18  C2B4 
10 2.6619  10 6.2  20 18 17  C2B5 
12 982.2838  12 62.1  20 17 22  C3B1 
8 19.1825  8 4.5  20 19 15  C3B2 
12 32.2903  12 894.7  20 17 20  C3B3 
12 20.0476  12 548.8  20 19 15  C3B4 
9 61.4258  9 5.4  20 19 15  C3B5 
 79.80272   107.1    Mean 
 2.6619   6.9    Median 
 0.0114   1.1    Min 
 982.2838   894.7    Max 

 

 

Figure 1. Behavior of algorithm in terms of maximum element in 𝟓𝟓 × 𝟓𝟓 random matrixes 
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Figure 2. Comparison of computation time between two matrix dimensions 5 × 5 and 10 × 10 vs. 
different values of parameter 𝐿𝐿 

 

Table2.The results of algorithm for random examples 

Computation time  
Number 

of 
Examples 

 
Problem 

dimension 
 

Prob. No. 
Max Mean Median Min   L N M  

0.0021 0.0044 0.0039 0.0021  10  3 5 5  1 
0.0072 0.0064 0.0061 0.0045  10  5 5 5  2 
0.0204 0.0199 0.019 0.0195  10  7 5 5  3 
0.0389 0.0369 0.0361 0.0333  10  9 5 5  4 
0.182 0.1178 0.0997 0.0362  10  11 5 5  5 

0.6177 0.5867 0.3331 0.1799  10  13 5 5  6 
0.9308 0.5967 0.383 0.193  10  15 5 5  7 
0.8296 0.7971 0.4252 0.0234  10  16 5 5  8 
1.0795 1.0048 0.7752 0.6772  10  17 5 5  9 
2.6138 1.5397 1.3043 0.1276  10  18 5 5  10 
0.0429 0.037 0.013 0.0370  10  3 10 10  11 
0.1536 0.1055 0.053 0.1055  10  5 10 10  12 
0.2313 0.199 0.0666 0.1990  10  7 10 10  13 
2.4992 1.9555 1.1594 1.9555  10  9 10 10  14 
3.7481 2.7512 1.2018 2.7512  10  11 10 10  15 
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5. Conclusion 

In this paper, a new mathematical model is developed for intensity matrix realization in 
IMRT. This model is linearized through two different techniques and an efficient algorithm is 
proposed according with them for real size problems. Benders decomposition is applied to obtain 
the lower bound in this algorithm. Also a new monitor unit sequence generating procedure is 
introduced. 

Results of algorithm for 15 clinical data found in literature (Taşkın et al., 2010) is compared 
with the best solutions known in terms of objective value and computational time which shows 
rational superiority of proposed algorithm. Moreover, behavior of algorithm is analyzed along 
solving 150 other random instances in a spectrum of sizes. 

This algorithm can be generalized to handle total treatment time objective function too, by 
only applying a proper search mechanism. Apart from that some of physical constraints of 
collimator like interleaf collision constraint, tongue and groove constraint and so on, can be 
taken into account and added to the model. Furthermore, generating new monitor unit sequences 
through an evolutionary algorithm seems to be more efficient than doing it in a random manner 
which can be a direction for future researches.  
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