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Abstract 
Among the various existing forms of warehousing management, the simultaneous use of 
private and public warehouses is a most well-known one. The purpose of this article is to 
develop a queuing theory-based model for determining the optimal capacity of private 
warehouse in order to minimize the total corresponding costs. In the proposed model, the 
available space and budget to create a private warehouse are assumed to be limited. Due 
to the vagueness, some parameters are simulated by expert-based triangular fuzzy 
numbers. Also two well-known methods are applied to solve the queuing-based fuzzy 
programming model and to optimize the private warehouse capacity. The numerical 
results confirm that our proposed method match well with various lines of manufacturing 
environments and conditions. 
 
Keywords: Optimal warehouse capacity, Queuing theory, Fuzzy programming, Multi-
objective programming. 
 

1 - Introduction 
Warehouses are one of the key components of a supply chain body which play an important role in 

handling the corresponding supplies and demands. The suitable application of warehouses may lead to 
satisfactory service levels with no interruption in the production and distribution flows. In fact, when 
random fluctuations and seasonal patterns occurs in supplies and demands, one can decrease the 
frequency and volume of stock out and increase the customer service level via effective management of 
inventories in warehouses. Warehouses also help to benefit from the purchase discount in 
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recessions condition. Generally, the managers have two options for warehousing: (1) construction (private 
warehouse) and (2) renting for a limited time interval (public warehouse) (Gill, 2009) (Gu, Goetschalck 
and McGinnis, 2010). 

 
Public warehouses do not need a lot of investment on the assets, properties, machineries and 

equipments as well as the hiring and training of employees. On the other hand, although a private 
warehouse usually requires all the above-mentioned investments, its related carrying costs are much lower 
than a public warehouse. Moreover, in the case of private warehouse, there is a tax saving due to the 
consideration of depreciation of buildings and equipments. 

So, to make more effective decisions on warehousing problems, we need a model which can establish 
a compromise between the advantages and disadvantages of both types of warehouses. The products in a 
warehouse can be regarded as excess inventories waiting for the arrival of market demands. So, it seems 
that the use of queuing models to formulate the products in warehouses might lead to the promising 
results. Furthermore, one can present various simple and/or comprehensive queue models for the different 
conditions of a warehouse system. In this article, using a new queuing approach for the inventory and 
warehouse problem and analysis of construction costs for different capacities, a novel model is proposed 
for optimizing the private warehouse capacity. 

 
The paper is organized as follows. In section 2, we discuss the supportive body of relevant literature. 

In section 3, a queuing model is presented and the solution algorithm is developed for various types of the 
model. In section 4, the solution method is proposed. Three numerical examples are solved and analyzed 
in section 5. Finally, section 6 is devoted to the conclusion and suggestions of future studies. 
 
2 - Literature review 

Several researches have been done in order to determine the optimal capacity of warehouses. For 
example, Ashayeri and Gelders (1985), discussed the topic in detail and suggested that for determining 
the optimal warehousing system, it is desirable to combine the analytic and simulation methods. Cormier 
and Gunn (1992), provided a comprehensive literature review on the warehousing and related 
optimization models. The proposed models for determining the optimal capacity of warehouses were 
basically aiming at optimizing the total costs as well as the customer service levels during the planning 
time horizon. In such models, the location of warehouse is assumed to be pre-specified but the company 
must make a decision for the optimal capacity in the case of a completely seasonal demand. If the 
capacity of considered private warehouse is not enough, the company can rent a public warehouse to 
supply the additional required capacity. 

The dynamic version of optimal warehouse capacity (OWC) models as an extension of the plant capacity 
models was considered in Manne and Veinott (1967). Luss (1982), presented a review on the capacity 
expansion models of warehouses. Ballou (1985) developed a method to simultaneously use of the public and 
private warehouses with maximal savings. Hung and Fisk (1984), formulated a novel model for the OWC 
problem under both the static and dynamic demands. In the static case, the capacity may not be expanded in 
the future but in the dynamic one, it is expansible if the required personnel and equipments are available. By 
reviewing the OWC models, Cormier and Gunn (1996), proposed a model for using both private and public 
warehouses under the fixed demands. They concluded that when the private warehouse capacity is very 
limited, the public warehouse is useful. 

White and Francis (1971), studied the OWC problem with both the deterministic and probabilistic 
demand conditions and proposed a solution method based on the linear programming, duality theory and 
network flow problem. They considered the warehouse construction costs, transportation costs and 
storage costs in the public warehouse. Rao and Rao (1998), developed an OWC model under the 
seasonal demand considering the time varying costs, economics of scale in the capital expenditure, 
and concave costs. By presenting a structure for the optimal solution, they claimed that the static OWC 
problem and its extensions can simply be solved with no need for the linear programming procedures. 
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Furthermore, they solved the dynamic OWC problem with concave costs using the network flow and 
dynamic programming methods. Goh et al (2001) presented a model to minimize the total cost of 
ordering, inventory holding and warehousing. Petinis et al (2005) solved a multi-product warehouse 
capacity problem in order to minimize the ordering and inventory costs using the quadratic programming. 
Gill (2009), presented a linear programming model for determining the amount of products in the public 
and private warehouses. 

Note worthily, there have been few researches which address the OWC problem so that Ashayeri and 
Gelders (1985), Rowley (2000), and Rouwenhorst et al. (2000) confirmed the lack of sufficient researches 
in this area. Baker and Canessa (2009) reviewed the studies from 1973 and concluded that warehouses 
and their optimal capacity have not been studied sufficiently and the lack of scientific researches in this 
field is recognizable. 

There have been many works applied the queuing models for the production environments; but, most 
of them address the inventory control, determination of the optimal inventory, production line balancing 
and operation sequencing. For example, Ke and Lin (2006) and Kumar (2012) studied the queuing system 
with unreliable server whose arrival rate, service rate of customers, breakdown rate and repair rate of 
server were considered to be fuzzy. Barak and Fallahnezhad (2012) studied two fuzzy queuing models of 
M/M/1 and M/E2/1 under the assumption that the arrival and service rates as well as the system costs 
were fuzzy parameters. They compared two practical systems to study the different conditions of 
operator's allocation in the queuing systems. 

To the best of our knowledge, the queuing theory has not been used to model the OWC problem till 
now. Accordingly, this article aims at presenting a fuzzy queuing model for the OWC problem to 
determine the optimal private warehouse capacity. At first, a queuing model is proposed for the 
warehouse and its related components. Then, the total cost function for the different capacities of private 
and public warehouses is calculated. Due to the involved uncertainty, some of the cost parameters are 
assumed to be triangular fuzzy numbers; therefore, the total cost function will be characterized by the 
fuzzy mathematics. Afterward, using the fuzzy programming approach, the minimum of total fuzzy cost 
function is calculated to determine the corresponding optimal capacities. Finally, three numerical 
examples of warehouses in various production environments are solved and analyzed. 
For warehouse capacity and management see Ross (2015) and  Friemann, Rippel,  and  Schönsleben 
(2014). 

 
3 - Proposed model 

In this section, the queuing model for the OWC problem is presented. After completing the production 
process, final products get out the production site and enter into the warehouse. The customers’ demands 
are then supplied from the warehouse inventory. To propose a queue model for the final warehouse, it is 
necessary to adapt the warehouse system with a queuing system. So we have: 

- Queuing system is the warehouse system. 
- Queuing system’s customer are the final products. 
- Customers’ arrival rate to queue is the product departure rate from production site, denoted as 𝜆𝜆. 
- Service rate of queuing system to the customers is the products’ demand rate denoted as 𝜇𝜇. 

 
3–1- Assumptions and notations 
 

- The manufacturer produces only a single product. 
- If the inventory of final product is less than the private warehouse capacity, all the products will be 

stored in the private warehouse with the storage cost of ℎ1 units per cycle. 
- If the inventory of final product is more than the private warehouse capacity, the excess products 

should be stored in one or more external (public) warehouses with the storage cost more than ℎ1. 
𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚: Maximum space allocated for constructing the private warehouse. 
𝐵𝐵𝑚𝑚𝑚𝑚𝑚𝑚: Maximum budget allocated for constructing the private warehouse. 
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a: Required space to store one unit of the product. 
b: Per unit capital investment for constructing the private warehouse. 
𝑘𝑘: Capacity of the private warehouse. 
ℎ1: Storage cost in private warehouse per unit per cycle time. 
ℎ2: Storage cost in external (public) warehouse per unit per cycle time. 
𝑛𝑛: Number of customers (final product) in the queuing system (warehouse). 
𝜋𝜋𝑛𝑛: Probability of existing n customers (final product) in the queuing system (warehouse). 
𝜆𝜆: Customers’ arrival rate at queuing system (output rate of final product into warehouse system). 
𝜇𝜇: Service rate of queuing system to customers (demand rate of final product from warehouse system). 

Based on the concepts of finite capacity queuing models, products enter in the private and public 
warehouses by the rate of 𝜆𝜆�1 − 𝜋𝜋𝑘𝑘� and 𝜆𝜆𝜋𝜋𝑘𝑘, respectively. As denoted before, 𝜋𝜋𝑘𝑘 is the probability of 
existing k units in the private warehouse. Fig. 1 shows the above descriptions schematically. The aim is to 
optimize the private warehouse capacity (𝑘𝑘∗). 
 

 
Fig. 1. Arrival rate of final products to public and private warehouses. 

 
 
3-2- Mathematical model 
 

Objective function (1) aims at minimizing the total costs including two types of cost due to the 
violation of private warehouse capacity from its optimal value. In fact, the total costs of constructing a 
warehouse with capacity of k are equal to sum of those two types of cost. 

MIN𝐶𝐶𝑇𝑇 = � 𝑖𝑖.(1+𝑖𝑖)
𝑁𝑁

(1+𝑖𝑖)𝑁𝑁−1
� .∑ (𝑘𝑘 − 𝑛𝑛).𝜋𝜋𝑛𝑛.𝑏𝑏𝑘𝑘

𝑛𝑛=0 + ∑ (𝑛𝑛 − 𝑘𝑘).𝜋𝜋𝑛𝑛. (ℎ2−ℎ1)∞
𝑛𝑛=𝑘𝑘+1   (1) 

s.t. 
𝑎𝑎.𝑘𝑘 ≤ 𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚  (2) 
𝑏𝑏.𝑘𝑘 ≤ 𝐵𝐵𝑚𝑚𝑚𝑚𝑚𝑚  (3) 

Constraints (2) and (3) ensure no violation of the space and budget limitations. 
The first term in the objective function (1) is the cost of unused capacity when constructing a private 

warehouse with an excess capacity compared to the optimal size (i.e., 𝑘𝑘 > 𝑘𝑘∗).The cost is referred to as 
cost of excess capacity (CEC) as shown in the following equation: 

𝐶𝐶𝐸𝐸𝐸𝐸 = ∑ (𝑘𝑘 − 𝑛𝑛).𝜋𝜋𝑛𝑛. 𝑏𝑏𝑘𝑘
𝑛𝑛=0    (4) 

The second term in the objective function (1) is the cost of capacity lacks when constructing a private 
warehouse with an inadequate compared to the optimal size (i.e., 𝑘𝑘∗ > 𝑘𝑘). In fact, if a warehouse with 

http://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=4&ved=0CEcQFjAD&url=http%3A%2F%2Fwww.sciencedirect.com%2Fscience%2Farticle%2Fpii%2FS0165011408002844&ei=tiZtU4XHCOiV0AWuiYCQDw&usg=AFQjCNF_ijnEabqZn7MAhc5fRn56W1ADDw&sig2=KQn2EMicYLOU2iByfgAgSw&bvm=bv.66330100,d.d2k
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less than optimal capacity is constructed, the company will be forced to turn to the public warehouses and 
pay more money (i.e., ℎ2−ℎ1) per unit of final products not stored in the private warehouse. The cost is 
referred to as the cost of the lack of capacity (CLC) as shown in the following equation: 

𝐶𝐶𝐿𝐿𝐿𝐿 = ∑ (𝑛𝑛 − 𝑘𝑘).𝜋𝜋𝑛𝑛. (ℎ2 − ℎ1)∞
𝑛𝑛=𝑘𝑘+1    (5) 

The two types of cost behave in an opposite manner; by increasing the private warehouse capacity, CEC is 
increased while CLC is decreased and vice versa. CEC is imposed once at the beginning of planning horizon if 
the company constructs an excess warehouse capacity. On the other hands, CLC, if exists, is paid in each 
cycle during the planning horizon. To be able to combine the two costs, CEC should be prorated over the 
cycles of planning horizon considering the time value of money. Therefore, it is multiplied by the capital 
recovery factor (CRF) denoted as follows: 

CRF=(𝐴𝐴
𝑃𝑃

, 𝑖𝑖,𝑁𝑁)=[ 𝑖𝑖.(1+𝑖𝑖)
𝑁𝑁

(1+𝑖𝑖)𝑁𝑁−1
] (6) 

In which, i and N are the interest rate and the number of cycles during the planning horizon, respectively. 
Notably, objective function (1) is the sum of CLC and CEC multiplied by CRF. 
 
3-3- Fuzzy model 
 

As known, in the long run, parameters 𝑖𝑖, ℎ1 and ℎ2 are vague and imprecise; therefore, their exact 
estimates cannot be provided. Accordingly, those parameters are introduced into the model through the 
triangular fuzzy estimates, based on the experts' opinion and experiences. Note worthily, the subscripts L, 
M and R indicate the pessimistic, the possible and the optimistic prominent values of the corresponding 
fuzzy triangular estimate, respectively. 
ℎ̃1 = (ℎ1𝐿𝐿 ,ℎ1𝑀𝑀,ℎ1𝑅𝑅)  
ℎ̃2 = (ℎ2𝐿𝐿 ,ℎ2𝑀𝑀,ℎ2𝑅𝑅) 
𝚤𝚤=̃(𝑖𝑖𝐿𝐿 , 𝑖𝑖𝑀𝑀 , 𝑖𝑖𝑅𝑅) 

Therefore, the fuzzy objective function (1) is as follows: 
MIN𝐶̃𝐶𝑇𝑇 = � 𝚤̃𝚤.(1+𝚤̃𝚤)

𝑁𝑁

(1+𝚤̃𝚤)𝑁𝑁−1
� .∑ (𝑘𝑘 − 𝑛𝑛).𝜋𝜋𝑛𝑛.𝑏𝑏𝑘𝑘

𝑛𝑛=0 + ∑ (𝑛𝑛 − 𝑘𝑘).𝜋𝜋𝑛𝑛. (ℎ�2−ℎ�1)∞
𝑛𝑛=𝑘𝑘+1   (7) 

Notably, the proposed model is very general; it may be used to determine the optimal private 
warehouse capacity in different companies with different conditions of production and distribution 
systems. At first, an appropriate queuing system must be established in accordance with the specific 
conditions (e.g., rate and function of demand and production, single or group based ordering and delivery 
of products) of each company. Afterwards, 𝜋𝜋𝑘𝑘 should be calculated for the queuing system using the 
Markov chains and equilibrium equations. Finally, the optimal warehouse capacity is determined by 
minimizing the total cost function (𝐶̃𝐶𝑇𝑇) for various warehouse capacities (k). 
 
4. Proposed solution method 
 

We apply Lai and Hwang (1992) to convert objective function (7) to three crisp equivalent objective 
functions. To do so, consider the following model with its fuzzy objective function: 
Max 𝑍𝑍� = 𝐶̃𝐶𝑋𝑋 
s.t.  AX ≤b; 
X ≥ 0   

(8) 

If coefficients of the above objective function are triangular fuzzy estimates such as 𝐶̃𝐶= (𝐶𝐶𝐿𝐿 ,𝐶𝐶𝑀𝑀 ,𝐶𝐶𝑅𝑅), 
we have: 
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Max 𝑍𝑍� = ∑ (𝑐𝑐𝑗𝑗𝐿𝐿 , 𝑐𝑐𝑗𝑗𝑀𝑀 , 𝑐𝑐𝑗𝑗𝑅𝑅)𝑛𝑛
𝑗𝑗=1 .𝑥𝑥𝑗𝑗 

s.t.∑ 𝑎𝑎𝑖𝑖𝑖𝑖𝑛𝑛
𝑗𝑗=1 . 𝑥𝑥𝑗𝑗≤bi=1,2,…,m;   

𝑥𝑥𝑗𝑗≥ 0  
(9) 

Therefore, 𝑍𝑍� would be a triangular fuzzy variable such as 𝑍𝑍� = (𝐶𝐶𝐿𝐿 ,𝐶𝐶𝑀𝑀 ,𝐶𝐶𝑅𝑅)𝑋𝑋. According to the 
method of Li and Huang [20], in order to maximize objective function (9), one must simultaneously 
maximize (𝐶𝐶𝑀𝑀)𝑋𝑋, minimize [(𝐶𝐶𝑀𝑀 −  𝐶𝐶𝐿𝐿)𝑋𝑋] and maximize [(𝐶𝐶𝑅𝑅 −  𝐶𝐶𝑀𝑀)𝑋𝑋]. So, mathematical model (9) is 
transformed to the following equivalent three-objective model: 
Min (Z1) = (𝐶𝐶𝑀𝑀 −  𝐶𝐶𝐿𝐿)𝑋𝑋  
Max (Z2) = 𝐶𝐶𝑀𝑀𝑋𝑋 
Max (Z3) = (𝐶𝐶𝑅𝑅 −  𝐶𝐶𝑀𝑀)𝑋𝑋 
s.t. AX ≤b;     X ≥ 0 

(10) 

To obtain the efficient solution, we employ the aggregate function proposed by Torabi and Hassini 
(2008) which establish a reasonable trade-off between the maximization of minimum achievement 
degrees of three objectives and the maximization of a weighted sum of the achievement degrees of three 
objectives. To determine a fuzzy achievement function for objective function Zi, at first, the 
corresponding best and worst objective function value is obtained by optimizing the following models: 

𝑍𝑍𝑖𝑖𝑙𝑙 = Min𝑍𝑍𝑖𝑖 
s.t. AX ≤b;     X ≥ 0                                                                                                                                                                (11) 

𝑍𝑍𝑖𝑖𝑢𝑢 = Max 𝑍𝑍𝑖𝑖 
s.t. AX ≤b;     X ≥ 0  (12) 

Afterward, the linear achievement degree for minimizing Z1 is calculated as equation (13) and shown 
in Fig. 2(a). Also, the linear achievement degree for maximizing Zi (i=2,3) is calculated as equation (14) 
and shown in Fig. 2(b). 

𝜇𝜇𝑍𝑍1(𝑍𝑍1) = �

1                            𝑍𝑍1 ≤ 𝑍𝑍1𝑙𝑙
𝑍𝑍1𝑢𝑢−Z1
𝑍𝑍1
𝑢𝑢−𝑍𝑍1

𝑙𝑙 ;         𝑍𝑍1𝑙𝑙 ≤ 𝑍𝑍1 ≤ 𝑍𝑍1𝑢𝑢

0;                           𝑍𝑍1 ≥ 𝑍𝑍1𝑢𝑢
  (13) 

𝜇𝜇𝑍𝑍𝑖𝑖(𝑍𝑍𝑖𝑖) =

⎩
⎨

⎧ 0                             𝑍𝑍𝑖𝑖 ≤ 𝑍𝑍𝑖𝑖𝑙𝑙

𝑍𝑍𝑖𝑖−𝑍𝑍𝑖𝑖
𝑙𝑙

𝑍𝑍𝑖𝑖
𝑢𝑢−𝑍𝑍𝑖𝑖

𝑙𝑙 ;         𝑍𝑍𝑖𝑖𝑙𝑙 ≤ 𝑍𝑍𝑖𝑖 ≤ 𝑍𝑍𝑖𝑖𝑢𝑢

1;                            𝑍𝑍𝑖𝑖 ≥ 𝑍𝑍𝑖𝑖𝑢𝑢
; i=2,3 (14) 

 

 
 
2(a). Z1                                                      2(b). Z2 (Z3)                               

Fig. 2. Linear achievement functions. 
 

Accordingly, the model (10) might be converted to the following single objective problem using the 
following aggregate function. 
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Max     Z=𝛾𝛾𝛾𝛾 + (1 − 𝛾𝛾)∑ 𝜃𝜃𝑖𝑖𝜇𝜇𝑧𝑧𝑖𝑖(𝑧𝑧𝑖𝑖)𝑖𝑖  
s.t.   𝜇𝜇 ≤ 𝜇𝜇𝑧𝑧𝑖𝑖(𝑧𝑧𝑖𝑖);    𝑖𝑖 = 1,2,3 
𝛾𝛾 and 𝜃𝜃𝑖𝑖  ∈ [0, 1], 

(15) 

In which, 𝜇𝜇𝑧𝑧𝑖𝑖(𝑧𝑧𝑖𝑖) and 𝜇𝜇 = min𝑖𝑖 {𝜇𝜇𝑧𝑧𝑖𝑖(𝑧𝑧𝑖𝑖)} denote the achievement degree of Zi and the minimum 
achievement degrees of the objective functions, respectively. Moreover, 𝛾𝛾 and 𝜃𝜃𝑖𝑖 indicate the coefficient 
of compensation and the relative importance of Zi, respectively. Parameter 𝜃𝜃𝑖𝑖 is determined by the 
decision maker based on her/his preferences such that ∑ 𝜃𝜃𝑖𝑖 = 1,   𝑖𝑖 𝜃𝜃𝑖𝑖 >0. The above aggregate function 
thus provides a convex combination of the minimum and weighted sum of 𝜇𝜇𝑧𝑧𝑖𝑖(𝑧𝑧𝑖𝑖) values to ensure 
yielding an adjustably balanced compromise solution. A higher value for 𝛾𝛾 means that a more attention is 
paid to obtain a higher minimum for the achievement degrees of objectives (𝜇𝜇) and accordingly more 
balanced compromise solutions. On the contrary, a lower value for 𝛾𝛾 means that a more attention is paid 
to obtain a solution with high achievement degree for some objectives with higher relative importance 
yielding unbalanced compromise solutions. 

For applying the above method, we present the minimization of the objective function (7) as a 
maximization objective function (16). 

Max (−𝑍𝑍�) = −� 𝚤̃𝚤.(1+𝚤̃𝚤)
𝑁𝑁

(1+𝚤̃𝚤)𝑁𝑁−1
� . 𝑏𝑏.∑ (𝑘𝑘 − 𝑛𝑛).𝜋𝜋𝑛𝑛𝑘𝑘

𝑛𝑛=0 − (ℎ̃2 − ℎ̃1).∑ (𝑛𝑛 − 𝑘𝑘).𝜋𝜋𝑛𝑛
∞
𝑛𝑛=𝑘𝑘+1   (16) 

Then, the following three-objective model is provided as the equivalent crisp version of our fuzzy 
model: 

Min (-Z1)= −�(𝑖𝑖𝑀𝑀−𝑖𝑖𝐿𝐿).�1+(𝑖𝑖𝑀𝑀−𝑖𝑖𝐿𝐿)�
𝑁𝑁

(1+(𝑖𝑖𝑀𝑀−𝑖𝑖𝐿𝐿))𝑁𝑁−1
� . 𝑏𝑏.∑ (𝑘𝑘 − 𝑛𝑛).𝜋𝜋𝑛𝑛𝑘𝑘

𝑛𝑛=0 − ((ℎ2𝑀𝑀 − ℎ2𝐿𝐿) − (ℎ1𝑀𝑀 −

ℎ1𝐿𝐿)).∑ (𝑛𝑛 − 𝑘𝑘).𝜋𝜋𝑛𝑛
∞
𝑛𝑛=𝑘𝑘+1  

 

Max (-Z2)=−�
𝑖𝑖𝑀𝑀 .�1+𝑖𝑖𝑀𝑀�

𝑁𝑁

(1+𝑖𝑖𝑀𝑀)𝑁𝑁−1
� . 𝑏𝑏.∑ (𝑘𝑘 − 𝑛𝑛).𝜋𝜋𝑛𝑛𝑘𝑘

𝑛𝑛=0 − (ℎ2𝑀𝑀 − ℎ1𝑀𝑀).∑ (𝑛𝑛 − 𝑘𝑘).𝜋𝜋𝑛𝑛
∞
𝑛𝑛=𝑘𝑘+1  

 

Max (-Z3)= −�(𝑖𝑖𝑅𝑅−𝑖𝑖𝑀𝑀).�1+(𝑖𝑖𝑅𝑅−𝑖𝑖𝑀𝑀)�
𝑁𝑁

(1+(𝑖𝑖𝑅𝑅−𝑖𝑖𝑀𝑀))𝑁𝑁−1
� . 𝑏𝑏.∑ (𝑘𝑘 − 𝑛𝑛).𝜋𝜋𝑛𝑛𝑘𝑘

𝑛𝑛=0 − ((ℎ2𝑅𝑅 − ℎ2𝑀𝑀) − (ℎ1𝑅𝑅 −

ℎ1𝑀𝑀)).∑ (𝑛𝑛 − 𝑘𝑘).𝜋𝜋𝑛𝑛
∞
𝑛𝑛=𝑘𝑘+1  

s.t. 
𝑎𝑎.𝑘𝑘 ≤ 𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚 
𝑏𝑏.𝑘𝑘 ≤ 𝐵𝐵𝑚𝑚𝑚𝑚𝑚𝑚  

 

 
After determining 𝑍𝑍𝑖𝑖𝑙𝑙; (𝑖𝑖 = 1,2,3) and 𝑍𝑍𝑖𝑖𝑢𝑢; (i = 1,2,3) according to equations (11) and (12); also, 

calculating 𝜇𝜇𝑍𝑍𝑖𝑖(𝑍𝑍𝑖𝑖); (𝑖𝑖 = 1,2,3) based on equations (13) and (14), we present the following equivalent 
single-objective model of the multi-objective model (17):  

 
MaxZ=  γ𝜇𝜇 + (1 − 𝛾𝛾)∑ 𝜃𝜃𝑖𝑖𝜇𝜇𝑧𝑧𝑖𝑖(𝑧𝑧𝑖𝑖)𝑖𝑖  
s.t. 
 

𝜇𝜇 ≤  

𝑍𝑍1𝑢𝑢+�
(𝑖𝑖𝑀𝑀−𝑖𝑖𝐿𝐿).�1+(𝑖𝑖𝑀𝑀−𝑖𝑖𝐿𝐿)�

𝑁𝑁

�1+(𝑖𝑖𝑀𝑀−𝑖𝑖𝐿𝐿)�
𝑁𝑁
−1

�.𝑏𝑏.∑ (𝑘𝑘−𝑛𝑛).𝜋𝜋𝑛𝑛𝑘𝑘
𝑛𝑛=0 +�(ℎ2𝑀𝑀−ℎ2𝐿𝐿)−(ℎ1𝑀𝑀−ℎ1𝐿𝐿)�.∑ (𝑛𝑛−𝑘𝑘).𝜋𝜋𝑛𝑛

∞
𝑛𝑛=𝑘𝑘+1

𝑍𝑍1
𝑢𝑢−𝑍𝑍1

𝑙𝑙  
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The above model was implemented in MATLAB to optimize the achievement degrees of the three 
objective functions. Fig. 3 shows the process of determining the optimal warehouse capacity using the 
proposed method. 

 
Fig. 3. The process of optimizing private warehouse capacity using the proposed method. 

 
 
 
 

𝜇𝜇 ≤ 

−�
𝑖𝑖𝑀𝑀.�1+𝑖𝑖𝑀𝑀�

𝑁𝑁

�1+𝑖𝑖𝑀𝑀�
𝑁𝑁
−1
�.𝑏𝑏.∑ (𝑘𝑘−𝑛𝑛).𝜋𝜋𝑛𝑛𝑘𝑘

𝑛𝑛=0 −�ℎ2𝑀𝑀−ℎ1𝑀𝑀�.∑ (𝑛𝑛−𝑘𝑘).𝜋𝜋𝑛𝑛
∞
𝑛𝑛=𝑘𝑘+1 −𝑍𝑍2𝑙𝑙

𝑍𝑍2
𝑢𝑢−𝑍𝑍2

𝑙𝑙  

𝜇𝜇≤ 

−�
(𝑖𝑖𝑅𝑅−𝑖𝑖𝑀𝑀).�1+(𝑖𝑖𝑅𝑅−𝑖𝑖𝑀𝑀)�

𝑁𝑁

�1+(𝑖𝑖𝑅𝑅−𝑖𝑖𝑀𝑀)�
𝑁𝑁
−1

�.𝑏𝑏.∑ (𝑘𝑘−𝑛𝑛).𝜋𝜋𝑛𝑛𝑘𝑘
𝑛𝑛=0 −�(ℎ2𝑅𝑅−ℎ2𝑀𝑀)−(ℎ1𝑅𝑅−ℎ1𝑀𝑀)�.∑ (𝑛𝑛−𝑘𝑘).𝜋𝜋𝑛𝑛

∞
𝑛𝑛=𝑘𝑘+1 −𝑍𝑍3𝑙𝑙

𝑍𝑍3
𝑢𝑢−𝑍𝑍3

𝑙𝑙  
𝛾𝛾 and 𝜃𝜃𝑖𝑖 ∈ [0, 1], 

(18) 
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5- Analysis of computational results 
 

In this section, some examples of production systems with various conditions are studied and analyzed 
using the proposed method. All the numerical examples were coded in MATLAB. 
 
5-1- M/M/1 queuing model 
 

First, consider an M/M/1 queue model. It is assumed that the average departure rate of final products 
to the private warehouse is λ. The time it takes to receive a single order from the customers is an 
exponential random variable with the rate 𝜇𝜇. In fact, all the customers place the orders in a one-by-one 
manner. Consequently, 𝜋𝜋𝑛𝑛 is calculated by the following equation: 

𝜋𝜋𝑛𝑛 = 𝑃𝑃𝑛𝑛(1− 𝑃𝑃);                𝑃𝑃 =  
𝜆𝜆
𝜇𝜇

  (19) 

As a numerical instance, we assume that the departure of final products to private warehouse is a 
Poisson process with rate of 99 units per month. Also, the time it takes to receive a single order from the 
customers is supposed to be an exponential variable with rate of 0.01 per month. Other data is given in 
Table 1. Consequently, optimal capacity of private warehouse would be equal to 173. It is worth noting 
that in MATLAB code, infinite upper bound of second sigma in the numerator on the right-hind side of 
constraints in model (18) should be quantified so that the addition of probabilities equals almost one. We 
set upper bound to 1000 so that: ∑ 𝜋𝜋𝑛𝑛 = 0.9999571000

𝑛𝑛=0 . 
 

Table 1. Example data. 
Parameters Values 

b 300 
a 1.5 
N 60 

𝒊̃𝒊 ( 1.5%, 2%, 4% ) 

𝒉𝒉�𝟏𝟏 (20,30,40) 
𝒉𝒉�𝟐𝟐 ( 60,70,80 ) 
Smax 400 
Bmax 75000 

 
5-2- M/M/m queue model 
 

This example is applied when the end consumers can satisfy their demands through m sale agents. 
Therefore, the sale agents are considered as servers. For simplicity, it is assumed that the average demand 
rates of those agents are the same; i.e., 𝜇𝜇1 = 𝜇𝜇2 = 𝜇𝜇3 = ⋯ = 𝜇𝜇𝑚𝑚.𝜋𝜋𝑛𝑛 in such a model, as an M/M/m queue 
model, is calculated as follows: 

𝜋𝜋  𝑛𝑛 = �
�𝜆𝜆
𝜇𝜇
�
𝑛𝑛 𝜋𝜋0
𝑛𝑛!

               ;                             𝑛𝑛 < 𝑚𝑚

�𝜆𝜆
𝜇𝜇
�
𝑛𝑛 𝜋𝜋0𝑚𝑚

𝑚𝑚−𝑛𝑛

𝑚𝑚!
  ;                             𝑛𝑛 ≥ 𝑚𝑚

  

𝜋𝜋0 = �1 + ∑ �𝜆𝜆
𝜇𝜇
�
𝑛𝑛 1
𝑛𝑛!

𝑚𝑚−1
𝑛𝑛=1 + ∑ �𝜆𝜆

𝜇𝜇
�
𝑛𝑛 1
𝑚𝑚!

∞
𝑛𝑛=𝑚𝑚 ∗ 1

𝑚𝑚𝑛𝑛−𝑚𝑚�
−1

  
As a numerical experiment, the data of M/M/1 numerical example is used to except that the final 

products are delivered to sale agents and not to the consumers. It is assumed that the company has two 
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sale agents and the time it takes to receive an order for products from each agent is an exponential random 
variable with the mean of 0.020 per month. 
1
𝜇𝜇1

= 1
𝜇𝜇2

= 0.02;     𝜇𝜇1 = 𝜇𝜇2 = 𝜇𝜇 = 50   

 𝜆𝜆=99;                b= 300;                P= 𝜆𝜆
𝑚𝑚𝑚𝑚

= 0.99;   𝜆𝜆
𝜇𝜇

= 1.98;                   𝑁𝑁=60  

𝜋𝜋0 = 1−𝑃𝑃
1+𝑃𝑃

= 1−0.99
1+0.99

= 0.01
1.99

= 0.005  

𝜋𝜋  𝑛𝑛 = �
(1.98)𝑛𝑛 𝜋𝜋0

𝑛𝑛!
= (1.98)𝑛𝑛 0.005

𝑛𝑛!
                                𝑛𝑛 < 2

(1.98)𝑛𝑛 𝜋𝜋02
2−𝑛𝑛

2!
= (1.98)𝑛𝑛 0.005× 22−𝑛𝑛

2!
      𝑛𝑛 ≥ 2

  

Using the developed MATLAB code, the optimal solution (i.e., the optimal capacity of private 
warehouse) is k*=73. 

A question which might be addressed is why the two examples with almost similar parameters have 
different results in the different optimal capacities for the private warehouse? This could be explained by the 
different input data precision. In fact, although the demand rates of final customer in both cases are equal 
but in the second example (i.e., sales agents), the more detailed and separated data are used instead of the 
aggregate data (as in case 1) with lots of error. In the other words, with more precise data, a better planning 
and more precise calculation of warehouse capacity is possible. 
 
5-3- 𝐌𝐌/𝐌𝐌[𝐫𝐫]/1 queue model 
 

The main difference between the M/M/1 queuing model and the model described in this section is that 
the customer’s demand is a constant amount such as r units, based on the concept of the economic order 
quantity considering ordering, transportation and shipment costs. In fact, the departure rate of final 
products from the private warehouse is r units. In this model, 𝜋𝜋0 and 𝜋𝜋𝑛𝑛 are obtained as follows: 

𝜋𝜋𝑛𝑛 = �
1−𝑥𝑥0𝑛𝑛+1

𝑟𝑟
                1 ≤ 𝑛𝑛 < 𝑟𝑟

𝜋𝜋0
𝜆𝜆
𝜇𝜇
𝑥𝑥0𝑛𝑛−𝑟𝑟                   𝑛𝑛 ≥ 𝑟𝑟

  

𝜋𝜋0 = 1−𝑥𝑥0
𝑟𝑟 

  
In which 0 ≤ 𝑥𝑥0 ≤ 1 is a unique root of the following equation: 
𝜇𝜇𝑥𝑥𝑟𝑟+1 − (𝜆𝜆 + 𝜇𝜇)𝑥𝑥 + 𝜆𝜆 = 0  

The data are similar to the previous ones except that the customers each time place an order for two 
products (r=2); Also, the demand rate of customers is 50 times in a month. To determine 𝜋𝜋0 and 𝜋𝜋𝑛𝑛, the 
following equation must be solved. 
𝜇𝜇𝑥𝑥𝑟𝑟+1 − (𝜆𝜆 + 𝜇𝜇)𝑥𝑥 + 𝜆𝜆 = 0   
50𝑥𝑥3 − (149)𝑥𝑥 + 99 = 0  
𝑥𝑥 =  −1.993  ;    0.993;1⟹𝑥𝑥0 =  0.993 

𝜋𝜋𝑛𝑛 = �
1−𝑥𝑥0𝑛𝑛+1

𝑟𝑟
=  1−0.993𝑛𝑛+1

2
                                 1 ≤ 𝑛𝑛 < 2

𝜋𝜋0
𝜆𝜆
𝜇𝜇
𝑥𝑥0𝑛𝑛−𝑟𝑟 = 0.0035 × 99

50
× 0.993𝑛𝑛−2        𝑛𝑛 ≥ 2

  

𝜋𝜋0 = 1−𝑥𝑥0
𝑟𝑟 

= 1− 0.993
2 

= 0.0035  
The optimal capacity of private warehouse in this example is k*=247 to minimize the warehouse-

related costs. In this example, the demand rate is assumed to be 50 times per month and considering that 
each time 2 products are demanded, the demand rate is almost similar to the M/M/1 model (i.e., 100 units 
per month). However, why are the optimal warehouse capacities in the two cases different? The answer is 
that if there are less than r unit demands for a product, no products are delivered until the demand reaches 
r units. This means that we need more warehouse capacity in M/M[r]/1 case. 
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6- Concluding remarks 
 

In this paper, the well-known problem of determining the optimal warehouse capacity is addressed. At 
first, the departure of final products to the warehouse and the arrival of customer’s orders were 
formulated as a queuing system. Then, considering the limitations on the available budget and space, a 
fuzzy programming model was developed to optimize the private warehouse capacity. The proposed 
fuzzy model was converted to an equivalent crisp version through two recent well-known methods in the 
literature. The resulted solution indicated that the proposed method, unlike the existing forecasting 
methods which are only suitable for some special cases, may easily be extended for the different 
conditions of production environments. Notably, there are some complex conditions in which the queuing 
models are not singly applicable. For such cases, it is suggested to use a combination of the queuing and 
simulation methods. The extension of the proposed model for the case of multiple product companies may 
be considered as a direction for the further work. 
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