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Abstract 
In portfolio selection models, uncertainty plays an important role. The parameter’s 

uncertainty leads to getting away from optimal solution so it is needed to consider 
that in models. In this paper we presented a two-stage robust model that in first 

stage determines the desired percentage of investment in each industrial group by 

using return and risk measures from different industries. One reason of this work is 
that general conditions of various industries is different and according to the 

concepts of fundamental analysis should be chosen good groups before selection 

assets for investment. Another reason is that the identification of several good 

industries helps to diversify between several groups and reduce the risk of 
investment. In the second stage of the model, considering assets return, systematic 

risk, non-systematic risk and also first stage’s result, amount of investment in each 

asset is determined. In both stages of the model there are uncertain parameters. To 
deal with uncertainty, a robust approach has been used. Since the model is a multi-

objective problem, goal programming method used to solve it. The model was 

tested on actual data. The results showed that the portfolio formed by this model 

can be well-established in the conditions of high uncertainty and obtain higher 
returns. 

Keywords: Portfolio selection, goal programming, robust Approach, parameter’s 

uncertainty 

1- Introduction 
   The issue of portfolio selection is one of the most important issues in the financial field. Various models 

and methods have been presented in this regard by various scholars. In the world of investment, investors 

want to get the highest expected returns from portfolios. The expected rate of return depends on the level 

of investors risk aversion. Portfolio selection and paper money analysis are always a crucial part of the 
decision. Generally speaking, only the conditions of the asset itself are considered in portfolio models. In 

these models, using parameters such as rate of return and variance, some assets are selected for create 
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portfolios. These parameters are derived from historical data. But in the fundamental analysis concepts, it 
is necessary to analyze the general economic conditions of the country and various groups of stock 

exchanges before choosing assets. Because the conditions of the assets in terms of returns and risks 

depend on the industrial conditions they belong to. 

   The problem that matters is the uncertainty in the main parameters of these models. This uncertainty 
may be due to prediction errors or measurement errors. Uncertainty in economic plays an important role 

in financial decision-making, especially in portfolio selection issues, so it needs to develop techniques to 

consider this uncertainty in decision making and select a portfolio such that not to be highly sensitive to 
these uncertainties. Classical methods for considering uncertainty of parameters are sensitivity analysis 

and stochastic optimization. A robust approach is a good alternative to the previous methods because of 

this approach will easily give us the answer that is both feasible and optimal. More advantages of this 
approach will describe in the following. 

   The two-stage model presented in this paper acts in this way: first it determines the optimal investment 

percentage considering the return and risk parameters of each industry or group. As a result, a percentage 

of budgets that is determined for a good industry in terms of risk and return for investment are not equal 
to percentage of a bad industry and the share of o good industry of the total budget is higher. In previous 

models there are no difference between groups and may allocate a large part of the capital into an 

industry. Then, in the second stage, considering the constraints gained from the first stage, it selects the 
superior assets and creates the portfolios. But the investment climate is very uncertain and turbulent, and 

the parameters of this model cannot be accurately predicted. In the term, the parameters are non-

deterministic; this uncertainty can affect the optimality and feasibility of the model. To solve this 
problem, a robust approach has been used, and with help of the method that provided by Bertsimas and 

sim (2003), the uncertainty of the parameters is considered in the model and the base model has become a 

robust model. In the robust approach, the best estimate of data is usually used in mathematical models, 

which are called nominal data. Data with uncertainty can be in constraints or objective function. 
Therefore, if the input data in the constraints take a value other than their nominal values, that constraint 

may be violated or the problem be unfeasible, and if the input data of the objective function are exited 

from their nominal value, the problem may also exit from the optimality or the optimal solution of the 
problem is not feasible any more. 

   In a robust optimization, solutions are produced under the term "robust response", which, in addition to 

preserving the optimality, also keep the problem feasible (Najafi and Ghahtarani, 2013). In the portfolio 

selection problem, some parameters have a non-deterministic nature, such as the expected returns of each 
asset or the systematic risk parameter, and the fluctuation of these coefficients in the portfolio selection 

model can also affect the answer to the problem and even its feasibility. 

   The rest of this paper is organized as follows: we will discuss the subject literature in Section 2 and then 
in Section 3, explain the two-stage basic model presented in this paper. Then, this model is converted to a 

robust model by using robust optimization approach. To test the robust model in Section 4, we will 

implement it on the actual data of the Tehran Stock Exchange, and a sensitivity analysis will be carried 
out on its parameters, also we will compare the results of the new model with a different robust model and 

in section 5 we present a conclusion of the paper and directions for further researches. 

 

2- Literature review 
   In the past, a lot of research has been done on portfolio selection models, and also many innovations 

have been conducted. One of the most important researches in this field is Markowitz (1952) and Sharp 
(1963) models. Markowitz presented the primary Portfolio model, which became the basis for modern 

portfolio theory. The main goal of this model is to optimally allocate wealth by considering the trade-off 

between risk and return. He was the first person who presented the concept of portfolio and the creation 
of diversity formally. After Markowitz, another person named Sharpe, with the aim of reducing the 

computation and estimation of the Markowitz model, presented a single-index model that linked the 

return of each security to the returns of the stock index (Sharp, 1963). In addition to these two models, 

numerous models have been presented so far in the selection of asset portfolios, such as the following: 
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Wang et al. (2002) introduced the problem of linear interval programming and its application in the 
selection of asset portfolios. Chiodi et al. (2003), Fang et al. (2006) presented a semi-absolute standard 

deviation model for portfolio selection, which is similar to previous models, except that transaction costs 

are subtracted from the objective function. Wu (2012) presented a model for selecting interval asset 

portfolios with liquidity constraints. Jong (2012) introduced a model for optimal selection method of 
creating interval asset portfolios based on a satisfactory index of interval inequality function. Zhang et al. 

(2013) presented a multi-period portfolio selection model using interval analysis. The problem of interval 

asset selection was introduced by Wu et al. (2013), and this model is the generalization of the Markowitz 
mean-variance model. Among other cases, Rastegar and rasti barzoki(2017) presented a multi criteria 

project portfolio selection model with considering structural hardness and correlation between projects, 

Kellerer et al. (2000), Mansini et al. (2003), Papahristodoulou and Dotzauer (2004) can be pointed out. 
All of the models that have been mentioned in the above researches are single-objective models for 

selecting portfolios. On the other hand, there are other models that consider more than one objective in 

choosing portfolios. One of the techniques that uses multi-objective models for optimization is the goal 

programming approach. This method was presented by Charnes in 1955. For the first time Lee and Lero 
(1973) used it in financial problems. Subsequently, in several papers, this approach was used to select 

portfolios, for example, Alexander and Resnick (1985), Bilbao et al. (2006), Wu et al. (2007), Li and Xu 

(2007), Marasovic and Babic (2011) have conducted several studies in this regard. 
   The main problem in these models is the lack of considering the uncertainty of the data in the selection 

of portfolios. One of the most important features of financial markets is uncertainty and the existence of 

uncontrollable variables totally influences the decision-making process of investors. 
   Classical methods for considering data uncertainty include sensitivity analysis and stochastic 

optimization. In sensitivity analysis, first, non-deterministic parameters are not considered. Then, after 

solving the problem, the efficiency of the answer is investigated using the sensitivity analysis. Although 

sensitivity analysis is a good tool for determining the efficiency rate of the response, it is not an 
appropriate solution for estimating the response which is robust against changes (Ghahtarani and Najafi, 

2013). Mathematically, stochastic optimization is a strong model, but it also has some problems, such that 

the estimation of the probability distribution function of the parameters is difficult, and even if the 
distribution function is known, calculating their probability is still difficult, and also the change of the 

parameters causes the disturbance of the convexity property and consequently, the complexity of the 

calculation of the problem increases. Therefore, appropriate approaches which address the problems of 

the previous methods are needed. The robust optimization approach is one of these approaches. 
   In a robust approach, we are looking for near-optimal solutions that have high chance to happen, which 

these solutions are called robust solutions (Ghahtarani and Najafi, 2013). Robust approaches that have 

been proposed by researchers so far have included Soyster’s robust solution (1973), Benthal and    
Nemirovski (2000) robust solution and Bertsimas and Sim (2003) robust solution.  

   The first step in this direction was paced by Soyster (1973) in the form of a linear programming model 

for producing a solution feasible for all data belonging to a convex set. The model gives solutions that, for 
the optimality of the nominal problem, are completely conservative and the robust solution of the 

objective function is much worse than the solution of the nominal problem in sensitivity analysis. 

    In order to overcome this problem, Ben-Tal and Nemirovski (2000) presented a robust model which 

was capable of controlling level of conservatism. A robust model derived from this approach is a 
nonlinear second-order conical problem, so it's not usable for the discrete optimization problem. Due to 

the fact that a linear model with the Ben-Tal and Nemirovski approach becomes a nonlinear model, the 

complexity of the problem is high. 
   To solve this problem, Bertsimas and Sim (2003) presented a new method for modeling the uncertainty 

of data which did not have problems of the previous approaches. In this approach, a parameter i  was 

defined which was responsible for adjusting the robustness level versus conservatism of the solution. 

Today, most linear optimization models using the robust methodology, implement this procedure. The 
most important feature of this method is that the robust counterpart of the linear problem remains linear, 
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as well as possible assurances for feasibility of the solutions can be presented. Also, in relation to 
conservatism of the robust solutions, it can be noted that this methodology has the ability to control the 

degree of robustness of the solutions. 

   Among the studies conducted in the area of applying robust optimization in the portfolio selection 

problem are the following: 
   Ben-Tal et al. (2000) using the Ben-Tal and Nemirovski approach, Goldfarb and Lyengar (2003) using 

the Ben-Tal and Nemirovski approach, Quaranta and Zaffaroni (2008) using the Soyster approach, Chen 

and Tan (2009) using the Bertsimas and Sim approach and Stochastic constraints, Zhu and Fukushima 
(2009) using all three approaches, Sadjadi et al. (2010) the Bertsimas and Sim approach, Kawas and 

Thiele (2011) using the Bertsimas and Sim approach, Zymler et al. (2011) using the Benthal and 

Nemirovski approach, Moon and Yao (2011) using the Bertsimas and Sim approach, Ling and Xu (2012) 
using the approach of Benthal and Nemirovski and the elliptic uncertainty, Ghahtarani and Najafi (2013), 

with the approach of Bertsimas and Sim, Pinar and Pac (2014), with the approach of Bertsimas and Sim, 

Pachamanova .et al (2017) used robust approach to manage pension fund  asset liability, Soyster and 

Murphy (2017) consider matrix uncertainty for robust linear programming. 
   In 2004, Kouchta offered a robust approach for goal programming models, in which the data uncertainty 

was considered  in the model by Bertsimas and Sim method. In 2013, Ghahtarani and Najafi presented a 

new model using kouchta’s (2004) model also Lee and Chesser (1980) model “which is a linear goal 
programming model that considers systemic risk and rate of return on portfolio selection", and the robust 

approach of Bertsimas and Sim. 

2-1- Robust optimization 
   Among the robust approaches, the Bertsimas and sim (2003) approach has advantages over other 
methods. Unlike the Soyester model, this method has the ability to control the level of conservatism and 

does not consider the model to be completely conservative, and also the robust counterpart of a linear 

problem remains linear in this way. Due to these advantages, this paper uses Bertsimas and sim method 
(2003) for a robust problem. To understand this model, consider the following linear programming 

problem: 

 

                                                                                     (1) 

 

   In this case, it is assumed that only the data of the matrix A are uncertain and C does not have 
uncertainty in the objective function. Because this is a maximization problem, we add the constraint 

0z c x   to the problem constraints. Consider the i-th row from matrix A. iJ is the set of uncertain 

coefficients in this row. Each input ,ij ia j J  is a symmetric random variable such that 

ˆ ˆ, ,ij i ij ij ij ija j J a a a a       and the variable 
ˆ

ij ij

ij

ij

a a

a



  is a symmetric random variable with an 

unknown distribution in the interval  1,1 . 

   Consider the i-th constraint of the nominal problem as i ia x b  . iJ is the set of coefficients ,ij ia j J  

with uncertainty. ,ij ia j J is based on a homogeneous distribution with the mean ija . ija takes value for 

each i in the interval of ˆ ˆ,ij ij ij ija a a a    . The parameter i  takes values in the range 0, iJ    and 

determines how many ,ij ia j J  change. In this approach, if the changes are within the limit i   , the 

max   c x

subject to   Ax b

                 l x u.





 
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answer will be feasible, and if the change is more than
i   , the probably the answer will still be feasible. 

Note that when 0, ( , ) 0i i ix    , the constraints will be identical to the nominal problem, and in 

contrast, if 
i iJ  , it will be the Soyester model. Therefore, 0,i iJ      provides a flexible 

adjustment of robustness. Finally, the robust model will be as follows Bertsimas and sim (2003): 

  

 

 

                                                                             (2) 

 

   In the relations (2), iz  and i jp  are the auxiliary dual variables used to linearize the problem. 

By examining the literature, the absence of a model which considers the fundamental analysis concepts 

prior to selecting the asset of the superior industries is very impressive. Also the being of a model that 

allocates a higher percentage of the budget to those type of industries and considers the uncertainty of the 
parameters, is an important requirement. In general, the innovations of this article to address the identified 

requirement are as follows: 

- Presenting a two-stage robust model for portfolio selection and selecting the right industry prior 

to the asset with considering parameter’s uncertainty 
- Considering the standard deviation of asset return as a non-systematic risk index with beta 

coefficient in one model 

3- Presentation of the two-stage robust goal programming model of the research 
   In this research, we have tried to consider a goal programming model and make some changes to it, and 

using the robust approach of Bertsimas and sim (2003) to find a new model. Portfolio selection with 

previous models has been improved by the new model. 
   In current economic conditions, due to some political and economic issues, the performance of different 

industries is not the same and some industries have relatively better and more stable performances than 

others. It is obvious that investors are interested in evaluating and identifying these industries and 

allocating a larger part of their capital to these groups. As a result, models that were previously offered to 
select a portfolio from a certain number of assets, are not very attractive to investors. Because these 

models focus only on their returns and risks from choosing an asset and do not pay attention to the group 

in which the asset exists. Therefore, there is a need for a model that can identify and select the most 
efficient and less risky industries before choosing the asset and allocate a larger part of the capital to 

choose the asset of these industries. 

   The model presented in this paper is a two-stage model which the goal programming has been used in 

both of its two stages. The first-phase inputs of this model are the industry's average returns and the 

average beta of the industry, also the other parameter that comes at this stage is iw  or the priority of each 

industry determined by the decision maker(investors). 

i

ij j i i ij i

j j J

i ij ij j i

j j j

j j j

ij i

max c x

subject to a x +z Γ + p b      i

ˆ                z +p a y      i,j J

                -y x y      j

                l x u      j

                p 0     i,j J

              



 
∈

≤ ∀

≥ ∀ ∈

≤ ≤ ∀

≤ ≤ ∀

≥ ∀ ∈

j

j

  y 0     j

                z 0     i.

≥ ∀

≥ ∀
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   In this paper priorities are determined by expert’s knowledge. Because priorities numbers’ are 
comparative amounts and investors should determine the priority of different objectives. There is no 

precise method for determine priorities in different conditions. The output of the first stage of this model 

is the optimum percentage of investment in each industry of the total budget. In fact, at this stage, more 

attention is paid to the industries with higher returns and less risk than the rest, and also more priority is 

given to the investor, and more property is invested in them. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3-1- The first stage 
The first stage of the model is as follows: 

i  : Industry Collection 

iV  : Percentage of investment in industry i 

iw  : The priority of the industry i for the investor 

i   : Average beta of industry i 

Second stage 

Existing industries 

in stock exchange 

Determine the weight of each 

industry by using goal 

programming 

Applying the result of the first 

stage and determining the 

weight of each asset by using 

goal programming method 

Creating 

portfolio 

Return and 

risk factors Uncertainty of 

parameters 

 

Investor’s 

priorities 
Uncertainty of 

parameters 

 

First stage 

 

Fig1. Portfolio selection steps by new model 



7 

 

ir  : Average return of industry i 

β   : the expected beta of the investor 
R: The expected return of investment 

                                                                                                                        (3) 

                                                                                                                        (4) 

                                                                                                                        (5) 

                                                                                                                        (6) 

                                                                                                                        (7) 

   Constraint (4) related to the average beta expected by the investor, the constraint (5) expected return 

average; constraint (6) indicates that the sum of the coefficients must be equal to 1, and the constraint (7) 
indicates the sign of the decision variable. 

   The second phase of this model is derived from by applying changes in the model of Lee and Chesser 

(1980). Of these changes, is adding a constraint on the non-systematic risk index of each asset, which here 

is the standard deviation of the return of the asset (δ). The results of the first phase are used in the second 
stage in such a way that the total amount of assets of a particular industry should not be greater than the 

amount of the budget determined for it in the first stage.  

 

3-2- The second stage  
The second stage is as following: 
Wi : Priority for each of the objectives        

ijX : The amount of money invested in the j-asset of the i-th industry 

ij : The average beta of the j-th asset of the the i-th industry  

ijR : the return of asset j from the industry i 

B: The expected beta of the investor   
DR: The desired return of the investor 

δ: The expected standard deviation of the investor (the number that investor wants standard  deviation of 

the portfolio be less than that)     

BC: Available budget for investment 
M: A large positive number  

i i

i

i i

i

i i

i

i

i

i

max V w

β V β

r V R

V =1

V 0














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 
i+6 2i+7

+ - - + + + -

1 1 2 2 3 3 4 4 5 5 f 6 f

f=6 f=n+7

- +

ij 1 1

i j

- +

ij ij 2 2

i j

- +

ij ij 3 3

i j

- +

ij ij 4 4

i j

- +

ij ij 5 5

i j

- +

ij 6 6 i

j

ij

min w d +w d +d +w d +w d +w d +w d

subject to:

X +d -d =BC

R X +d -d =DR

B X +d -d =B(BC)

δ X +d -d =δ(BC)

BC+ R X +d -d =M

X +d -d =V i

B



 













- +

7 7 i

j

+d -d =D i  

   In the above model, the constraint (9) refers to the total available budget for investment, the constraint 

(10) emphasizes on the return on the portfolio, which should be greater than the DR; this amount is 
determined by the investor, the constraint (11) is considered to control the systematic portfolio risk, in 

fact, if the investor has a positive prediction of the future, increases the beta portfolio by increasing the 

number B, the constraint (12) focuses on the non-systematic portfolio risk, the constraint (13) seeks to 
maximize the total budget and return on the portfolio, and the constraints (14) and (15) specify the 

minimum and maximum limits of investment in each asset. The problem that has been discussed in this 

paper is the existence of uncertainty in some of the model’s parameters, such as return, beta, and standard 

deviation of the asset and the way of dealing with these uncertainties. As discussed in the research 
background section, there are different approaches for considering the uncertainty in the parameters. The 

approach used here is the robust approach. In this paper, among the three robust methods, the Bertsimas 

and sim (2003) method is used to construct the model. The benefits of the Bertsimas method to other 
robust methods are the presentation of a linear model and the ability to adjust the level of robustness of 

the model in proportion to the level of conservatism of the solution. The final model of two-stage robust 

goal programming for selecting asset portfolios is as follows: 
 

3-3- First stage of the robust model 

i i

i

i i 1 1 1i

i i

i i 2 2 2i

i i

1 1i i i

2 2i i i

i i i

i

i

i 1i 2i 1 2

max V w

- β V +Z Γ + P -β

- r V +Z Γ + P -R

ˆZ +P β y ,        i

ˆZ +P r y ,        i

-y V y

V =1

V 0,P 0,P 0,Z 0,Z 0





 

 

 

    



 

 


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(18) 

(19) 

(20) 

(21) 
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   In the above model, Z and P are dual parameters of the problem that are used for linearize and solvable 

problems. Constraints (19) and (20) are dual constraints and 
î  and 

îr  used in them, are the amount of 

error or fluctuation of the parameters used, which the second decimal digits of each parameter value is 

considered in this paper. Constraint (21) determines upper and lower bound for the problem decision 
variables. 

 

3-4- Second stage of the robust model 

 
i+6 2i+7
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ij ij 2 2 2ij 3 3

i j i j

- +

ij ij 3 3 3ij 4 4

i j i j

min w d +w d +d +w d +w d +w d +w d

subject to:
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- B X +Z Γ + P +d -d =-B(BC)
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 



 

 

 

- +

ij ij 1 1 ij 5 5

i j i j

- +

ij 6 6 i

j

- +

ij 7 7 i

j

1 1ij ij ij

2 2ij ij ij

3 1ij ij ij

ij ij ij

ij ij 1 2 3

(BC)
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ˆZ +P B y i,j

ˆZ +P δ y  i,j

-y X y
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



 

 

 

 
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    Ni and Di are the upper and lower bound for the investment in i-th industry, which are extracted from 

the first stage. In this model, the parameter Гi has the role of modulating the robustness of the proposed 

model against the conservatism level of the response. This parameter takes a value in the range [0,|Ji|], 
where Ji is the number of industries (in the first stage) and the number of assets (in the second stage). In 

fact, the number we consider for Г is the number of assets we assume that their return, beta, and standard 

deviations are non-deterministic. Obviously, the higher number for   gets more conservative and the 

answer of the objective function gets worse value. In the above relations, the Z and P variables are dual 
auxiliary variables used to linearize the model and their values do not have a specific interpretation. 

 

4- Computational results 
   In this section, using the real data and a two-stage robust goal programming model presented in this 

paper, an asset portfolio has been developed at various levels of robustness and the results have been 
mentioned. The data relate to six industries and twenty-three assets from these six industries, which were 

collected over a five-year period from 2011 to 2016. The daily price and returns of these assets are taken 

(23) 

(24) 

(25) 

(26) 

(27) 

(28) 

(29) 

(30) 

(31) 

(32) 

(33) 

(34) 

 

 



10 

 

from the bourseview.com site and the beta and standard deviation values and other parameters required 
are calculated by Excel software. The values of parameters such as priorities (Wi), expected returns, 

expected beta, and expected standard deviations of portfolio are determined by expert opinion. The 

information used in the first stage is in table 1: 

(β=0.6      R=0.35   )(Expected values) 
 

Table 1. data of 6 industries from tehran stock exchange 

 
By solving the model in GAMS, the results of table 2 were obtained: 

 

 
 

 

 
 

 

 

 
 

 

 
 

   The results are presented in three different levels for Гi. As you can see from the table above, as moving 

from the 0i   level towards 6i  , the results will change, reducing the percentage of investment in 

the fourth industry and adding to the first industry. The reason for this is a better situation for the first 
industry in terms of risk. Of course for diversification and risk reduction according to Markowitz (1952), 

a minimum level has been set for each industry. Due to the small number of decision variables and the 

limited range of fluctuation considered for model parameters, the amount of change in results is very low. 

By obtaining the first stage and determining the percentage of investment in each industry, we will go to 
the second stage. The data used in the second stage of the model is presented in table 3. 

 

 
 

 

 

 
 

 

 
 

industries 

Average of 

industries return 

Industries 

Beta 

Average of 

industries standard 

deviation 

Industries priority 

Auto manufactures 0.0536 2.48 0.2257 0.5 

Sugar 0.2611 0.54 0.0201 1 

Health care 0.2485 0.76 0.0195 0.75 

Insurance 

Diversified 0.594 0.63 0.1871 
1.25 

Metals EX.Iron 0.1246 1.21 0.0211 0.75 

Cement  0.0844 0.6 0.0842 0.5 

Table 2. results of solving first stage 

Г(Г1,Г2) (0,0) (3,3) (6,6) 

1 0.165 0.168 0.168 

2 0.1 0.1 0.1 

3 0.1 0.1 0.1 

4 0.435 0.432 0.432 

5 0.1 0.1 0.1 

6 0.1 0.1 0.1 
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Table 3. Data of 23 assets from 6 industries in Tehran stock exchange 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 
 

 

    

    Objectives' priority has been set at 1, 1.5, 0.5, 0.5, 1, and 0.3, according to the decision maker. The 
available budget is 1,000,000 currency units, expected returns is 300,000 units, expected beta 1, expected 

standard deviation of 1, a large M of 1,500,000, and different amounts for Гs. The results of solving the 

second stage in the GAMS are given in table 4: 
 

 

 
 

 

 

 
 

 

 

Assets  

Average of 

annual 

return 

Beta 

Standard 

deviation of 

asset’s 

return 

ZMYD 

Auto  

-0.01 3.15 0.1445 

KFAN 0.02 2.44 0.1141 

IKCO 0.13 2.6 0.241 

SIPA 0.15 3.45 0.3108 

GGAZ 

Sugar  

0.28 0.87 0.0203 

GHND 0.38 1.74 0.0311 

GHEG 0.38 -0.09 0.0157 

GLOR 0.18 0.68 0.0069 

DJBR 

Health 

care 

0.17 0.92 0.0188 

DRZK 0.26 -0.01 0.0098 

ABDI 0.59 0.16 0.0271 

FTIR 0.23 1.89 0.0134 

BKSZ 

Insurance 
diversified 

0.24 -0.05 0.1818 

BIPZ 0.56 -0.01 0.213 

BDAN 0.24 0.57 0.135 

BALB 0.38 1.04 0.2704 

FRVR 

Metal EX. 
Iron 

0.05 1.63 0.0259 

BAHN 0.10 2.51 0.0231 

SORB 0.04 0.9 0.0201 

KZGZ 0.11 1.02 0.0185 

SBOJ 

Cement  

0.05 0 0.1591 

SMAZ 0.00 -0.04 0.1891 

SEFH 0.11 -0.17 0.1008 
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    In the table 4, there are portfolios created on different levels of Г. As it is clear, with increasing 
conservatism, the quantities assigned to the assets change and some of them are reduced and the others 

are increased. In fact, when the Гi take zero, it means that none of the values given to the model is 

uncertain, and the model creates portfolios with less stringency to meet the expected returns and risks, but 

as the robustness cost increases, the model is more conservative and reduces the value of assets that 
uncertainty of parameters has a greater effect on the model's goals and adds to the assets that have less 

effect in meeting the model's goals. Thus, when we consider the value of 23 for Гi, means that all its 

assets and parameters are uncertain and the model is in its most pessimistic state, and takes the most 
conservative values for portfolio creation. Obviously, with increasing conservatism, the objective function 

gets worse values and has less ability to meet the model's goals. 

   One of the changes made to this model over the previous models is adding a constraint of the standard 
deviation of asset returns, which is actually used as a non-systematic risk measure. The reason for this 

was that market conditions are risky and unpredictable, and adding another risk measure to the model 

would make the portfolios less risky. To show that the model is sensitive to the added constraint and this 

constraint improves the results in terms of risk, the sensitivity analysis is carried out on the different 
values of the expected standard deviations of the decision maker for the portfolio, the results of which are 

given in table 5: 

 
 

 

 

 
 

 

Table 4. Result of solving second stage of robust model for different amount 
i  

Г(Г1,Г2,Г3) (0,0,0) (1,1,1) (3,3,3) (8,8,8) (12,12,12) (18,18,18) (20,20,20) (21,21,21) (23,23,23) 

objective 

function 
2763.51 2765.36 2770.88 2786.69 2799.11 2811.35 2824.7 2831.44 2839.21 

1 0 0 0 0 0 0 0 0 0 

2 0 0 0 0 0 0 0 0 0 

3 60000 0 0 73632.29 74666.67 65953.65 65953.65 65953.65 65953.65 

4 108000 168000 168000 94542.91 93333.33 102683.05 102683.05 102683.1 102683.1 

5 0 0 0 11851.85 11851.85 27458.36 27458.36 27458.36 27458.36 

6 46000 12500 12500 41481.48 41481.48 35536.45 35536.45 35536.45 35536.45 

7 54000 87500 87500 46666.67 46666.67 37864.85 37864.85 37864.85 37864.85 

8 0 0 0 0 0 0 0 0 0 
9 0 0 0 0 0 0 0 0 0 

10 0 0 0 0 0 0 0 0 0 

11 100000 100000 100000 100000 100000 100000 100000 100000 100000 

12 0 0 0 
 

0 0 0 0 0 

13 0 0 0 0 0 0 0 0 0 

14 345178.2 264600 266651.3 285333.3 357333.3 370513.6 370513.6 370513.6 370513.6 

15 421.8315 27400 25348.72 21682.3 16016.3 9658.71 9658.71 9658.71 9658.71 

16 86400 140000 140000 128366.7 61686.27 55413.89 55413.89 55413.89 55413.89 

17 0 0 0 0 0 0 0 0 0 

18 0 0 0 0 0 0 0 0 0 

19 0 0 0 0 0 0 0 0 0 

20 100000 100000 100000 100000 100000 100000 100000 100000 100000 
21 38285.71 39125.47 39854.18 42319.54 43696.39 50684.85 50684.85 50684.85 50684.85 

22 0 0 0 0 0 0 0 0 0 

23 61714.29 60874.53 60145.82 57680.46 57003.61 49315.15 49315.15 49315.15 49315.15 
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   It should be noted that the standard deviation of returns for different assets from different groups is very 
large in size and difference. For these values to be closely related and comparable to each other, all of 

them have been taken a natural logarithm, and have been divided by average return. As can be seen in 

table 5, the higher expected value for standard deviations leads to, the higher freedom of model than the 

selection of the criterion, and more attention is paid on the assets with higher returns and betas, also with 
more standard deviations. When the expected standard deviation for a portfolio is lower, it focuses more 

on assets with less standard deviation and does not allow large dispersion to the model. In order to show 

that the model has improved compared to the previous model, the returns of the portfolio created with the 
presented model over the out of sample data contains one year period from 2016 to 2017 at different 

levels of Г compared with the returns of the portfolios formed by the Ghahtarani and Najafi’s (2013) 

model. The data used is related to the listed assets, presented results in table 6: 
 

 

 

 

 

 

 

 

 

 

 

 

Table 5.Sensitivity analysis on different amount of δ in second stage of robust model 

( Гi =3) 

Assets  (Expected standard deviation) δ 

 

0.08 0.09 0.1 0.12 0.13 

1 0 0 0 0 4494.57 

2 0 0 0 0 0 

3 0 0 0 45831.02 72669.08 
4 168000 168000 168000 122169 90836.35 

5 0 0 0 0 14210.11 

6 0 0 12500 38915.51 40371.71 
7 189141.5 110525.2 87500 61084.49 45418.18 

8 0 0 0 0 0 

9 0 0 0 0 0 

10 0 0 0 0 0 
11 100000 100000 100000 100000 100000 

12 0 0 0 0 0 

13 0 0 0 0 90836.35 
14 342858.5 421474.8 138446.2 69810.85 51906.49 

15 0 0 153553.8 264454 216588.1 

16 0 0 140000 97735.19 72669.08 

17 0 0 0 0 0 
18 0 0 0 0 0 

19 0 0 0 0 0 

20 100000 100000 100000 100000 100000 
21 0 0 0 30189.15 48093.51 

22 0 0 0 0 0 

23 100000 100000 100000 69810.85 51906.49 
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   The results of table 6 show that at low conservatism levels (low Г), although the return difference 
between the two models is low, the return of the Ghahtarani and Najafi model is slightly higher, but when 

the model's conservatism increases, especially when the number considered For Гi is more than half their 

range, the efficiency of the model presented in this paper is increased, and as Г increase, difference of 
return between two models becomes larger and new model obtained more return. 

 

5- Conclusions and recommendations 
   In this paper, we presented a functional model for choosing portfolios based on the current economic 
conditions in which different industries are relatively spacious in terms of performance. This model can 

first select suitable groups for investment and then select the asset among them. Also, since the 

parameters used in the model are inherently non-deterministic, the robust approach of Bertsimas and sim 

(2003) was used and the model became a robust model that considers the uncertainty of the parameters. 
However, the conservatism of the model can be changed and as the conservatism (Parameter Г) increases, 

the model yields more conservative values. Although, reduces the desirability of the objective function. 

The results show that the portfolios formed by the model presented in this paper at conservatism levels (

 > 10%) have always more returns than the single-stage robust model of Ghahtarani and Najafi (2013), 

which is somewhat similar to our model. 

   For future research, it is proposed to use a robust approach and goal programming in the formation of a 
portfolio consisting of derivative securities as well as the permissibility of borrowing sales. Also you can 

use the other methods of robust approach and consider parameters uncertainty in the form of different 

scenarios. 

 
 

 

 
 

Table 6. Comparing the result of  this paper’s model with ghahtarari and najafi’s(2013) model 

 

 

  

 

 

 

Portfolio’s return that selected 

by this paper’s robust model portfolio’s return that selected 

by Ghahtarani and 

Najafi’s(2013) model 

 

Differences 

between two 

models 

 =1 

(5%) 
28.72 28.91 -0.19 

 =2 

(10%) 
28.51 28.68 -0.17 

 =5 

(20%) 
28.29 28.25 0.04 

 =12 

(50%) 
27.97 27.75 0.22 

 =18 

(80%) 
27.69 27.16 0.53 

 =23 

(100%) 
27.56 26.7 0.86 
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