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Abstract 

The optimal locating of facilities has large effects on economic benefits, providing 
satisfactory service and levels of customer satisfaction. One of the new topics 
discussed in location problems is hub location and hub facilities are subject to 
unpredictable disruptions. This paper proposes a nonlinear integer model for reliable 
single allocation hub location problem that considers backup hub, alternative routes, 
and also uses fortification approach to improve the network reliability. Due to the 
NP hard nature of the model, we use genetic algorithm in order to solve the defined 
problem and the numerical results illustrate the applicability of the proposed model 
as well as the efficiency of solution procedure.  
Keywords: P-median hub, disruption, fortification, backup hub, alternative route, 
genetic algorithm 

1-Introduction  
   Facility location is a strategic decision that remains without change for a long time and many of the 
tactical and operational decisions, such as vehicle routing decisions and inventory control, are 
influenced directly by decisions regarding the location of facilities (Zarandi et al 2012). One of the new 
issues that has been proposed on location problems is hub location problem. Hub nodes can be named 
as special facilities designed that act as intermediary stations in the distribution system. In hub 
nodes flow is collected, classified and distributed, simultaneously. So that the flow/commodity would 
be collected from all the spokes allocated to the hub and those with the same destination would be sent 
after combining. In this way, operators can use the advantage of economies of scale. Hub location is 
widely used in transportation, telecommunications, postal delivery and cargo delivery. Traditionally, 
hub location problem tries to determine the location of hubs and allocate spokes to the located hubs 
and it is assumed that hubs are always available. Whereas, they may disrupt and stop operating because 
of various reasons such as natural disasters, inclement weather, equipment malfunctioning, labor strikes 
and intentional attacks. Disruption may cause higher transportation cost, delay in delivery, inventory 
shortages, loss of market shares, and so on (Peng et al 2011). So decision makers have to consider 42Tthe 
disruptions42T 42Tin network design.  
   One of the strategies to reduce the risk of disruption is facility fortification. Facility fortification is a 
particular type of facility protection to protect facilities from failure. The actions needed for facility 
fortification can be hiring extra workforce, storage of backup inventory and, etc. Another strategy that 
can reduce the risk of disruption is considering backup hub and alternative routes. In this way, when 
disruption occurred, the spokes assigned to the disrupted hubs have to reassign to non-disrupted hubs 
and flow goes from alternative route. 
   To the best of our knowledge there is no paper considering fortification strategy, backup hub and 
alternative routes simultaneously in hub location problem.  
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   In this paper for the first time fortification strategy, backup hub and alternative routes are considered 
simultaneously in hub location problem and also repair costs of disrupted hub are considered in the 
objective function.  
   The presented mathematical model determines the location of hubs and hubs which must be protected, 
allocates spokes to the located hubs and also tries to determine backup hub and alternative routes so 
that both the cost of normal situation and disorder terms are minimized.  
   The remainder of the paper is organized as follows; in section 2 a literature review of reliable location 
problem is presented. In section 3, the definition of problem and presenting nonlinear mathematical 
model are discussed. In Section 4, the solution approach is described. In section 5, computation 
results are presented. In section 6, sensitivity analysis are performed. Finally, in Section 7 conclusions 
and future research are presented. 

2-Literature review 
   The first paper that considered disruption in facility location problem, is Drezner's paper (Drezner 
1987).  He extended median and center location problem by considering the possibility of 
inactivating one or more facility. He also proposed a heuristic method to solve these two problems. 
Snyder and Daskin ( 2005) proposed reliable model for p-median and uncapacitated fixed charge 
problem. They considered r-level backup for facility and provided a Lagrangian relaxation algorithm in 
order to solve the problem. cui et al (2010) proposed a reliable mixed integer formulation for 
uncapacitated fixed charge problem so as to minimize fixed initial setup costs and transportation cost 
in  normal and failure situation. Peng  et al (2011) provided a mixed integer programming model for 
designing reliable supply chain. Liberatore et al (2012) studied inventory systems subject to correlated 
disruption in which disruption may results partial or complete damage of facilities. They examined the 
problem of optimally protecting of a capacitated median system with a limited amount of protective 
resource. Losada et al (2012) proposed a bi-level mixed integer linear programming for fortifying 
facility network. Li et al (2013) proposed nonlinear integer programming model for median and 
uncapacitated fixed charge location problem under correlated disruption. They considered one backup 
and limited fortification budget in their model. Medal et al (2014) presented a mathematical model that 
determines the location of a set of facility and the number of facilities to be protected. They solved the 
problem by a binary search algorithm and obtained a lower bound.  Asl-najafi et al (2015) 
studied reliable dynamic closed loop location-inventory problem and proposed a hybrid metaheuristic 
algorithm to solve the problem. Jalali et al (2016) studied reliable bi-objective location problem with 
multiple capacity. In their defined problem, supply chain has three echelons and there is constraint on 
coverage level. Zhang et al (2016) presented a mathematical model for a three-tiered supply chain under 
correlated disruption. In addition, they provided a heuristic solution approach based on Lagrangian 
relaxation to solve the problem. In area of hub location, Kim and O,Kelly (2009) for the first time 
studied reliable hub location problem. They presented a bi-objective model considering reliability and 
dispersion simultaneously. Zarandi et al (2012) examined multiple allocation hub covering problem by 
considering backup coverage and mandatory dispersion. Parvaresh et al (2013) presented a bi-level 
game model for p-hub median problem where hub subjected to Intentional disruption. In their model, 
the leader aims at identifying the location of hubs in order to minimize normal and worst-case 
transportation cost. Follower’s objective is to identify the hubs that if it is lost, it will mostly increase 
the transportation cost. Mohammadi et al (2013) presented a multi-objective model for hub covering 
problem under uncertainty and unreliability.     They considered travel time between each pair of 
nodes as independent normal random variables and disruption leading to increase travel time. Parvaresh 
et al (2014) discussed multiple allocation hub median location problem under intentional disruption. 
They suggested two multi-objective metaheuristics based on simulated annealing and tabu search to 
solve the problem. Eghbali et al (2014) studied single allocation hub covering problem. They considered 
reliability for hubs and routes in their model and guaranteed the reliability of routes wouldn't be less 
than a specified value. Sadeghi et al (2015) Examined reliable single allocation hub covering problem. 
The objective of their model was minimizing establishment costs and transportation cost. In addition, 
they introduced descent algorithm to produce near optimal solution. An et al (2015) proposed a 
nonlinear mixed integer model for designing a reliable hub network and developed Lagrangian 
relaxation and Branch-and-Bound methods to solve the problem. Bashiri and Rezanezhad (2015) 
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performed a reliable multi -objective model for hub covering problem. They also provided ε-constraint 
algorithm for small size instances and  
NSGA-II to obtain Pareto solutions. Azizi et al (2016) performed a bi-level mixed integer model for 
single allocation hub median problem. In their model, the probability of failure is heterogeneous and 
only one hub will disrupt at any given time. They presented an efficient crossover operator to genetic 
algorithm. Mohammadi et al (2016a) studied single allocation p-median and p-center hub location under 
uncertainty in flows, costs, times and hub operations. They performed a bi- objective nonlinear mixed 
integer programming and a fuzzy queuing approach was used to model the uncertainties in the network. 
Mohammadi et al (2016b) studied reliable logistic networks design through hub location problem and 
introduced new mathematical model for it. They consider complete and partial disruptions in hubs. In 
partial disruption, the service rate or the capacity of the hub degraded to a lower level. Mohammadi et 
al (2017) provided a reliable mathematical model in order to design hazardous materials transportation 
through hub location problem and introduced efficient lower bound approach to produce near-optimal 
solutions. 
 
3-Problem description and formulation  
   In this section, we present the formulation of reliable single allocation hub location problem.  

3-1-notifications 
   In a single allocation problem, each non-hub node is allocated to only one hub and all the inbound 
and outbound flows of this node are routed through that hub. Let N={1,2, . . N  } be a set of nodes and H= 
{1,2,…,N+1} be a set of candidate hub locations. We assume H set and N set are the same and the only 
difference between them is the node N + 1 that is a dummy non–failable hub. r= {1,2} is set of allocation 
level. Node i∈ 𝑁𝑁 has a probability of disruption equal to qiϵ[0,1], the probability of failure is 
independent and heterogeneous. As pointed by (Peng et al 2011), the probability of more than two 
unrelated facilities to be disrupted at the same time is very small in reality. Therefore, we assume that 
one or two facilities may be disrupted at any given time. Fixed cost of locating a hub equal to 𝑓𝑓𝑘𝑘 and 
each node has capacity constraint equal to 𝐶𝐶𝐶𝐶i. The number of hubs to be opened is p and a path from 
origin (i) to destination (j) can be represented by a 4- tuple (i, k, m, j) where k represents the first hub 
and m represents the second hub. Unit transportation cost between a pair of nodes i and j and the traffic 
volume between them are 𝑐𝑐𝑖𝑖𝑖𝑖 and 𝑤𝑤𝑖𝑖𝑖𝑖, respectively. Discount factor of economy of scale 0 < α < 1  is 
applied to the inter-hub links and the cost of transporting one unit flow is calculated by below formula: 

Fikmj=cik+𝛼𝛼Rckm+cmj (1) 
                                                                                                         
Decision variables contain, Y hub location and allocation variable, X route variable, U and V backup 
hub variables and Z hub fortification variable. 

if node i is assigned to hub k 

𝑌𝑌𝑖𝑖𝑖𝑖       =

⎩
⎪
⎨

⎪
⎧1

0

 
 
 
 

Otherwise 
 

if flow from i to j passes through hub k and m 

𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 =

⎩
⎪
⎨

⎪
⎧1

0

 
 
 
 

Otherwise 
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hub n is the backup hub for the first hub in the route of i-j flow in level r  
 
 
Otherwise 
 

𝑈𝑈𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖   =

⎩
⎪
⎨

⎪
⎧1

0

 

 
 
 
 
 

 

hub n is the backup hub for the second hub in the route of i-j flow in level r 

𝑉𝑉𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖    =

⎩
⎪
⎨

⎪
⎧1

0

  
 
 
 

Otherwise 
 

If hub k is fortified 

𝑍𝑍𝑘𝑘        =

⎩
⎪
⎨

⎪
⎧1

0

 
 
 
 

 
Otherwise 

 

3-2-Mathematical model 
   In this paper spokes are allocated to hubs in different levels. This means that, each spoke is allocated 
to a hub, as a primary assignment, then the spoke at the first and second level is allocated to backup 
hubs. When primary assignment of a spoke is a fortified hub, it doesn't need a backup hub and when 
first backup of a spoke is a dummy non–failable or a fortified hub, it doesn't need the second backup 
hub.  
   As mentioned earlier in our model a limited budget, B, is considered to fortify hubs .This 
fortification includes the variable cost, ei and setup cost, si.. Setup cost is a fixed cost needed for hub 
fortification. Such as the cost of research and development, personnel training and etc. Variable 
fortification cost varies with the amount of reliability improvements. Examples include the cost of 
acquiring and installing a unit of protective measures, the cost of storage and backup inventory, the cost 
of hiring extra workforce (Li et al 2013). We assume that if a facility is fortified, it becomes non-
failable. 
The proposed model is defined as following. 
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Objective functions: 

Min∑ 𝑓𝑓𝑘𝑘𝑌𝑌𝑘𝑘𝑘𝑘𝑁𝑁
𝑘𝑘=1 +∑ ∑ ∑ ∑ 𝐹𝐹𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑤𝑤𝑖𝑖𝑖𝑖𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(1− 𝑞𝑞𝑘𝑘(1− 𝑍𝑍𝑘𝑘)𝑁𝑁

𝑗𝑗=1
𝑗𝑗≠𝑖𝑖
𝑗𝑗≠𝑚𝑚

𝑁𝑁
𝑚𝑚=1
𝑚𝑚≠𝑘𝑘

𝑁𝑁
𝑘𝑘=1
𝑘𝑘≠𝑖𝑖

𝑁𝑁
𝑖𝑖=1 )(1 −

𝑞𝑞𝑚𝑚(1− 𝑍𝑍𝑚𝑚))+∑ ∑ ∑ 𝐹𝐹𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑤𝑤𝑖𝑖𝑖𝑖𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(1− 𝑞𝑞𝑘𝑘(1− 𝑍𝑍𝑘𝑘)𝑁𝑁
𝑗𝑗=1
𝑗𝑗≠𝑖𝑖
𝑗𝑗≠𝑘𝑘

𝑁𝑁
𝑘𝑘=1
𝑘𝑘≠𝑖𝑖

𝑁𝑁
𝑖𝑖=1 )+ 

 ∑ ∑ (∑ 𝐹𝐹𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑤𝑤𝑖𝑖𝑖𝑖�1 − 𝑞𝑞𝑚𝑚(1− 𝑍𝑍𝑚𝑚)�𝑁𝑁
𝑚𝑚=1
𝑚𝑚≠𝑗𝑗
𝑚𝑚≠𝑖𝑖

𝑁𝑁
𝑗𝑗=1
𝑗𝑗≠𝑖𝑖

𝑁𝑁
𝑖𝑖=1 + ∑ 𝐹𝐹𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑁𝑁

𝑘𝑘=1
𝑘𝑘≠𝑖𝑖
𝑘𝑘≠𝑗𝑗

𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑤𝑤𝑖𝑖𝑖𝑖�1 −

𝑞𝑞𝑘𝑘(1− 𝑍𝑍𝑘𝑘)� + 𝐹𝐹𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑤𝑤𝑖𝑖𝑖𝑖 + 𝐹𝐹𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑤𝑤𝑖𝑖𝑖𝑖 + 𝐹𝐹𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖𝑗𝑗𝑤𝑤𝑖𝑖𝑖𝑖) 

+𝜌𝜌 �∑ ∑ ∑ ∑ ∑ ∑ �𝐹𝐹𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑤𝑤𝑖𝑖𝑖𝑖𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑈𝑈𝑖𝑖𝑖𝑖𝑖𝑖1𝑞𝑞𝑘𝑘(1− 𝑞𝑞𝑚𝑚(1− 𝑍𝑍𝑚𝑚))(1 −𝑁𝑁+1
𝑙𝑙=1

𝑁𝑁+1
𝑛𝑛=1

𝑁𝑁
𝑗𝑗=1
𝑗𝑗≠𝑖𝑖

𝑁𝑁
𝑚𝑚=1
𝑚𝑚≠𝑘𝑘

𝑁𝑁
𝑘𝑘=1

𝑁𝑁
𝑖𝑖=1

𝑞𝑞𝑙𝑙(1− 𝑍𝑍𝑙𝑙)) + 𝐹𝐹𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑤𝑤𝑖𝑖𝑖𝑖𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑈𝑈𝑖𝑖𝑖𝑖𝑖𝑖1𝑈𝑈𝑖𝑖𝑖𝑖𝑖𝑖2𝑞𝑞𝑘𝑘𝑞𝑞𝑙𝑙�+  �𝐹𝐹𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑤𝑤𝑖𝑖𝑖𝑖𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑉𝑉𝑖𝑖𝑖𝑖𝑖𝑖1𝑞𝑞𝑚𝑚(1−
𝑞𝑞𝑘𝑘(1− 𝑍𝑍𝑘𝑘))(1 − 𝑞𝑞𝑛𝑛(1− 𝑍𝑍𝑛𝑛)) + 𝐹𝐹𝑖𝑖𝑘𝑘𝑘𝑘𝑘𝑘𝑤𝑤𝑖𝑖𝑖𝑖𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑉𝑉𝑖𝑖𝑖𝑖𝑖𝑖1𝑉𝑉𝑖𝑖𝑖𝑖𝑖𝑖2𝑞𝑞𝑚𝑚𝑞𝑞𝑛𝑛�+
𝐹𝐹𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑤𝑤𝑖𝑖𝑖𝑖𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑈𝑈𝑖𝑖𝑖𝑖𝑖𝑖1𝑉𝑉𝑖𝑖𝑖𝑖𝑖𝑖1𝑞𝑞𝑚𝑚𝑞𝑞𝑘𝑘 + ∑ ∑ ∑ ∑ � 𝐹𝐹𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑤𝑤𝑖𝑖𝑖𝑖𝑞𝑞𝑘𝑘𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑈𝑈𝑖𝑖𝑖𝑖𝑖𝑖1(1 − 𝑞𝑞𝑙𝑙(1−𝑁𝑁+1

𝑙𝑙=1
𝑁𝑁
𝑗𝑗=1
𝑗𝑗≠𝑖𝑖

𝑁𝑁
𝑘𝑘=1

𝑁𝑁
𝑖𝑖=1

𝑍𝑍𝑙𝑙)) +  𝐹𝐹𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑤𝑤𝑖𝑖𝑖𝑖𝑞𝑞𝑘𝑘𝑞𝑞𝑙𝑙𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑈𝑈𝑖𝑖𝑖𝑖𝑖𝑖1𝑈𝑈𝑖𝑖𝑖𝑖𝑖𝑖2�  + ∑ 𝜂𝜂𝑘𝑘𝑞𝑞𝑘𝑘(1− 𝑍𝑍𝑘𝑘)𝑌𝑌𝑘𝑘𝑘𝑘𝑁𝑁
𝑘𝑘=1  +

∑ ∑ 𝜑𝜑𝑖𝑖𝑖𝑖𝑤𝑤𝑖𝑖𝑖𝑖(𝑌𝑌𝑖𝑖𝑖𝑖𝑞𝑞𝑖𝑖(1 − 𝑍𝑍𝑖𝑖) + 𝑌𝑌𝑗𝑗𝑗𝑗𝑞𝑞𝑗𝑗�1 − 𝑍𝑍𝑗𝑗�) + ∑ ∑ ∑ (𝑈𝑈𝑖𝑖𝑖𝑖𝑖𝑖+1𝑟𝑟𝑓𝑓𝑘𝑘+1 +2
𝑟𝑟=1

𝑁𝑁
𝑗𝑗=1
𝑗𝑗≠𝑖𝑖

𝑁𝑁
𝑖𝑖=1

𝑁𝑁
𝑗𝑗=1
𝑗𝑗≠𝑖𝑖

𝑁𝑁
𝑖𝑖=1

𝑉𝑉𝑖𝑖𝑖𝑖𝑖𝑖+1𝑟𝑟𝑓𝑓𝑘𝑘+1)� 

(1) 

Subject to: 

∑ 𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑌𝑌𝑖𝑖𝑖𝑖𝑁𝑁
𝑚𝑚=1    ∀𝑖𝑖, 𝑗𝑗 ∈ 𝑁𝑁,𝑘𝑘 ∈ {1, … ,𝑁𝑁}           j≠ 𝑖𝑖 (3) 

∑ 𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑌𝑌𝑗𝑗𝑗𝑗𝑁𝑁
𝑘𝑘=1    ∀𝑖𝑖, 𝑗𝑗 ∈ 𝑁𝑁,𝑚𝑚 ∈ {1, … ,𝑁𝑁}        j≠ 𝑖𝑖 (4) 

∑ 𝑌𝑌𝑖𝑖𝑖𝑖 = 1𝑁𝑁
𝑘𝑘=1            ∀𝑖𝑖 ∈ 𝑁𝑁 (5) 

� 𝑌𝑌𝑘𝑘𝑘𝑘 = 𝑃𝑃
𝑁𝑁

𝑘𝑘=1
 

(6) 

∑ 𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝑁𝑁
𝑚𝑚=1 + 𝑈𝑈𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ≤ 𝑌𝑌𝑘𝑘𝑘𝑘   ∀𝑖𝑖, 𝑗𝑗 ∈ 𝑁𝑁, j ≠ 𝑖𝑖,𝑘𝑘 ∈ {1, … ,𝑁𝑁}, 𝑟𝑟 ∈ {1,2} (7) 

∑ 𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝑁𝑁
𝑘𝑘=1 + 𝑉𝑉𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ≤ 𝑌𝑌𝑚𝑚𝑚𝑚   ∀𝑖𝑖, 𝑗𝑗 ∈ 𝑁𝑁, j ≠ 𝑖𝑖,𝑚𝑚 ∈ {1, … ,𝑁𝑁}, 𝑟𝑟 ∈ {1,2} (8) 

∑ 𝑈𝑈𝑖𝑖𝑖𝑖𝑖𝑖1 + ∑ 𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝑁𝑁
𝑚𝑚=1 + ∑ 𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝑁𝑁
𝑚𝑚=1 = 1 − ∑ 𝑌𝑌𝑖𝑖𝑖𝑖𝑍𝑍𝑘𝑘𝑁𝑁

𝑘𝑘=1
𝑘𝑘≠𝑖𝑖
𝑘𝑘≠𝑗𝑗

𝑁𝑁+1
𝑙𝑙=1        ∀𝑖𝑖, 𝑗𝑗  ∈ 𝑁𝑁 j≠ 𝑖𝑖 (9) 

∑ 𝑉𝑉𝑖𝑖𝑖𝑖𝑖𝑖1 + ∑ 𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑁𝑁
𝑘𝑘=1 + ∑ 𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑁𝑁

𝑘𝑘=1 = 1 − ∑ 𝑌𝑌𝑗𝑗𝑗𝑗𝑍𝑍𝑚𝑚𝑁𝑁
𝑚𝑚=1
𝑚𝑚≠𝑖𝑖
𝑚𝑚≠𝑗𝑗

𝑁𝑁+1
𝑛𝑛=1         ∀𝑖𝑖, 𝑗𝑗 ∈ 𝑁𝑁 j≠ 𝑖𝑖 (10) 

∑ 𝑈𝑈𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖2𝑁𝑁
𝑙𝑙=1 + 𝑈𝑈𝑖𝑖𝑖𝑖𝑖𝑖+11 = ∑ 𝑈𝑈𝑖𝑖𝑖𝑖𝑖𝑖1𝑁𝑁

𝑙𝑙=1 (1 − 𝑍𝑍𝑙𝑙) ∀𝑖𝑖, 𝑗𝑗 ∈ 𝑁𝑁, j ≠ 𝑖𝑖 (11) 

� 𝑉𝑉𝑖𝑖𝑖𝑖𝑖𝑖2
𝑁𝑁

𝑛𝑛=1
+ 𝑉𝑉𝑖𝑖𝑖𝑖𝑖𝑖+11 = � 𝑉𝑉𝑖𝑖𝑖𝑖𝑖𝑖1

𝑁𝑁

𝑛𝑛=1
(1 − 𝑍𝑍𝑛𝑛)   ∀𝑖𝑖, 𝑗𝑗 ∈ 𝑁𝑁, j ≠ 𝑖𝑖 

(12) 

� 𝑈𝑈𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ≤ 𝑌𝑌𝑙𝑙𝑙𝑙
2

𝑟𝑟=1
           ∀𝑖𝑖, 𝑗𝑗 ∈ 𝑁𝑁, j ≠ 𝑖𝑖, 𝑙𝑙 ∈ {1, … ,𝑁𝑁} 

(13) 
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∑ 𝑉𝑉𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ≤ 𝑌𝑌𝑛𝑛𝑛𝑛2
𝑟𝑟=1          ∀𝑖𝑖, 𝑗𝑗 ∈ 𝑁𝑁, j ≠ 𝑖𝑖,𝑛𝑛 ∈ {1, … ,𝑁𝑁} (14) 

∑ 𝑌𝑌𝑖𝑖𝑖𝑖𝑁𝑁
𝑘𝑘=1
𝑘𝑘≠𝑖𝑖
𝑘𝑘≠𝑗𝑗

𝑍𝑍𝑘𝑘 +∑ ∑ 𝑈𝑈𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖2
𝑟𝑟=1 𝑍𝑍𝑙𝑙𝑁𝑁

𝑙𝑙=1 +∑ 𝑈𝑈𝑖𝑖𝑖𝑖𝑖𝑖+1𝑟𝑟2
𝑟𝑟=1 + ∑ 𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝑁𝑁
𝑚𝑚=1 +∑ 𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝑁𝑁
𝑚𝑚=1 =1       ∀𝑖𝑖, 𝑗𝑗 ∈

𝑁𝑁, j ≠ 𝑖𝑖 
 

(15) 

∑ 𝑌𝑌𝑗𝑗𝑗𝑗𝑁𝑁
𝑚𝑚=1
𝑚𝑚≠𝑖𝑖
𝑚𝑚≠𝑗𝑗

𝑍𝑍𝑚𝑚 + ∑ ∑ 𝑉𝑉𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖2
𝑟𝑟=1 𝑍𝑍𝑛𝑛𝑁𝑁

𝑛𝑛=1 +∑ 𝑉𝑉𝑖𝑖𝑖𝑖𝑖𝑖+1𝑟𝑟2
𝑟𝑟=1 + ∑ 𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑁𝑁

𝑘𝑘=1 +∑ 𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑁𝑁
𝑚𝑚=1 =1                  

∀𝑖𝑖, 𝑗𝑗 ∈ 𝑁𝑁, j ≠ 𝑖𝑖 

(16) 

𝑌𝑌𝑘𝑘+1𝑘𝑘+1 = 1 (17) 

� [𝑠𝑠𝑘𝑘 + 𝑒𝑒𝑘𝑘𝑞𝑞𝑘𝑘]𝑍𝑍𝑘𝑘 ≤ 𝐵𝐵
𝑁𝑁

𝑘𝑘=1
 

(18) 

∑ [∑ (𝑤𝑤𝑖𝑖𝑖𝑖 + 𝑤𝑤𝑗𝑗𝑗𝑗)]𝑌𝑌𝑖𝑖𝑖𝑖 + ∑ ∑ ∑ (𝑈𝑈𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑅𝑅
𝑟𝑟=1 + 𝑉𝑉𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖)𝑤𝑤𝑖𝑖𝑖𝑖 ≤ 𝐶𝐶𝐶𝐶𝑘𝑘𝑁𝑁

𝑗𝑗=1
𝑁𝑁
𝑖𝑖=1

𝑁𝑁
𝑗𝑗=1

𝑁𝑁
𝑖𝑖=1  ∀𝑘𝑘 ∈ {1, … ,𝑁𝑁 + 1} (19) 

𝑌𝑌𝑖𝑖𝑖𝑖 ∈ {0,1},𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ∈ {0,1},𝑈𝑈𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ∈ {0,1},𝑉𝑉𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ∈ {0,1} 
,𝑍𝑍𝑘𝑘 ∈ {0,1} ∀𝑖𝑖, 𝑗𝑗, 𝑘𝑘,𝑚𝑚,𝑛𝑛, 𝑙𝑙, 𝑟𝑟 

(20) 

 
   In the objective function (2), the first term represents the fixed cost of locating hub. The second and 
third term calculate regular transportation cost of flow with both source and destination at spoke nodes. 
The fourth term calculates the regular transportation cost where the source or destinations or both of 
them are hub. The fifth and sixth term present the transportation cost of rerouting the flow through the 
backup hub. Seventh term calculates repair costs of disrupted hub. Eighth term calculates the penalties 
of losing flow/ commodity in disrupted situations where the source or destination of the flow is hub. 
Since the hub is disrupted it can't send or receive any flow to or from other nodes in the network. So 
the penalty cost, 𝜑𝜑𝑖𝑖𝑖𝑖 is considered twice as much as the transportation cost of a unit flow between origin 
i and destination j. ninth term in the objective function calculates the cost of using a dummy non failable 
hub. 
   Constraints 3-6 are classic constraints for the single allocation p-hub median problem. Constraints 3 
and 4 guarantee that all flows between an origin– destination pair has been routed via the hub.Constraint 
5 enforce single allocation rule in the network.Constraint 6 shows that only P hub can be established in 
the hub network. Constraints 7 and 8 ensure that the primary hub and backup hubs are different which 
are nodes selected as hubs. Constraints 9 and 10 ensure that alternative routes have been selected for all 
flows in level one, except where origin or destination node of a flow is hub or the selective primary hub 
for that flow is protected.Constraint 11 and 12 ensure that alternative routes are selected for second 
level, except where in the prior level, backup hub for the flow has been protected or be a dummy non 
failable hub. Constraints 13 and 14 guarantee that backup hubs don't be same at different levels. 
Constraints 15 and 16 enforce each non-hub node to be allocated to the dummy non-failable hub or 
fortified hub at a certain level. Constrain 17 shows that it requires the dummy non failable hub to be 
opened. Constraint 18 shows constraint of available budget for fortification. Constraint 19 is related to 
capacity constraint. Constraint 20 is domain constraint. 

4-Solution method 
   Genetic algorithm unlike some meta-heuristic approaches work with a population of solution 
(chromosome) on each iteration instead of a single solution. Genetic algorithm has been successfully 
applied to the hub location problem in many papers. So in order to solve the mathematical model 
presented in this paper the genetic algorithm is going to be used which has been derived from Azizi et 
al (2016). 

4-1-Solution representation  
   The number of genes in the answer chromosome is N, equal to number of nodes. This chromosome 
represents the location of hubs and allocate none hubs to hubs. 
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   Figure 1 illustrates a typical solution to the problem with 10 nodes and 3 hubs. Nodes 1, 5, and 7 are 
assumed to be hub facilities and the non-hub 3 is allocated to hub 1.  
 

7 7 1 7 5 5 5 1 5 1 
Fig. 1. Solution representation scheme 

4-2-Crossover operator  
   Here the crossover operator will be explained by an example. As can be seen in Figure 2, in the parent 
1, the nodes 1, 4 and 7 are hubs and in the second parent the hubs are node 3, 5 and 7. Parent1 is selected 
to donate the offspring chromosome from left to right. All genes that contain value of 1 in the parent 1, 
give value 1 in offspring chromosome. Then parent2 is selected to donate the offspring 
chromosome. The first candidate to examine is the hub center 3, since all the genes that contain3 in the 
parent2 are occupied by hub center 1 in offspring chromosome, the next hub in parent2 is examined. 
That is hub center 5 and all the genes that contain 5 in the parent2 and are empty in offspring 
chromosome, give value 5. Similarly continued until all genes of offspring chromosome be occupied. 
At the end if the offspring chromosome has one or more genes without value, the offspring is 
unacceptable and the process starts again from the beginning by selecting two parents. 
 
 

Parent1: 
 

 

7 4 4 7 7 7 4 1 1 1 

 
 
 
 

Offspring: 
 

 

7 5 5 7 7 5 5 1 1 1 

 
 
 
 

Parent2: 
 

 

7 5 5 7 7 5 5 3 3 3 

Fig. 2. Example of crossover operation 
 
 

4-3-Mutation operator 
    The selected mutation in this paper is different from the Azizi et al (2016). As it has shown in figure 
3, a gene has been selected randomly and if that gene is non hub node, another hub is selected randomly 
between other hub nodes in that chromosome and is replaced by prior hub. 
 
  

6 2 5 5 6 5 5 2 2 2 
 

6 2 5 5 6 5 6 2 2 2 
Fig. 3. Example of mutation operation 

   The backup hub and alternate routes, as well as fortified hub are generated randomly and penalty 
strategy is considered for infeasible answers that do not adhere the capacity constraints. Generally 
speaking, GAs stop when the best fitness of the population converges, or when the algorithm reaches a 
pre-specified time limit or iteration limit. We terminate the algorithm for small and median problem, 

 

1 7 7 7 1 1 

5 5 5 5 
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when the improvement in the best solution is less than 10-5 for 6 consecutive iterations and for the large 
problem when the improvement in the best solution is less than 10-5 for 10 consecutive iterations. 

 

5-Computational results  
   The computational results of genetic algorithm and GAMS are presented in Table 1. We generate 
eighteen random test problems with the number of nodes N and number of hubs H. In this table, we 
report the total cost, hub location, fortified hub and processing time to obtain the optimal/best solutions. 
Each test problem is run 20 times and the best results are reported. 
 

Table1. Computational results for the GA and GAMS 
%gap GA GAMS 𝛂𝛂 Test 

problem  Time 
(s) 

Total cost Time 
(s) 

Total cost Fortified 
hub 

Selected 
hubs 

         
0 7.27 13320632.05 28.518 13320632.05 2 1   2 .0 2 4N2H 
0 7.31 14098887.25 23.03 14098887.25 2 1   2 .0 4 
0 7.29 15655397.65 4.197 15655397.65 2 1   2 .0 8 
0 14.49 1443321.82 252.33 1443321.82 2 1   2 .0 2 5N2H 
0 11.58 1461993.01 258.37 1461993.01 2 1   2 .0 4 
0 10.39 1499335.39 260.99 1499335.39 2 1   2 .0 8 
- 21.95 5322911.12 - - 1 1   2 .0 2 7N2H 
- 24.80 5444198.47 - - 1 1   2 .0 4 
- 23.50 5686773.18 - - 1 1   2 .0 8 
- 160.68 6482956.40 -  6 6   15 .0 2 15N2H 
- 158.95 6595562.8 - - 6 6   15 .0 4 
- 161.80 6820775.60 - - 6 6   15 .0 8 
- 164.44 3051601.72 - - 1 6-4-1 .0 2 15N3H 
- 228.31 3155955.92 - - 1 6-4-1 .0 4 
- 192.188 3364644.32 - - 1 6-4-1 .0 8 
- 1216.01 3908675.12 - - 10 1-2-3-4-10 .0 2 20N5H 
- 1342.05 4005790.32 - - 7 1-2-3-4-7 .0 4 
- 1459.48 4353149.92 - - 7 1-2-3-4-7 .0 8 

 
BARON solver software of GAMS can't solve the problem with size more than 5 nodes so just genetic 
algorithm is used to solve. 
 
6-Sensitivity analysis  
   In order to recognize the most important parameters and demonstrate effectiveness of the model 
several sensitivity analysis are carried out. Figure 4 illustrates the sensitivity analysis of the fortification 
budget, B=1000 results in lower total cost rather than B=0. 
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Fig. 4. Fortification impact on the total cost 

    Figure 5 shows the comparison done for the values of B. As expected, the curve illustrate a downward 
trend as the fortification budget increases. Curve, the attendance of ‘‘flat’’ regions for the values of B 
between 0 and 100 is due to the fact that no facility can be fortified and the attendance of ‘‘flat’’ regions 
for the values of B exceeding 300, is attributed to the fact that all facilities have been fortified. 

 

 
Fig. 5. Values of fortification budget impact on the total cost 

   Another input parameter is rate of breakdown. Figure 6 illustrates the sensitivity analysis of the rate 
of breakdown. By increasing this rate the total cost will increase. In addition, when probability of 
disruption increase, transportation cost, penalty cost and repair cost increase, too. While, transportation 
cost in normal situation decreases. 
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Fig. 6. Rate of breakdowns impact on the cost 

   Figure 7 shows the computational time for solving the problem with GAMS and GA. The CPU time 
of all the GAMS and GA are increased by increasing the size of nodes and hubs. 

 
Fig. 7. CPU time of the GAMS and GA  

7-Conclusions and future research 
   In traditional network design, all facilities are always considered available and there is no disruption 
for facilities. In practice, after facilities are built and deployed, they face with various disruptions. 
Therefore, decision makers must design networks and determine the location of facilities so that not 
only being optimized for the current state but also being efficient in facilities lifetime. This paper 
proposed new mathematical formulation for designing reliable hub location problems. This model 
determines the location of hubs, backup hubs, and alternative routes and allocates non hubs to hubs, 
and also considers a limited budget for hub fortification to cope with disruptions. As further studies, 
developing efficient exact solution approaches for this problem and considering correlation in the rate 
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of breakdown would be of interest. Also in our future research we intend to concentrate on allowing 
direct connections between non–hub nodes. 
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