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Abstract 
Data envelopment analysis (DEA) calculates the relative efficiency of homogenous 

decision-making units (DMUs) with multiple inputs and outputs. Classic DEA models 

usually suffer from several issues such as: discrimination power, variable weights of 

inputs/outputs, inaccurate efficiency estimation for small number of DMUs, incapability 

in working with zero and negative data, and not having exterior target. Ranking 

methods in DEA have been proposed to resolve such issues. In this paper an approach is 

proposed to overcome all of these issues, concurrently. This approach has five main 

properties: 1) using common weight methodology to reduce the chance of inefficient 

DMUs to be evaluated as efficient; 2)  defining virtual ideal and anti-ideal DMUs in a 

unique model concurrently to improve the discrimination power and to make exterior 

target based on observed DMUs; 3) providing full ranking for even production 

possibility sets (PPS) with low number of DMUs; 4) handling for zero and non-positive 

data; 5) Ranking all DMUs in a single run which reduces the computational efforts 

effectively. The properties of the model of this study including convexity, feasibility, 

and optimality are discussed through several theorems. The validity of the model is 

illustrated through solving five benchmark numerical examples adopted from the 

literature of past works. The results of the model are compared with those of existing 

methods. The results illustrate the efficacy and comparability of proposed approach 

among the existing methods.  

Keywords: Common weight DEA, virtual DMU, DEA ranking, efficiency evaluation  

 

 

 

1-Introduction 
   Data Envelopment Analysis (DEA), as a nonparametric technique, has extensively been used to 

measure the efficiency of homogenous Decision-Making Units (DMUs) with the multiple inputs and 

outputs (Cooper et al., 2011; Zhu, 2009). Thirty five years after the seminal work by Charnes et al. 

(1978), a huge amount of research on different variations of DEA approaches has been reported in the 

literature (Liu et al., 2013). In traditional DEA models, each DMU can select the most preferred 

weights in order to maximize its efficiency score. Therefore, the efficiencies of DMUs are calculated 

by various weights and, consequently, inefficient DMUs may be evaluated as efficient and 

discrimination power of DEA may be reduced. As more than one efficient DMU usually exists, 

ranking will face some difficulties. To overcome these issues, many approaches have been proposed. 

 

*Corresponding author 

ISSN: 1735-8272, Copyright c 2018 JISE. All rights reserved 

Journal of Industrial and Systems Engineering  

Vol. 11, No. 3, pp. 281-306 

Summer (July) 2018 
 

 

mailto:k_khalili@azad.ac.ir
mailto:st_m_fadaei@azad.ac.ir


282 
 

   Alder et al., (2002) have classified the rankings models into six groups as: 1) cross efficiency 

method; 2) super efficiency method; 3) benchmark ranking method; 4) multi-variable statistical 

methods; 5) non-efficient units ranking method by using relative values of non-efficiency dominance; 

6) methods based on complementary data, including data related to the preferences of decision-

makers and also the data related to the combination of multi-criteria decision-making approaches and 

DEA.  

   Sun et al., (2013) have classified ranking approaches into two main categories as cross efficiency 

methods, and the common weights methods. The first category provides a peer-evaluation score rather 

than a self-evaluation score. Then, by calculating the mean of optimal weights, a set of weights can be 

obtained. Kao and Hung (2005) claimed that cross efficiency methods did not consider all data in 

inputs and outputs and it was very likely that no DMU was recognized as efficient unit. The second 

category includes methods which are involved to calculate common weights. 

   Hosseinzadeh Lotfi et al. (2013) reviewed the literature of ranking models in DEA. Hossenzadeh 

Lotfi et al. (2013) divided the ranking models in DEA into seven groups as cross-efficiency matrix, 

optimal weights obtained from multiplier model of DEA, super-efficiency methods, benchmarking 

through setting a target for inefficient units, multivariate statistical techniques, ranking inefficient 

units through proportional measures of inefficiency, multiple-criteria decision methodologies 

combined with the DEA technique, and other methods of ranking units. 

   Sun et al. (2013) have classified ranking approaches into two main categories as cross efficiency 

methods, and the common weights methods. The first category provides a peer-evaluation score rather 

than a self-evaluation score. Then, by calculating the mean of optimal weights, a set of weights can be 

obtained. Kao and Hung (2005) claimed that cross efficiency methods did not consider all data in 

inputs and outputs and it was very likely that no DMU was recognized as efficient unit. The second 

category includes methods which are involved to calculate common weights.  

   In this paper, a ranking method is proposed. The ranking method of this study has four main 

properties: 

   1) using common weight methodology to reduce the chance of inefficient DMUs to be evaluated as 

efficient; 2) defining virtual ideal and anti-ideal DMUs in a unique model concurrently to improve the 

discrimination power and to make exterior target based on observed DMUs; 3) providing full ranking 

for even production possibility sets (PPS) with low number of DMUs; 4) handling for zero and non-

positive data; 5) Ranking all DMUs in a single run which reduces the computational efforts 

effectively. The properties of the model of this study including convexity, feasibility, and optimality 

are discussed through several theorems. The applicability and efficacy of proposed approach is tested 

by several numerical examples. The results of proposed approach and those of existing methods are 

compared. 

   The rest of the paper is organized as follows. In section 2, the literature of relevant past research 

works is briefly reviewed. In section 3, the proposed ranking model and its theoretical properties are 

developed. In section 4, four numerical examples adopted from literature are solved using the 

proposed approach. The results of the model of this study are compared with those existing 

approaches in the literature to illustrate the applicability and efficacy of the proposed approach. In 

section 5, an algorithmic procedure is developed to handle the cases including negative and zero 

inputs/outputs. An illustrative example is also provided in Section 5 to demonstrate the applicability 

of proposed algorithm for zero and negative inputs/outputs. A statistical analysis is also described in 

section 5 in order to compare the performance of model of this study with existing methods in the 

literature. Finally, the paper will be concluded in section 6 with a brief summary, research findings, 

and contribution of the research, research limitations, managerial implications, and suggestions for 

future research. 

 

2-Literature of Past Works 
   In this section literature of relevant past research works are reviewed and discussed.  

  

2-1-Ranking Approaches in DEA  
   Unfortunately, classic DEA models may suffer from a critical problem called weak discrimination 

power. For production possibility sets (PPSs) which include low number of DMUs in comparison 
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with number of inputs and outputs, several DMUs may be assessed as efficient with efficiency score 

equal to one. Experimentally, as a rule of thumb, the relation 3 ( )n m s  should be satisfied for 

an acceptable discrimination power in a DEA models, where n is number of DMUs, m is number of 

inputs, and s is number of outputs. Several ranking procedures have been proposed to overcome the 

above mentioned issue. The most notable ones are Andersen and Petersen’s (1993) super-efficiency 

model, and the slack-based measure introduced by Tone (2002). Zhu (2001) discussed and reviewed 

the use of super-efficiency approach in data envelopment analysis (DEA). Amirteimoori (2007) 

proposed an alternative efficiency measure by using efficient and anti-efficient frontiers. 

Jahanshahloo et al. (2010) proposed two ranking methods. In the first method, an ideal line was 

defined and common set of weights was determined for efficient DMUs. In the second method, a 

special line was defined. Then all efficient DMUs were compared with it. 

   Lee et al. (2011) developed a two-stage process for calculating super-efficiency scores. The 

proposed approach examined whether the standard VRS super-efficiency DEA model was infeasible. 

When the model was feasible, the proposed approach by Lee et al. (2011) yielded super-efficiency 

scores that were identical to those arising from the original model. Under the super-efficiency model 

for efficient infeasible DMUs, the proposed approach by Lee et al. (2011) yielded super-efficiency 

scores that characterized input savings and/or output surpluses. Chen and Liang (2011) decreased the 

computation burden of model proposed by Lee et al. (2011) and proposed a single DEA-based model 

in order to check the infeasibility of a standard VRS super-efficiency model. 

   Noura et al. (2011) presented a super-efficiency method by which units that were more effective and 

useful in society had better ranks. In fact, in order to determine super-efficiency using the method by 

Noura et al. (2011), the effectiveness of each unit in society was considered rather than the cross-

comparison of the units. Noura et al. (2011) divided the inputs and outputs into two groups, desirable 

and undesirable, at the discretion of the manager, and assigned weights to each input and output. 

Noura et al. (2011) determined the rank of each DMU according to the weights and the desirability of 

inputs and outputs. Khalili-Dmaghani et al. (2011) proposed a hybrid approach based on fuzzy DEA 

and simulation to measure the efficiency of agility in supply chain. Khalili-Dmaghani et al. (2011) 

used a simulation based approach in order to rank the DMUs in presence of uncertain data. Lee and 

Zhu (2011) proposed a super-efficiency ranking approach for variable return to scale (VRS) 

conditions.  

   Foroughi (2013) proposed a generalized model to find most BCC-efficient DMU. The proposed 

approach by Foroughi (2013) was applicable for all assumptions of returns-to-scale. Chen (2013) 

proposed a super-efficiency approach to rank efficient DMUs using slack based measure (SBM). 

Based on proposed approach by Chen (2013) simultaneous computation of SBM scores for inefficient 

DMUs and super-efficiency for efficient DMUs were achieved.  

   Chen et al. (2013) addressed the problem of infeasibility in conventional radial super-efficiency 

DEA models under VRS. Chen et al. (2013) developed a measure of super-efficiency based on a 

directional distance function to resolve this problem. Chen et al. (2013) proposed a model to modify 

the directional distance function by selecting proper feasible reference bundles. As a result, the 

modified VRS super-efficiency model proposed by Chen et al. (2013) successfully addressed the 

infeasibility issues occurring either in conventional VRS models or in the super-efficiency model. 

Recently, Oukil and Amin (2015) proposed a ranking method based on cross-evaluation, preference 

voting and ordered weighted averaging in order to improve the discrimination among DMUs while 

offering more flexibility to the decision process. They applied the proposed approach on an example 

involving 15 baseball players. Khodabakhshi and Aryavash (2015) proposed an equitable method for 

ranking DMUs based on minimum and maximum efficiency values in DEA. 

   Tavassoli et al. (2015) integrated slacks-based measure (SBM), strong complementary slackness 

condition (SCSC), and data envelopment analysis–discriminant analysis DEA–DA to improve the 

discrimination power of classic DEA models. They applied the approach in a case study of electricity 

distribution units.  

   Oral et al. (2015) used the benefit of multiple optimal solutions in DEA in order to develop a cross-

efficiency method that was most appreciative for all DMUs being cross-evaluated by all others. They 

proved the theoretical superiority of proposed model and illustrated its applicability using benchmark 

instances adopted from literature. 
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   Wu el al. (2015) proposed a cross-efficiency evaluation approach based on Pareto improvement, 

which contained two models (Pareto optimality estimation model and cross-efficiency Pareto 

improvement model) and an algorithm. The Pareto optimality estimation model was used to estimate 

whether the given set of cross-efficiency scores were Pareto-optimal solutions. If these cross-

efficiency scores were not Pareto optimal, the Pareto improvement model was used to make cross-

efficiency Pareto improvement for all the DMUs. 

   Hinojosa et al. (2017) proposed a new approach based on the Shapley value, for ranking efficient 

DMUs. They formulated the problem for a radial, input-oriented with constant returns to scale (CRS) 

DEA model. Liu (2018) proposed a new ranking method based on cross-efficiency and signal-to-noise 

(SN). In order to overcome the difficulties caused by the possible existence of multiple optimal 

weights for the DEA, he considered cross-efficiency intervals and their variances to rank all DMUs.  

   Rezaeiani and Foroughi (2018) introduced the concept of the reference frontier share and developed 

a measure for ranking efficient DMUs. One advantage of this approach to other existing ones is that  it 

can rank the extreme and non-extreme efficient units. Amirkhan et al. (2018) proposed a fuzzy-robust 

approach to overcome the difficulties and limitations associated with the problems having values for 

the inputs and outputs of DMUs.   

 

2-1-Common weight approaches in DEA 
   In classic DEA analysis a set of linear programming should be solved in order to achieve the 

efficiency scores of all DMUs. More formally n LPs should be solved to achieve the efficiency scores 

of all DMUs in PPS, where n is number of DMUs. In each run, the DMU, which is under assessment, 

is set free to determine the weights of inputs and outputs criteria in a way that its efficiency score is 

maximized. This procedure is useful as if a DMU is not efficient with DEA in presence of such 

freedom, will also not be efficient with any other method. Although a main shortage is occurred. The 

weight of inputs and outputs are different through runs of DEA. So, this freedom may cause an 

inefficient DMU is assessed as efficient. Several research works have been dedicated to address this 

concern. Among them the following researches are interesting to be mentioned here. 

   Jahanshahloo et al. (2005) proposed a common set of weights (CSW) approach by means of solving 

only one problem. Jahanshahloo et al. (2005) also presented a method for ranking DMUs. Cook and 

Zhu (2007) proposed a CSW approach in order to evaluate a set of DMUs which might be under 

management of certain team. Under such conditions, the multipliers of inputs and outputs were 

equally set. Cook and Zhu (2007) developed a goal-programming model to calculate common-

multiplier set. The important feature of those multiplier set was that it minimized the maximum 

discrepancy among the within-group scores from their ideal levels. Motivated by the work of Cook 

and Zhu (2007), Cook et al. (2017) proposed a new DEA-based approach for the benchmarking of 

DMUs and the setting of targets. 

   Kao (2010) proposed a CSW approach in order to calculate the Malmquist Productivity Index 

(MPI). Kao (2010) proposed the approach in order to eliminate the inconsistency caused by using 

different frontier facets to calculate efficiency in multi-period of planning. Kao (2010) proposed a 

common-weights DEA model for time-series evaluations to calculate the global MPI so that the 

productivity changes of all DMUs had a common basis for comparison. 

   Wang et al. (2011) proposed a new methodology based on regression analysis to seek a common set 

of weights to fully rank the DMUs. The DEA efficiencies obtained with the most favorable weights to 

each DMU were treated as the target efficiencies of DMUs and were best fitted with the efficiencies 

determined by common weights. Two new nonlinear regression models were constructed to optimally 

estimate the common weights. 

   Ramón et al. (2012) proposed a DEA approach based on CSW to  rank DMUs. The idea of approach 

proposed by Ramón et al. (2012) was to minimize the deviations of the CSW from the DEA profiles 

of weights. The proposed approach by Ramón et al. (2012) reduced in particular the differences 

between the DEA profiles of weights that were chosen, so the CSW method proposed by Ramón et al. 

(2012) was a representative summary of such DEA weights profiles. Ramezani-Tarkhorani et al., 

(2014) showed that the criteria used by Liu and Peng (2008) were not theoretically strong enough to 

discriminate among the common weight approach-efficient DMUs with equal efficiency. Moreover, 

there was no guarantee that their proposed model can select one optimal solution from the alternative 

components. The optimal solution was considered to be the only unique optimal solution. The study 
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by Ramezani-Tarkhorani et al., (2014) showed that the proposal by Liu and Peng (2008) was not 

generally correct. Toloo (2014) proposed a new basic integrated linear programming (LP) model to 

identify candidate DMUs for being the most efficient unit. Two numerical examples were illustrated 

to show the variant use of those models in different important cases. 

   Puro, Yadav and Garg (2017) proposed a new multi-component DEA (MC-DEA) approach using 

common set of weights methodology based on interval arithmetic and unified production frontier. 

Using this new methodology, they determined unique weights for measuring interval efficiencies. 

They considered imprecise data as well as undesirable outputs and shared resources. Gharakhani and 

Toloie Eshlaghy (2018) proposed a new approach for seeking a common set of weights in dynamic 

network-DEA models based on the goal programming (GP) technique. The proposed approach makes 

it possible to monitor dynamic change of the period efficiency. 

   Jahanshahloo et al. (2018) proposed a new effective method for fixed cost allocation based on the 

efficiency invariance and common set of weights.  

   Table 1 presents some selected studies in the literature regarding ranking methods, common 

weights, and multi-objective DEA models as well as the proposed model of this study. 
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Table 1. Overview of selected studies on ranking methods in DEA 
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Cross-Efficiency          High  Many    1986 Sexton et al.  

Common Weight          Medium  Single    1991 Roll et al. 

Common Weight          Low  Multiple    1992 Ganley and Cubbin  

Common Weight          Low  Single    1993 Roll and Golany  

Modifying PPS          High  Many    1993 Andersen and Petersen 

Common Weight          Low  Single    1993 Cook et al.  

Slack-Based Measure          High  Many    2002 Tone 

Critical Review of Ranking Methods in DEA-Classification of six ranking methods 2002 Adler et al. 

Common Weight          Low  Single    2005 Jahanshahloo et al. 

Goal Programming          Low  Single    2007 Cook and Zhu 

efficient & anti-efficient 

frontiers 

         High  Many    2007 Amirteimoori 

Common Weight          Low  Single    2008 Liu and Peng 

Common Weight          Low  Single    2010 Jahanshahloo et al. 

Multi-period Malmquist          Medium  Multiple    2010 Kao 

Two-Stage Ranking          High  Many    2011 Lee et al. 

Single Model Ranking          Medium  Single    2011 Chen and Liang 

Effectiveness of DMU          Medium  Many    2011 Noura et al. 

Simulation Approach          High  Many    2011 Khalili-Dmaghani et al. 

Super Efficiency          High  Many    2011 Lee and Zhu 

Regression Analysis          Medium  Multiple    2011 Wang et al. 

Min-Max Efficiency          High  Many    2012 Khodabakhshi  and Aryavash 

Profile of Weights          Medium  Multiple    2012 Ramón et al. 

Ranking all RTS          High  Many    2013 Foroughi 

Super efficiency/SBM          High  Many    2013 Chen 

directional distance function          High  Many    2013 Chen et al. 

Ideal &Anti-ideal DMU          Medium  Multiple    2013 Sun et al. 

Critical Review of Ranking Methods in DEA-Classification of ranking methods in seven groups 2013 Hosseinzadeh Lotfi et al. 

They showed that the proposal by Liu and Peng (2008) was not generally correct.   2014 Ramezani-Tarkhorani et al. 

Linear Programing          Low  Single    2014 Toloo 

Hybrid Approach          High  Multiple    2015 Oukil and Amin  

Optimistic-Pessimistic          Medium  Multiple    2015 Khodabakhshi  and Aryavash 

SBM, SCSC, DEA-DA          High  Multiple    2015 Tavassoli et al.  

Cross-Efficiency          High  Multiple    2015 Oral et al. 

Pareto Improvement          High  Multiple    2015 Wu et al. 

Combined unique model          Low  Single    - Proposed Method  
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    According to the past literature, including ranking methods in DEA, common weight approaches in 

DEA, and multi-objective approaches in DEA, there are several shortcomings and pitfalls in the 

existing methods. These issues are summarized as follows:  

(1) In order to improve the discrimination power of DEA, usually procedures including 

several models should be solved. Moreover, high computational efforts are usually required. 

(2) Ranking DMUs based on targets formed based on observed DMUs can make suitable 

drivers for all DMUs to progress. Ideal DMU can be assumed as best target formed based on 

observed DMUs while anti-ideal DMU can be assumed as worst target formed based on observed 

DMUs. There is no unique model in literature to rank DMUs based on their situation in comparison 

with both ideal and anti-ideal DMUs in the PPS. So, distance of a given DMU cannot be calculated 

simultaneously from ideal DMU and anti-ideal DMU.  

(3) The classic two-phase approaches usually distinct the efficient and inefficient DMUs in 

the first phase, and then in the second phase the efficient DMUs are ranked using an extra procedure 

in order to recognize strong efficient and weak-efficient DMUs. 

(4) Some of the existing super-efficiency approaches in the literature may have infeasibility 

issues. For instance, the most common ranking procedure by Andersen and Petersen (1993) may 

cause infeasibility issues while ranking DMUs. So, most of them required more customizations and 

extensions in order to resolve the infeasibility issues.  

(5) The ranking methods are so sensitive about return to scale conditions. Under such 

situations most of them may report infeasibility under variables return to scale (VRS) conditions. 

(6) The existing ranking method cannot handle DMUs with negative of zero data, while this 

may occur in real cases.  

In this paper, based on the method proposed by Sun et al. (2013), we are going to propose an 

approach in order to resolve the above mentioned issues. The main contributions of the proposed 

method in this study in comparison with the existing methods in the literature are summarized as 

follows: 

(1) Enhancing the discrimination power of DEA models through a single model. 

(2) Determining a common set of weights for all inputs and outputs. 

(3) Proposing a unique model in order to fully rank all DMUs in PPS with low number of 

DMUs.  

(4) Considering both ideal and anti-ideal DMUs as best and worst targets in a unique Model. 

(5) Illustrating the performance of proposed approach in comparison with existing approach 

using several numerical examples adopted from literature. 

(6) Extending the proposed approach in order to handle zero and negative data. 

(7) Ranking any number of DMUs in a single run of the model. 

(8) No sensitivity about return to scale assumptions. 

(9) No chance for generating infeasible solutions. 

 

 

3- The proposed Approach 
   In order to make a better understanding of the basis of the model of this study, the models by Sun et 

al., (2013) is revisited here briefly. 

  

3-1- Ranking models proposed by Sun et al. (2013) 
   The models proposed by Sun et al., (2013) rank DMUs through two approaches. The first approach 

is based on comparing the DMUs by an ideal decision making unit (IDMU) and the second approach 

is based on comparing the DMUs by an anti-ideal decision making unit (ADMU).  

 

3-1-1- Ranking by Ideal Decision Making Unit (IDMU) 

   Suppose n DMUs consume m different inputs to produce s different outputs which can be shown by 

xij and yrj, r=1,2, …, s; j=1,2, …, n; i=1,2, …, m, respectively. Similar to traditional DEA models, it is 

assumed that all data are positive. The data are arranged in matrices such that the input matrix has m 

rows and n columns, and the output matrix has s rows and n columns. The smallest values in each 

row of input matrix are considered as the inputs of the IDMU. In the same way, the largest values in 
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each row of output matrix are considered as the outputs of the IDMU. The IDMU can be formed as 

(1)-(3). 

 

IDMU ( ,  )i rxmin ymax  (1) 

min  |    1, ,  , ( 1, , )i ijxmin x j n i m  (2) 

max  |    1, ,  , ( 1, , )r rjymax y j n r s  (3) 

   The IDMU is assumed as reference set for other DMUs. The objective function determines the 

minimum distance between each DMU and IDMU. In the constraints, the efficiency of IDMU is 

considered to be equal to one. At the same time, each DMU seeks to maximize its efficiency score 

(Sun et al., 2013) 

 

3-1-2- Ranking by anti-ideal decision making unit (ADMU) 

   The second approach is based on comparing the DMUs by an Anti-Ideal Decision Making Unit 

(ADMU). Again, the input matrices have m rows and n columns and the output matrices have s rows 

and n columns. The largest values in each row of input matrices are considered as the inputs of the 

ADMU. The smallest values in each row of output matrices are considered as the outputs of ADMU. 

The ADMU can be formed as (4)-(6). 

 

( ,  )i rADMU xmax ymin  (4) 

max  |    1, ,  , ( 1, , )i ijxmax x j n i m  (5) 

min  |    1, ,  , ( 1, , ) r rjymin y j n r s  (6) 

   The ADMU is assumed as reference set for other DMUs. The objective function determines the 

minimum distance between each DMU and ADMU. In the constraints, the efficiency of ADMU is 

considered to be equal to one. At the same time, each DMU seeks to maximize its efficiency (Sun et 

al., 2013). 

 

3-2- Proposed approach 
   Suppose n DMUs, each one consumes m different inputs to produce s different outputs which can 

be shown by xij and yrj, r=1,2, …, s; j=1,2, …, n; i=1,2, …, m, respectively. Combining the IDMU 

and ADMU approaches considering a common weight procedure, a new integrated model is 

developed to fully rank DMUs. The proposed comprehensive model is developed as (7)-(16). 
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1

1    
m

r r

i

ymin  
(13) 

    ,     ,i i i  (14) 

   ,      ,r r r  (15) 

, ,j j free in sign j  (16) 

 

   The objective function (7) minimizes the summation of distances between DMUs and IDMU and 

the summation of distances between DMUs and ADMU, concurrently. The set of constraints (8), 

which is written for all DMUs, guaranty the relative efficiency scores of DMUs be less than or equal 

to 1 considering the IDMU. Constraints (9)-(10) express that the efficiency score of IDMU is equal to 

1. The set of constraints (11), which is written for all DMUs, guaranty the relative efficiency scores of 

DMUs be less than or equal to 1 considering ADMU. Constraints (12)-(13) express that the efficiency 

of ADMU should be equal to 1. Set of constraints (14) express that all input variables are non-

negative. Set of constraints (15) express that all output variables are non-negative. Set of constraints 

(16) defines the free in sing variables.  It is notable that ε is a non-Archimedean small positive value 

which prevents the multiplier to be zero. The proposed model (7)-(16) is linear programming and its 

global optimum solution can be achieved using existing optimization software packages.  

   The main outputs of model (7)-(16) include two different sets of common weights (i.e.,  ,     i r , 

and    ,   i r ), the sum of distances between DMUs and IDMU (i.e., 
1

n

j

j

) , and the sum of distances 

between DMUs and ADMU (i.e., 
1

 
n

j

j

). Having these data would make it possible to evaluate the 

relative efficiency of each DMU. It is worth mentioning that all these data can be achieved in a single 

run of the model while in the model proposed by Sun et al., (2013) these results should be achieved 

through running two sets of models.  

 

3-3- Theoretical properties of proposed model 
Theorem 1. The constraints of the proposed model (7)-(16) constitute a non-empty convex set. 

Proof. It is clear that the constraints of model (7)-(16) constitute a non-empty set which we call it . 

If ( , )  and ( , )  belong to , then for every 

0,1 : ( (1 ) , (1 ) )  . In the same way, if ( , )   and ( , )  

belong to , for every (0,1) : ( (1 ) , (1 ) ) . Hence,  is a convex set. 

This completes the proof of the theorem 1. 

Theorem 2. The objective function (7) of the model (7)-(16) is a convex set in the defined range. 

Proof. The Hessian matrix of the objective function (1) is a zero matrix. Since the Hessian matrix of 

the objective function (1) is positive definite, the objective function (1) is a strictly convex function. 

This completes the proof of the Theorem 2.  

Theorem 3. The model (7)-(16) is always feasible independent of values of inputs and outputs.  

Proof. Suppose an arbitrary solution of the model (7)-(16) as follows: 

i

1

m×xmi
   

n
,i i  (17) 

i

1

m×xma
   

x
,i i  (18) 

1

r×ymax
  , 

r

r r  (19) 

1

r×ym n
, 

i r

r r  (20) 
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1 1i

1 1
,

xmin ymax
j

m s
ij rj

i r r

x y
j

m r
 (21) 

1 1 i

1 1
,

ymin xmax
j

s m
rj ij

r ir

y x
j

r m
 (22) 

By substituting the equations (17), (19), and (21) into the set of constraints (8), we have:  

1 11 1i i i

1 1 1 1

m×xmin xmin ymax m
       ,  

×xmin
1, ,

m sm s
ij r

ij rj

j

rii r r

x y j
y

r
n

x

m
  

Inserting the equation (17) into the constraints (9), yields:  

1 i

1

xmi

1
1 

n

m

i

i

xmin
m

 

Using the equation (19) into the constraints (10), we get:  

1

1

yma

1
1 

xr

m

r

i

ymax
r

 

Substituting the equations (18), (20), and (22) into the set of constraints (11), we obtain: 

1 11 1i i

1 1 1 1

m×xmax ymin xmax r×ymi
     ,  

n
  1, ,

s m
rj ij

r i

m s

ij rj

i rr r

x y j n
y x

r m
 

Inserting the equation (18) into the constraints (12), yields:  

1 i

1

xma

1
max 1 

x

m

i

i

x
m

 

Using the equation (20) into the constraints (13), we get:   

1

1

ymin

1
min 1 

r

m

r

i

y
r

 

   It is clear that all constraints (8)-(13) are satisfied through proposed arbitrary solution. It is notable 

that ,j j  are free in sign variables. Thus, the solution is in the feasible region of the constraints of 

the model. Hence, independent of the inputs and outputs of the DMUs, there always exists one 

feasible solution for model (7)-(16). This completes the proof of the theorem 3. 

Theorem 4. The model (7)-(16) has an optimum solution. 

Proof. The proof of the theorem is based on the theorems (1) to (3). The  is a non-empty set based 

on theorem (1) and the objective function is strictly convex based on theorem (2). Hence, the model 

(7)-(16) is a convex linear programming. Furthermore, according to theorem (3) the model (7)-(16) 

always has at least one feasible solution. So, the solution obtained by solving the model (7)-(16) is 

optimum. 

Theorem 5. The term j j  for IDMU is equal to zero at optimality of model (7)-(16). 

According to theorem (4), we know that the model (7)-(16) is a convex linear programming, so the 

optimum solution of the model is occurred on bounds of active constraints. In a bound solution of 

linear programming the value of slacks and surplus variables of active constraints are equal to zero. 

The sets of constraints (8) and (11) can be re-written as follows: 

1 1

   ,   1, ,
m s

i ij r rj

i r

x y j n  
 

1 1

   ,    1, ,
m s

i ij r rj

i r

x y j n  
 

So,   j and j can be assumed as surplus and slack variables in sets of constraints (8) and (11), 

respectively. We know that for an efficient DMU, the weighted sum of inputs should be equal to 
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weighted sum of outputs. Hence, 
1 1

   ,   1, ,
m s

i ij r rj

i r

x y j n and
1 1

   ,    1, ,
m s

i ij r rj

i r

x y j n , 

this means that   j and j are equal to zero for such DMUs. Consequently j j  is equal to zero. 

This completes the proof of the theorem 4. 

    

4- Numerical examples  
   Four numerical examples have been taken from the literature in order to illustrate the applicability 

and efficacy of model (7)-(16). All the numerical examples are coded in LINGO software and 

executed on a Pentium 4, 2.67 GHz computer with RAM 4.0 GB using MS-Windows 7.0. The 

developed software codes for proposed approach of this study and the method proposed by Sun et al. 

(2013) are presented in Appendix A and Appendix B, respectively. 

 

4-1- First example: The Asian companies producing lead bars 
The data set of this example has been taken from Chang and Chen (2008), which was also used by 

Sun et al. (2013). 

 

Table 2. Data for first example adopted from Chang and Chen (2008) and Sun et al. (2013) 
Output Input 

DMU 
Y2 Y1 X2 X1 

84 19.385 17.446 43.08 1 

88 22.849 19.941 9.85 2 

82.4 52.693 48.461 7.92 3 

96 70.537 58.269 75.15 4 

91.92 70.769 62.148 56.92 5 

97.23 44.517 31.835 137.38 6 

90 76.308 49.231 61.54 7 

97 65.969 76.8 29.54 8 

98 153.846 138.462 289.23 9 

92 64 54.154 19.69 10 

   According to table 2, this example includes two inputs and two outputs. The inputs include the 

value of equipment in terms of one hundred thousand dollars (X1) and the value of sold goods in 

terms of million dollars (X2). The outputs include the outcome obtained by the selling in terms of 

million dollars (Y1) and the mean of output (Y2). The results of implementation of classic CCR 

model, the models proposed by Sun et al. (2013), and the proposed model (7)-(16) are presented in 

table 3.   
Table 3. The results of first example adopted from Chang and Chen (2008) and Sun et al. (2013) 

DMU 

CCR model Sun et al., (2013) proposed model of this study 

Score Rank Model(5) Rank Model(8) Rank W-MU 

score 

Rank Fi-Gama 

score 

Rank 

1 1 1 0.857 1 8.091 1 0.857 1 8.090 1 

2 1 1 0.785 2 7.416 2 0.786 2 7.417 2 

3 1 1 0.303 5 2.859 5 0.303 5 2.858 5 

4 0.799 8 0.293 7 2.771 7 0.293 7 2.769 7 

5 0.808 7 0.263 8 2.487 8 0.263 8 2.486 8 

6 1 1 0.544 3 5.134 3 0.544 3 5.131 3 

7 1 1 0.325 4 3.075 4 0.325 4 3.072 4 

8 0.722 9 0.225 9 2.124 9 0.225 9 2.123 9 

9 0.717 10 0.126 10 1.192 10 0.126 10 1.189 10 

10 1 1 0.302 6 2.857 6 0.302 6 2.855 6 
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   In the second and third columns of table 3, the values of efficiency and ranking obtained from 

traditional CCR model are presented. Based on this model, The DMUs 4, 5, 8, and 9 are inefficient 

and other DMUs are efficient. As it is clear the discrimination power of classic CCR model is weak 

in this case.  

   In the fourth to seventh columns of table 3, the values of efficiency scores and the rankings 

obtained from the model proposed by Sun et al. (2013) are presented. The ranking is done based on 

model (5) and model (8) in Sun et al. (2013). The proposed procedure by Sun et al. (2013) presents a 

full ranking for DMUs in this example. The discrimination power of the classic CCR model is 

improved.  The obtained results from the solution of both models (5) and (8) in Sun et al. (2013) is 

similar. Although Sun et al. (2013) have noted that these results are not necessarily similar for all 

cases. It is notable that two sets of models should be solved in proposed approach by Sun et al. 

(2013) and the results of both models are not merely similar. 

   In eighth to eleventh columns of table 3, the values of efficiency and the rankings obtained from the 

model (7)-(16) in this study are presented. It can be concluded from contents of Table 3 that the 

rankings obtained from the model (7)-(16) are consistent with the results of proposed models by Sun 

et al. (2013) while a single model is run. Therefore, the proposed model (7)-(16) in this study has the 

same characteristics of proposed models by Sun et al. (2013) and enhance the computational efforts. 

 

4-2- Second example: The flexible production systems 
   The data set of the second example is from Shang and Sueyoshi (1995) which was also used by Sun 

et al., (2013). 

 
Table 4. The data of second example: flexible production system (adopted from Shang and Sueyoshi (1995); 

Sun et al., (2013)) 

Output Input 
DMU 

4Y 3Y 2Y 1Y 2X 1X 

30.1 14.2 45.3 42 5 17.02 1 

29.8 13 40.1 39 4.5 16.46 2 

24.5 13.8 39.6 26 6 11.76 3 

25 11.3 36 22 4 10.52 4 

20.4 12 34.2 21 3.8 9.5 5 

16.5 5 20.1 10 5.4 4.79 6 

19.7 7 26.5 14 6.2 6.21 7 

24.7 9 35.9 25 6 11.12 8 

18.1 0.1 17.4 4 8 3.67 9 

20.6 6.5 34.3 16 7 8.93 10 

31.1 14 45.6 43 7.1 17.74 11 

25.4 13.8 38.7 27 6.2 14.85 12 

    

   As can be seen in table 4, the data set includes two inputs and four outputs. The inputs are 

operational expenses and annual amortization (X1) in terms of one hundred thousand dollars, and the 

required space for workshop in each system (X2), in terms of square feet. Outputs include the 

improvements in qualitative interests (Y1), goods which are being produced (Y2), the means of 

delayed works (Y3), and the mean of outputs (Y4). 

   The second example has been solved using models proposed by Sun et al., (2013) and the proposed 

model (7)-(16) and the results are summarized in table 5.  
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Table 5. The ranking results of second example: flexible production system (adopted from Shang and Sueyoshi 

(1995); Sun et al., (2013)) 

DMU 

Sun et al., (2013) model proposed model of this study 

Model(5) Rank Model(8) Rank W-MU score Rank Fi-Gama score Rank 

1 0.7356 3 2.6029 3 0.7356 3 2.9189 3 

2 0.8091 1 2.8622 1 0.8091 1 3.2108 1 

3 0.4989 8 1.7672 8 0.4989 8 1.9799 8 

4 0.7637 2 2.7018 2 0.7636 2 3.0304 2 

5 0.6559 4 2.3239 4 0.6559 4 2.6030 4 

6 0.3733 10 1.3188 10 0.3733 10 1.4815 10 

7 0.3882 9 1.3722 9 0.3882 9 1.5406 9 

8 0.5030 6 1.7780 6 0.5030 6 1.9960 6 

9 0.2764 12 0.9736 12 0.2764 12 1.0970 12 

10 0.3596 11 1.2704 11 0.3596 11 1.4269 11 

11 0.5352 5 1.8935 5 0.5352 5 2.1238 5 

12 0.5006 7 1.7726 7 0.5006 7 1.9864 7 

 

   In the second to fifth columns of table 5, the value of efficiency scores and the rankings obtained 

from the models proposed by Sun et al. (2013) are presented. It is clear that the full ranking is 

achieved and the discrimination power of the model is very high as a distinctive rank is assigned to 

each DMU. The ranking of models proposed by Sun et al. (2013) are similar. In sixth to ninth 

columns of table 5, the values of efficiency and the rankings obtained from the proposed model (7)-

(16) are presented. The rankings obtained from the proposed model (7)-(16) are consistent with the 

results of models proposed by Sun et al. (2013). These results achieved through a single run which 

decreases the computational efforts of proposed model (7)-(16) in comparison with models proposed 

by Sun et al. (2013). 

 

4-3- Third example: The efficiency of 15 baseball players 
   This example is adopted from Washio and Yamada (2013). According to Table 6, the data set of 

this example includes one input and three outputs for each baseball player. The input (X1) is the 

number of presence. The outputs are all bases (Y1), run bats (Y2), and possessed bases (Y3).  

 
Table 6. The data for third example: baseball players' example (adopted from Washio and Yamada (2013)) 

Output Input 
DMU 

Y3 Y2 Y1 X1 

1 15 52 133 1 

5 20 34 118 2 

8 12 52 147 3 

3 19 55 158 4 

2 7 48 139 5 

14 17 65 168 6 

1 12 33 98 7 

5 12 43 119 8 

2 17 47 146 9 

5 14 42 114 10 

10 4 38 151 11 

3 17 44 144 12 

19 12 28 138 13 

5 6 38 120 14 

2 14 45 141 15 
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   This example has also been solved using classic CCR model, models proposed by Washio and 

Yamada (2013), and the proposed model (7)-(16) in this study. The results are summarized in table 7.  

 
Table 7. The ranking results of baseball players' example (adopted from Washio and Yamada (2013)) 

DM

U 

CCR model Washio and Yamada (2013) proposed model of this study 

Score Ran

k 

Aggressive 

cross 

efficiency 

Rank 

Rank based 

cross 

 efficiency Rank 

W-MU 

score 
Rank Fi-Gama 

score 
Rank 

1 1.000

0 

1 3 5 0.589 1 2.346 1 

2 1.000

0 

1 5 3 0.434 13 1.729 13 

3 0.911

3 

9 7 7 0.533 5 2.122 5 

4 0.951

7 

6 6 6 0.525 6 2.089 6 

5 0.884

3 

11 12 14 0.521 7 2.072 7 

6 1.000

0 

1 1 1 0.583 2 2.321 2 

7 0.938

4 

7 8 9 0.508 8 2.020 8 

8 0.932

5 

8 4 4 0.545 4 2.168 4 

9 0.895

2 

10 9 10 0.485 9 1.932 9 

10 1.000

0 

1 2 2 0.555 3 2.211 3 

11 0.711

3 

15 15 15 0.379 14 1.510 14 

12 0.873

2 

12 10 11 0.461 12 1.833 12 

13 1.000

0 

1 14 8 0.306 15 1.217 15 

14 0.814

8 

14 13 13 0.477 11 1.900 11 

15 0.839

5 

13 11 12 0.481 10 1.915 10 

 

   In the second and third columns of table 7, the efficiency scores and rankings obtained from CCR 

model are presented, respectively. Based on CCR model, DMUs 1, 2, 6, 10, and 13 are evaluated 

efficient and other DMUs are evaluated inefficient. CCR model cannot distinguish the efficient 

DMUs. 

   In the fourth and fifth columns of table 7, the rankings obtained from cross efficiency models 

proposed by Washio and Yamada (2013) are presented. Unfortunately, the ranking results of 

proposed models by Washio and Yamada (2013) are not similar. In the sixth to ninth columns of 

table 7, the value of efficiency scores and the ranking obtained from the proposed model (7)-(16) of 

the current research are presented. It is clear that the rankings achieved through both ideal and anti-

ideal approaches are similar. But, the rankings achieved by proposed model (7)-(16) are dissimilar to 

the rankings of the model proposed by Washio and Yamada (2013), because these two models are 

inherently different. 

 

4-4- Fourth example: The efficiency of 12 decision-making units 
   This example is adopted from a study conducted by Khodabakhshi and Aryavash (2012). 

According to Table 8, the data of this example include three inputs and two outputs for DMUs.  
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Table 8. The data for fourth example: adopted from Khodabakhshi and Aryavash (2012)  

Output Input 
DMU 

Y2 Y1 X3 X2 X1 

751 67 9 39 350 1 

611 73 8 26 298 2 

584 75 7 31 422 3 

665 70 9 16 281 4 

445 75 6 16 301 5 

1070 83 17 29 360 6 

457 72 10 18 540 7 

590 74 5 33 276 8 

1074 75 5 25 323 9 

1072 74 6 64 444 10 

350 25 5 25 323 11 

1199 104 6 64 444 12 

 

   This example has been solved using the proposed model by Sun et al., (2013) and the proposed 

model (7)-(16). The results are presented in table 9. 

 
Table 9. The ranking results of fourth example: adopted from Khodabakhshi and Aryavash (2012) 

DMU 

proposed model of this study Sun et al., (2013) 

W-MU 

score 

Rank Fi-Gama 

score 

Rank Model 5  Rank Model 8  Rank 

1 0.508 8 3.311 6 0.508 8 3.311 6 

2 0.650 4 3.163 8 0.650 4 3.163 8 

3 0.471 9 2.135 10 0.471 9 2.135 10 

4 0.661 2 3.651 5 0.661 2 3.651 5 

5 0.661 3 2.281 9 0.661 3 2.281 9 

6 0.612 7 4.586 2 0.612 7 4.586 2 

7 0.354 11 1.306 12 0.354 11 1.306 12 

8 0.711 1 3.298 7 0.711 1 3.298 7 

9 0.616 6 5.130 1 0.616 6 5.130 1 

10 0.442 10 3.725 4 0.442 10 3.725 4 

11 0.205 12 1.672 11 0.205 12 1.672 11 

12 0.622 5 4.166 3 0.622 5 4.166 3 

 

   In the second to fifth columns of table 9, the results of the proposed model (7)-(16) (7-16) are 

presented. In the sixth to ninth columns of Table 9, the results of the models suggested by Sun et al. 

(2013) are shown. There are two important points about these results. First, the two models have 

produced similar results. Second, a comparison between the data mentioned in the third and fifth 

columns (also seventh and ninth columns) of Table 9 shows that the results obtained from the two 

approaches are not similar. This example shows that the similarity of the rankings does not 

necessarily occur in all examples. This case was not addressed by Sun et al., (2013). Sun et al., 

(2013) argue that the results of their model are often similar. They cannot give an exception in this 

area. So we can conclude that the proposed approach by Sun et al., (2013) may also present 

conflictive ranks. The fourth numerical example provides clear evidence for this claim. 

   In this Section, four benchmark instances were solved using different procedures, including the 

proposed model (7)-(16). The results showed that the proposed model (7)-(16) is comparable with 

existing methods in the literature while the computations burden has substantially been decreased. On 

the other hand the most similar model to ours is the model proposed by Sun et al. (2013) which 

required to solve two models one for ideal and the other for anti-ideal cases in order to summarize the 
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result. The proposed model of this study is a unique model incorporating both ideal and anti-ideal 

DMUs which yields to low computational and setting efforts. Moreover no conflictive ranks are 

reported by the proposed model of this study.  In the next Section, the proposed model (7)-(16) is 

extended for non-negative and zero inputs and outputs and an algorithmic procedure is developed in 

order to solve a DEA problem using proposed approach. 

   

5-The algorithmic approach for solving a DEA problem with Zero and Negative 

Data  
   The following algorithmic procedure is proposed to solve a DEA problem using proposed 

approach. 

Step 1. Pre-screening of Data. If the input and output data are all positive, go to step 3. If there exists 

at least one negative or equal to zero value go to step 2.  

Step 2. Dealing with negative or zero data. If there exists a zero value go to step 2.1. If there exist 

negative data go to step 2.2. 

Step 2.1. Zero data. In such cases, the zero data are replaced by a very small non-Archimedes value 

called . 

Step 2.2. Negative Data. Transform negative inputs and outputs using following relations (Ali and 

Seiford, 1992).  

    , ,ij ij ijX Min X X c i j  (23) 

    , ,rj ij ijY MinY Y c r j  (24) 

Where, ijX and rjY are mapping of inputs and outputs, and c is a constant value.  

Step 3. Solve the problem. Solve the problem by proposed model (7)-(16).  

Step 4. Check rankings. If both rankings are similar, then stop and report the solutions; otherwise, 

Spearman rank test should be run on different ranking series in order to check whether there is 

meaningful statistical correlation between these two ranking series. If there is significant statistical 

difference between the two ranking series, stop and report the solutions; otherwise, go to step 5. 

Step 5. Ask decision-makers’ preferences. Accomplish the Hurwicz evaluation criterion on the basis 

of certain level of optimism (Wang and Yang, 2007). 

Figure 1 illustrates the schematic algorithmic view of proposed approach.  
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Fig 1. The algorithmic approach for the proposed model 

 

 

To illustrate the application and order of the proposed algorithmic approach, an example with 

positive, negative, and zero data is presented.     

 

5-1- A numerical example with positive, negative, and zero data 
   This example is adopted from a study conducted by Sharp et al., (2007). As can be seen in table 10, 

the data of this example include two inputs and three outputs.  
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Table 10. The example with positive, negative and zero data adopted from Sharp et al., (2007) 

Output Input 
DMU 

Y3 Y2 Y1 X2 X1 

-0.44 -0.09 0.56 -0.05 1.03 1 

-0.31 -0.24 0.74 -0.17 1.75 2 

-0.21 -0.35 1.37 -0.56 1.44 3 

-3.79 -0.98 5.61 -0.22 10.80 4 

-0.34 -1.08 0.49 -0.07 1.30 5 

-0.34 -0.44 1.61 -0.10 1.98 6 

-0.43 -0.08 0.82 -0.17 0.97 7 

-1.94 -1.42 5.61 -2.32 9.82 8 

-0.37 0.00 0.52 0.00 1.59 9 

-0.18 -0.52 2.14 -0.15 5.96 10 

-0.24 0.00 0.57 -0.11 1.29 11 

-0.43 -0.67 0.57 -0.25 2.38 12 

0.00 -0.58 9.56 -0.16 10.30 13 

 

   The data of the first input (X1) are all positive. In the second input (X2), the data are negative or 

zero. The data of the first output (Y1) are all positive. The data of the second (Y2) and third output 

(Y3) are negative or zero.  

   The data of the first input and first output are all positive and do not need to be transformed. In 

order to transform the data of the second input, second output, and third output, the equations (17)-

(18) are used. The c value is set to 0.01. Table 11 presents the transformed data. 

 
Table 11. The transformed data for example with positive, negative, and zero adopted from Sharp et al., (2007) 

Output Input 
DMU 

Y3 Y2 Y1 X2 X1 

3.36 1.34 0.56 2.28 1.03 1 

3.49 1.19 0.74 2.16 1.75 2 

3.59 1.08 1.37 1.77 1.44 3 

0.01 0.45 5.61 2.11 10.80 4 

3.46 0.35 0.49 2.26 1.30 5 

3.46 0.99 1.61 2.23 1.98 6 

3.37 1.35 0.82 2.16 0.97 7 

1.86 0.01 5.61 0.01 9.82 8 

3.43 1.43 0.52 2.33 1.59 9 

3.62 0.91 2.14 2.18 5.96 10 

3.56 1.43 0.57 2.22 1.29 11 

3.37 0.76 0.57 2.08 2.38 12 

3.80 0.85 9.56 2.17 10.30 13 

 

The proposed model (7)-(16) is applied and the results are presented in table 12. 
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Table 12. The ranking results for example with positive, negative, and zero adopted from Sharp et al., (2007) 

DMU 

The proposed model 

W-MU 

score 

Rank Fi-Gama 

score 

Rank 

1 0.833 2 1.168 11 

2 0.509 7 1.629 8 

3 0.636 5 3.681 5 

4 0.000 13 12.643 3 

5 0.679 4 1.031 13 

6 0.446 8 3.433 6 

7 0.887 1 1.805 7 

8 0.048 12 2661.552 1 

9 0.551 6 1.061 12 

10 0.155 10 4.668 4 

11 0.704 3 1.221 10 

12 0.361 9 1.303 9 

13 0.094 11 20.949 2 

 

   It can be concluded form table 12 that the results of rankings based on comparison with ADMU and 

IDMU are different. Spearman rank test was conducted to check if there is meaningful significant 

correlation between these two rankings. The results of Spearman rank test are presented in table 13. 

 
Table 13. The results of Spearman correlation test related to two rankings  

 W-MU score Fi-Gamma score 

Spearman's rho 

WMUscore 

Correlation Coefficient 1.000 -.720** 

Sig. (2-tailed) . .006 

N 13 13 

FiGammascore 

Correlation Coefficient -.720** 1.000 

Sig. (2-tailed) .006 . 

N 13 13 

**. Correlation is significant at the 0.01 level (2-tailed). 

 

   The results, as shown in table 13, indicate that there is no statistically significant correlation 

between these two rankings at a confidence level of 0.99. Hence, the algorithm will go on with DM's 

preferences. The results of Hurwicz evaluation criterion (Wang and Yang, 2007) are presented in 

table 14.  
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Table 14. The ranking results of decision making units based on various levels of optimism 

DMU 

=1 =0.75 =0.5 =0.25 =0 

Hurwic

z 

Rank Hurwic

z 

Rank Hurwic

z 

Rank Hurwic

z 

Rank Hurwic

z 

Rank 

1 0.833 2 0.917 8 1.000 9 1.084 10 1.168 11 

2 0.509 7 0.789 10 1.069 8 1.349 8 1.629 8 

3 0.636 5 1.397 4 2.158 5 2.920 5 3.681 5 

4 0.000 13 3.161 3 6.321 3 9.482 3 12.643 3 

5 0.679 4 0.767 11 0.855 11 0.943 12 1.031 13 

6 0.446 8 1.193 6 1.940 6 2.686 6 3.433 6 

7 0.887 1 1.116 7 1.346 7 1.576 7 1.805 7 

8 0.048 12 665.424 1 1330.80

0 
1 1996.17

6 
1 2661.55

2 
1 

9 0.551 6 0.678 12 0.806 13 0.934 13 1.061 12 

10 0.155 10 1.283 5 2.411 4 3.540 4 4.668 4 

11 0.704 3 0.834 9 0.963 10 1.092 9 1.221 10 

12 0.361 9 0.597 13 0.832 12 1.068 11 1.303 9 

 

   Table 14 implies that the result of Hurwicz evaluation is equal to ranking of IDMU when the 

optimism level is set equal to 1. The result of Hurwicz evaluation is equal to ranking of ADMU when 

the optimism level is set equal to 0. Other rankings are also achieved based on optimism level 0.75, 

0.5, and 0.25.    

 

6- Conclusion 
   In classic DEA models, a full analysis of efficiency scores requires solving a linear programming 

for each DMU. One of the problems of classic DEA models is that each DMU can select its desired 

weights in order to maximize its relative efficiency score. So, the weights of inputs and outputs may 

vary during different runs. Therefore, the efficiency of DMUs are measured by different weights, 

which is assumed as one of the shortages of the classic DEA models. In this way, there exists the 

probability of evaluating several inefficient DMUs as efficient. Another problem is that the different 

efficient DMUs cannot be distinguished; consequently a full ranking cannot be achieved and 

discrimination power of classic models reduces. To overcome these problems, the researchers have 

proposed a lot of models which rank DMUs by using different approaches including the set of 

common weights. The current research was an attempt to develop a more efficient comprehensive 

approach to rank DMUs by comparing them with dummy Ideal DMU and virtual Anti-Ideal DMU, 

concurrently. The main contributions of the this research in comparison with the existing approaches 

such as Sun et al., (2013) were the concurrent usage of: 1) the common weight method in order to 

reduce the chance of inefficient DMUs to be evaluated as efficient; 2) virtual ideal and anti-ideal 

DMUs concurrently to improve the discrimination power of DEA models; 3) a full ranking method to 

rank the production possibility sets (PPS) with low number of DMUs; 4) an algorithmic approach to 

handle DMUs with non-positive and zero inputs/outputs; 5) Ranking all DMUs in a single run which 

reduced the computational efforts effectively. Moreover, the proposed approach had no sensitivity 

about return to scale assumptions. It ranked any number of DMUs in a single run and this caused low 

computational efforts. It is shown that the proposed method generates at least one feasible solution 

independent of the value of inputs and outputs. Finally, its performance was tested using several 

numerical examples adopted from literature.  

   The properties of the proposed approach were discussed through several theorems. The applicability 

and efficacy of proposed approach was tested by four benchmark numerical examples adopted form 

the relevant literature. A numerical example with negative and zero data was also solved using 

proposed approach. The results of proposed approach and those of existing methods were compared. 

The results show that the proposed approach was reliable, promising, and competitive among the 

existing methods while the computational burden of the proposed approach was less than existing 

methods.  

   In general the number of linear programming (LP) required to be solved for a full ranking analysis 

in DEA is assumed as the main computational difficulty. In comparison with classic ranking method 
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in DEA, the number of required LPs to be solved is very limited in the proposed method of this study. 

Moreover, in comparison with the recent approaches such as Sun et al. (2013), the proposed method 

of this study has some benefits. The model proposed by Sun et al. (2013) is required to be 

distinctively solved for both ideal and anti-ideal cases in order to summarize the result. We have also 

shown that the ranks achieved by Sun et al. (2013) may be conflictive.  While the proposed model of 

this study uses a unique model incorporating both ideal and anti-ideal DMUs which yields to low 

computational and setting efforts. Moreover, as in a single run all ranks are achieved, so no conflictive 

ranks are reported by the proposed model of this study.  

   The proposed model of this study does not consider the slack variables into account. The slack 

variables can give more accurate information on ranks of DMUs whenever similar ranks are seen. So 

the same rank was not reported for none of the numerical examples. The proposed model of this study 

was developed considering no-orientation toward inputs or outputs, while in real cases ranking may 

be done considering a certain orientation in presence of some constraints or preferences. The distances 

of given DMU form both ideal and anti-deal DMUs is the basis of ranking score of the DMU. There is 

no parameter in the model to tune the sensitivity of a unit of distance from ideal and anti-ideal DMUs 

and a unit of both distances has the same value. The proposed model of this study can handle crisp 

data, while in real problems uncertainty in form of fuzzy and random data is a main challenge. 

   As mentioned before, ranking methods in DEA usually suffer from heavy computational efforts 

such as high number of LPs needed to be solved in order to make the analysis complete. This situation 

is not interesting based on managerial perspective. The proposed model of this study can rank any 

number of DMUs in a single run. Even the PPSs with low number of DMUs can be ranked by the 

proposed method of this study. This property make the usage of the proposed approach more general 

and it fits with a large number of real life and managerial applications. High sensitivity and 

infeasibility are other issues may occur in real life applications of ranking procedures. The proposed 

method of this study assures feasible solutions independent of the values of inputs and outputs. 

Conflictive ranking is another issue which reveals in real life application. No conflictive rank is 

generated by proposed method of this study, so it can be easily used in any managerial application 

such as project selection, portfolio selection, human resource performance assessment, energy 

planning, healthcare evaluation, and economy and banking performance measurement in which 

ranking is important.   

   Ranking DMUs considering a virtual target formed based on observed DMUs provides more 

accurate benchmarking pattern while the best observed DMU in the PPS should also improve itself. 

This means that we are not focusing to rectify all DMUs with the best observed DMU as was done in 

classic ranking method but we are pushing all DMUs, including the best observed one toward a virtual 

target formed based on observed DMUs. This property of proposed approach provides a sense of 

improvement and dynamics for all DMUs in managerial systems. Moreover, in some managerial cases 

we may interest to rank the DMUs not only based in their distance from ideal DMU but the distance 

from anti-ideal (the worst case) is important. The risk seeker mangers would like to rank DMUs based 

on the best observed DMU while the risk averse managers would like to rank DMUs based on the 

worst observed DMUs. The proposed approach of this study include both insights in order to rank 

DMUs.  

   In future investigations it might be possible to consider uncertainty in data through intervals, fuzzy, 

or probabilistic data. Incorporating the slack variables will yield some benefits in favor of calculating 

the efficiency scores as well. Extending the proposed model of this study for specific orientation 

toward inputs or outputs will yield to more specialized applications. Incorporating a parameter in 

order to distinct the importance of distances from ideal and anti-ideal DMUs is another interesting 

research scheme.    
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Appendix A: Lingo codes for proposed approach in this study 
MODEL: 

SETS: 

DMU/1..10/:SIGMA,DELTA; 

INPUT/1..2/:W,Xmin,Xmax,Fi; 

OUTPUT/1..2/:MU,Ymax,Ymin,Gamma; 

LINK1(INPUT, DMU):X; 

LINK2(OUTPUT, DMU):Y; 

ENDSETS 

DATA: 

X=@OLE('D:\DEA-MODEL-EX1.xlsx','X'); 

Y=@OLE('D:\DEA-MODEL-EX1.xlsx','Y' ); 

EPSILON=0.000001; 

ENDDATA 

! The objective function of EXTENDED model;  

MIN=@SUM(DMU(J): SIGMA(J))+@SUM(DMU(J): DELTA(J)); 

! The constraints of EXTENDED model; 

@FOR(INPUT(I): 

Xmin(I)=@MIN(DMU(J): X(I,J)); 

Xmax(I)=@MAX(DMU(J): X(I,J)) 

); 

 

@FOR(OUTPUT(R): 

Ymax(R)=@MAX(DMU(J): Y(R,J)); 

Ymin(R)=@MIN(DMU(J): Y(R,J)) 

); 

 

@FOR(DMU(J): 

@SUM(INPUT(I):W(I)*X(I,J))-SIGMA(J)=@SUM(OUTPUT(R):MU(R)*Y(R,J)); 

@SUM(INPUT(I):Fi(I)*X(I,J))+DELTA(J)=@SUM(OUTPUT(R):Gamma(R)*Y(R,J)) 

); 

 

@SUM(INPUT(I):W(I)*Xmin(I))=1; 

@SUM(INPUT(I):Fi(I)*Xmax(I))=1; 

 

@SUM(OUTPUT(R):MU(R)*Ymax(R))=1; 

@SUM(OUTPUT(R):Gamma(R)*Ymin(R))=1; 

 

@FOR(INPUT(I): 

 W(I)>= EPSILON; 

 Fi(I)>= EPSILON 

); 

 

@FOR(OUTPUT(R): 

 MU(R)>= EPSILON; 

 Gamma(R)>= EPSILON 

); 

 

DATA: 

@OLE('D:\DEA-MODEL-EX1.xlsx','B8:E8')=@WRITEFOR(INPUT(U): W(U),MU(U));  

@OLE('D:\DEA-MODEL-EX1.xlsx','B10:E10')=@WRITEFOR(OUTPUT(k): Fi(k),Gamma(k));  

@OLE('D:\DEA-MODEL-EX1.xlsx','B13:K13')=@WRITEFOR(DMU(J): @Sum(OUTPUT(R): 

MU(R)*Y(R,J))/(@SUM(INPUT(I):W(I)*X(I,J))));  

@OLE('D:\DEA-MODEL-EX1.xlsx','B15:K15')=@WRITEFOR(DMU(J): @Sum(OUTPUT(R): 

Gamma(R)*Y(R,J))/(@SUM(INPUT(I):Fi(I)*X(I,J))));  
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ENDDATA 

END 

Appendix B: Lingo Codes for Method proposed by Sun et al., 2013  

 

MODEL: 

SETS: 

DMU/1..12/: SIGMA,finsol; 

INPUT/1..3/:W,Xmin; 

OUTPUT/1..2/:MU,Ymax; 

LINK1(INPUT, DMU):X; 

LINK2(OUTPUT, DMU):Y; 

ENDSETS 

DATA: 

X=@OLE('D:\DEA-MODEL-EX4-1.xlsx','X'); 

Y=@OLE('D:\DEA-MODEL-EX4-1.xlsx','Y' ); 

EPSILON=0.000001; 

ENDDATA 

 

SUBMODEL OBJmodel3: ! the objective function of model (3) ;  

MIN=IDEALD; 

IDEALD=@SUM(DMU(J): SIGMA(J)); 

ENDSUBMODEL 

 

SUBMODEL CONSTmodel3: ! the constraints of model (3) ; 

@for(INPUT(I): 

Xmin(I)=@min(DMU(J): X(I,J)) 

); 

@for(OUTPUT(R): 

Ymax(R)=@max(DMU(J): Y(R,J)) 

); 

@FOR(DMU(J): 

@SUM(INPUT(I):W(I)*X(I,J))-SIGMA(J)=@SUM(OUTPUT(R):MU(R)*Y(R,J)) 

); 

@SUM(INPUT(I):W(I)*Xmin(I))=1; 

@SUM(OUTPUT(R):MU(R)*Ymax(R))=1; 

@FOR(INPUT(I): 

 W(I)>= EPSILON 

); 

 

@FOR(OUTPUT(R): 

 MU(R)>= EPSILON 

); 

 

@FOR(DMU(J):  

 SIGMA(J)>= 0 

); 

ENDSUBMODEL 

 

 

CALC: 

@SOLVE(OBJmodel3,CONSTmodel3); 

ENDCALC 

 

DATA: 

@OLE('D:\DEA-MODEL-EX4-1.xlsx','B9')=@WRITEFOR(INPUT(t): W(t)); ! only for Model3; 

@OLE('D:\DEA-MODEL-EX4-1.xlsx','B12')=@WRITEFOR(OUTPUT(p): MU(p)); ! only for Model3; 

@OLE('D:\DEA-MODEL-EX4-1.xlsx','B14')=@WRITE(IDEALD); ! only for Model3; 

ENDDATA 

END 


