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Abstract
Scheduling for a two-stage production system is ohehe most common
problems in production management. In this producsystem, a number of
products is produced and each product is assemtiadf set of parts. The parts
are produced in the first stage that is a fabocatstage and thenthey are
assembled in the second stage that usually issamdsy stage. In this article the
first stage assumed as a hybrid flow shopwith idahparallel machines and the
second stage will be an assemble work station. bjective functionsare
considered that are minimizing the makespan, andinmding the sum of
earliness andtardiness of products.At first theblenm is defined and its
mathematical model is presented. Since the corsidgsroblem is NP-
hard,themulti-objective genetic algorithm (MOGA)used to solve this problem
in two phases. In the first phase the sequencehefproducts assembly is
determined and in the second phase the parts bfgraducts is scheduled to be
fabricated. In each iteration of the proposed atlgor, the new population is
selected based on non-dominance rule and fithetse.vdo validate the
performance of the proposed algorithm, in termsadfition quality and diversity
level, various test problems are designed and éliability of the proposed
algorithm is compared with two prominent multi-otfjge genetic algorithms,
i.e. WBGA, and NSGA-IIl. The computational result®w that the performance
of the proposed algorithms is good in both efficieand effectiveness criteria. In
small-sized problems, the number of non-dominadgtien come out from the
two algorithms N-WBGA (the proposed algorithm) amdSGA-Il are
approximately equal. Also more than 90% solutioralgorithms N-WBGA and
NSGA-II are identical to the Pareto-optimal reséitso in medium problems,
two algorithms N-WBGA and NSGA-Il have approximatelan equal
performance and both of them are better than WB®BAt in large-sized
problems, N-WBGA presents the best results imalidators.
Keywords: Multi-objective Genetic algorithm, Two-stage protian system,
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1- Introduction

Two-stage assembly scheduling problem containsachining operation that fabricates and prepares
the parts (preassembly stage), and an assembly thtapjoins the parts into the products. This pobidn
system has applications in many industries, ancethie has received increasing attention from many
researchers (Sup Sung, &Juhn, 2009; Lin, &Liao,2®llahverdi, A., &Aydilek, H., 2015; Jung, Woo,

& Kim, 2017). For example Lee et al. (1993) desaditan application in a fire engine assembly plant
while Potts et al. (1995) described an applicaiiorpersonal computer manufacturing. In particular,
manufacturing of almost all items may be modeled ago-stage assembly scheduling problem including
machining operations and assembly operations (¥t et al., 2009). Despite the importance of this
problem, the review studied shows that scant attetitas been given to solve it, especially in thsecof
multiple criteria.

In this paper this problem is studiesd in whibht the machining operation is done in a hybravfl
shop and there a work station for the assemblyatioer. Two objectives are considered for this peahl
to minimizemakespan, and minimizing the sum ofieasks and tardiness of products.

Most of researches in production schedulingcarecerned with the minimization of a single cribexi
Up to the 1980s, scheduling research was mainlgertnated on optimizing single performance measures
such as makespaf{.x), total flowtime (F), maximum tardinesg,(,,), total tardinessI{) and number of
tardy jobs fit)(Arroyo, &Armetano, 2005)C.xancF are related to maximizing system utilization and
minimizing work-in-process inventories, respectyethile the remaining measures are related taljob
dates. However, scheduling problems often involwearthan one aspect and therefore require multiple
criteria analysis.In allcompanies, each particdlepartment decision makerwants to minimize a specia
criterion. For examplein a company, the commemiahager is interestedin satisfying customers agal th
minimizingthe tardiness. On the other hand, thedpetionmanager wishes to optimize the use of the
machinesby minimizing the makespan or the workrotessby minimizing the maximum flow time. Each
of these objectives is valid from a generalpoinviefn. Since these objectives are conflicting,aisoh
may perform well for one objective,but giving baglsults for the others. For this reason,scheduling
problems have often a multi-objectivenature (Loetkill. 2005; Fattahi et al. 2014).

The first study in assembly-type flow-shop salied) problem was done in 1993 (Lee et al. 1993). A
two-stage assembly flow-shop scheduling problensicieming a single objective functiod,{,,) was
studied by them. They showed that the problemr@ngty NP-complete and identified several special
cases of the problem that can be solved in polyabtinhe and suggested a branch and bound solutidn a
also three heuristics. After that Potts et al. B)%8udied and extend the problem with the samectilp
function as Lee et al. Hariri and Potts (1997) asalied the same problem as Potts et al. wittsémee
objective function and proposed a branch and balgdrithm. Cheng and Wang (1999) considered
minimizing the makespan in a two-machine flow-slscpeduling with a special structure and developed
several properties of an optimal solution and elgidioptimal schedules for some special cases.

In most studies of assembly type scheduling Iprobit is assumed that the preassembly stage has a
parallel machine format followed by an assemblygstarhis production system is named two-stage
assembly flow shop. The objective function of thegelies is single criterion such as the completiime
of all jobs. For example see Koulamas and Kypa(®7), Sung and Kim (2008), and Allahverdi and
Al-Anzi (2009). In all of these studies it has besfrown that the problem is NP-Hard, and hence wiost
them have presented some approximately solutioedoais metaheuristic algorithms.

Some studies have been done by Yokoyama (2@0WB) 2and Yokoyama et al. (2005) in the assembly
type production system in which that the reasserstalge is a two or three stage flowshop. The dbgect
function is still single criterion such asmakespargan completion time for all products, and weighte
sum of completion time ofeach product. This problsnmNP-Hard and they presented some heuristic
solutions or B&B algorithm for the special caseshaf problem.

Fattahi et al. (2012) introduced the hybrid flskwop with assembly operations for the first time012 .
Their objective function is makespan and they atersid the preassembly stage as a two-stage hybrid
flow shop and presented a mathematical model foictinsidered problem. Since the considered problem
is strongly NP-Hard, they presented some heusstigtion that can solve the problem up to 150 petslu
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and 16 parts for each product. A new hybrid impmeat algorithm for the finite capacity material
requirement planning (FCMRP) system in a flexilidevf shop with assembly operations was proposed by
Watcharapanand Teeradej (2016). The proposed tgois a hybrid of genetic algorithm (GA) and tabu
search (TS). There are six primary steps in th@gwed algorithm. In step 1, a production schedsle i
generated by variable lead-time MRP. In step Zpatthing and random rules are applied to generate
initial sequences of orders. From step 3 to stefhé&,sequences of orders are iteratively improwed b
characteristics of TS and GA. Finally, in steph& start times of operations are optimally deteeatiby
linear programming. The results validate the penfomce of the proposed algorithm.Allahverdi et al.
(2016) also studied the two-stage assembly flowstotyeduling problemwith separate setup times. Their
objective considered wasto minimize total tardin&sme new algorithms have been developed based on
different versions of simulated annealing, genetiginsertion algorithms by them.

The majority of papers on these problems havweceairated on single-objective problems, while
consideration of multiple objectives is more re@isOne of the most differences between this paper
the other similar research is the objective funttaad solving technigues.

Since multi-objective scheduling problem (MO$Mys a key role in practical scheduling, there has
been an increasing interest in MOSP according o literature. Hence, there has been a noticeable
increase in published the MOSP especiallymulti-ctibje evolutionary algorithms (MOEA).

Konak et al. (2006) and Sun et al. (2010) preskra review and prospects of multi-objective
optimization algorithms. Also Coello et al (2007%egpented a comprehensive evolutionary algorithm for
solving multi-objective problems. According thegadies, being a population-based approach, genetic
algorithms (GA) are well suited to solve multi-ottjge optimization problems. Therefore, GA has been
the most popular heuristic approach to multi-oljectiesign and optimization problems.

The first multi-objective GA, called vector euated GA(or VEGA), was proposed by Schaffer (1985).
Afterwards,several multi-objective evolutionary alighms were developedincluding Multi-objective
Genetic Algorithm(MOGA), Niched Pareto Genetic Afiglom (NPGA), Weight-based Genetic Algorithm
(WBGA), RandomWeighted Genetic Algorithm (RWGA), mminatedSorting Genetic Algorithm
(NSGA), StrengthPareto Evolutionary Algorithm (SPEAmMprovedSPEA (SPEA2), Pareto-Archived
Evolution Strategy (PAES), Pareto Envelope-basddc8en Algorithm(PESA), Region-based Selection
in Evolutionary Multiobjective Optimization (PESA)| Fast NondominatedSorting Genetic Algorithm
(NSGA-II),Multi-objective Evolutionary Algorithm (MEA),Micro-GA, Rank-Density Based Genetic
Algorithm(RDGA), and Dynamic Multi-objective EvolonaryAlgorithm (DMOEA) (Coello et al. 2007
and Konak et al. 2006).

To illustrate the novelties of this paper, thedaling items could be presented:

e To properly address the hybrid flow shop schedufingblem with assembly operation in multi-
objective condition. The goals of JIT productionmagement is added as a new objective.

» To develop a mathematical programing model forcthesidered problem.

* A new extension of MOGA with a new approach in tl@ases to solve the considered problem in
large-sized scale.

» Using both the non-dominated solutions and weightextage of the normalized objectives in the
generation transmissionof the proposed algorithm.

This paper proceeds as follows: In section &,ftoblem is described completely. The multi-olject
optimization and some common techniqueswill be esged in section 3. The proposed solving algorithm
is presented in section 4. In section 5, desigmhghe problems and Computational experiment and
results is presented. Finally, a Concluding remarkd summary of the work and direction for the fetu
research are given in section 6.
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2- Problem description

The scheduling problem for a two-stage productigstem with multi-objective criteria is considgiia
this paper. This system contains a hybrid flow sht@me followed by an assembly stage. Suppose that
several products of different kindsf)are ordered andeach product needs a set of pharts (
1,2,3,..,n;) to complete. At first, the parts are manufactured two-stage hybrid flow shop. Each part
Jj has a fixed processing tink; on stagd. The machines are identical in the hybrid flowslamd the
number of machines i&;,K, on stage one and two of the hybrid flow shop respely. After
manufacturing the parts, they are assembled intopttoducts on an assembly stage. The assembly
operationscannot be started for a product untilstiteof parts is completed in machining operatidiee
considered objective is to minimize makespan aedstim of earliness and tardine€g,{x , >n En/Th)-
Decision variables are sequence of the productset@ssembled and also sequence of the parts and
assigning them to machines in each stage of thechffow shop to be processed.

One of the applications of this problem is baadgking of car manufacturing industry. A car making
manufactory generally contains the units of proiducéngine, chassis and body. The unit of body naki
includes a press shop, assembly and painting. Té®s ghop that produces some parts such as dabrs an
roofs has usually a flow shop or hybrid flow shopfiat.

Usually in these systems the inputs contain raveri@f parts or unfinished products that are preegsn

a hybrid flow shop. When the set of parts of a pmdcomplete, they are joined on assembly stage.
Typically, buffers are located between stagesdreshtermediate products and it is supposed Heaketis

no limited in buffer storages. The number of maekim hybrid flow shop stages is free and it camde
equivalent at two stages.

2-1- Notations
The notation of the proposed problem can be inttedwas bellow:

H Total number of products
h Productindex (h=1, 2, .. H)
n Total number of parts

i Part indexj(=1, 2, ...n)
ny Total number of parts of producth£ 1, 2, .. H)
I Stage indexl€1,2)

Py Processing time of machining operations for partstagd (1=1, 2)
K, Number of parallel machines in stdge
k Machine index,

Ap Assembly time of produdt
dp Due date for delivery of produbt
M A very big and positive amount

Also variables of the mathematical model are ds\ol

xijie 1, if jobjis processed directly after jolon machine in stagd, O otherwise,

Xoiry 1, if jobi is the first job on machinkein stagd, 0 otherwise,

Xiore 1, if jobi is the last job on machine k in stdg8 otherwise,

Cj(l) Completion time of jolp in stagd,

F, Finish time of the parts fdith product and ready to assemble

Syn 0, ifall parts of product’ is ready to assemble before the parts of produetpositive amount
otherwise,

Cy, Completion time of assemble of the produict
Ep Earliness of completion time of the prodhct
Ty Tardiness of completion time of the prodhct
D Sum of earliness and tardiness of the produxts §¥_, (E,/Ty))
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The problem is to decide about sequencing of teumts and their parts, and the objective functibn
the considered problem is expressed as:

Min Z = {max(Cp) , X4=1(Ep/Tp)} OF {Crmax , D}

While D is a function of earliness and tardiness and coeapas (1)

H
D= {Z [max(0,C, — dy) + max(0,d;, — Cy)] 1)

h=1

2-2- Assumptions

(1) All parts are available at time zero.

(2) There are two series satge with some parallel mashin each stage for fabrication the parts.

(3) The parallel machines in each stage are uniform.

(4) If producth is going to be assembled before producthen, on each stage, processing of any part
of producth’ doesn't start before starting the processinglgfaats for produch.

(5) Assembly operations for a product will not startiluel parts of its product are completed.

(6) When assembly operations of a product is stadpédsn't stop until completed (no preemption in
assembly stage)

(7) There is no limited in buffer storages

2-3- Numerical example

In order to clarify the problem, consider a dienpumerical example as table 1. Assume that there
two machines at stage 1 and two machinesat stagés@. there is an assembly stage at the end of the
production system. Total number of producté/iss 3and the data for parts and their processing time of
machining operations and assembly are given ir thbl

Table 1. Processing time of machining and assembly

Products and parts

Stage ) Product 1 Product 2 Product 3
j=1  j=2 =3 j=4 =5 =6 j=7 j=8
Stage 1 4 3 3 3 2 4 3 4
Stage 2 2 3 2 3 3 2 2 2
Assembly 6 4 3
Due date 16 12 22

One solution for scheduling the products and thaits is shown in figure 1. According this solution
the products will be produced in a sequencing df2-and scheduling the parts of each product is
according their numbers in both of two stages ef ltlgbrid flow shop. This solution leads in resuit o
Ciax = 20 ,D = 5.
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I;l parts machining and assembly operations for protiuc

I;] parts machining and assembly operations for prb2uc

Ig parts machining and assembly operations for pro8uc

Fig 1. A solution of the example witd,,,, = 20 andD =5

2-4- M athematical modeling

o | 5 |Machinel 4 3 7
2lg
= | @ |Machine2| 5 6 3
S
‘E, S [Machine1 5 1 3
| ;
7 |Machine 2 2 8
Assembly
product 2 product 1 product3
with C2=1( with C1=13 with C3=2(

The mathematical definition of a multi-objectiveoplem (MOP) is important in providing a foundation
of understanding between the interdisciplinary retwf deriving possible solution techniques
(deterministic, stochastic); i.e., search algorghfrattahi et al. (2012)presented a mathematicdetfor
the assembly flexible flow shop scheduling probleitih a single objective. Their model is developed f
the considered problem in this study. Thus, thenmot one unique solution but a set of solutioresEs
set of solutions is found through the use of Pa@gitimality Theory (Coello et al. 2007).Note thatlti
objective problems require a decision maker to maké@oice ok* values. The selection is essentially a
tradeoff of one complete solutiarover another in multi-objective space.
Based on the notations, the mathematical formulaifdhe problem is presented as follows:

Mln Zl - Cmax
Subject to:

n K

z injkl =1

i=0,i#j k=1

n
injkl <1
j=0
n
n
Z Xinkl — z Xnjrr = 0
i=0,i#h

Jj=0,j#h
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i=1,2,3,....n 1=1,2
i=0,1,2,3,...,n 1=1,2
k=1,2,..,K

h=1,2,3,....,n 1=1,2
k= 1,2,... ’Kl

()
®3)

(4)

(®)

(6)



K; K;
P+ Y X X P+ X —1|xM<c® i=1,2,3,...,n j=1,2,3,....n 1=1,2 (7)
kz=1 ] J kz=1 J J
¢V +py;<c? i=1,2,3,...,n (8)
c¢? < F, vje ) , h=234,..H (9)
Fh + Ah < Ch h =1,2,3,...H (10)
Chl +Ah_Sh,h XM S Ch h,h': 1,2,3,...H ,h, i h (11)
;. = 1 lf Fh’ = Fh " — ’
Spin = {0 =t h,h=123.H,k+h (12)
Ch < Crnax h=1,2,3,...H (13)
E, > (d, — Cp) h=1,2,3,...H (14)
Ty = (Cp — dy) h=1,2,3,...H (15)
H
D= [Eh + Th] h:1,2,3,...H (16)
h=1
i=1,2,3,....n ,j=1,2,3,...,n ,I=1,2
xi]-kl € {0,1} (17)
k<12..K
¢’ >0 j=1,2,3,...,n 1=1,2 (18)
Ep >0 h=1,2,3,...H (19)
T = 0 h=1,2,3,...H (20)

Equations (2) and (3) determine the objective fionst ofthe given problem that are minimizing the
maximum completiontime (makespan) and the sum iheas and tardiness,respectively. Constraints (4)
(5) and (6) ensure that each part is processedsphgmnce at each stage. In particular, constr@ht
guarantees that at each stage | for eachjpttugtre is a unique machine such that eifher processed first
or after another job on that machine. The inegeali(5) imply that at each stage there is a machine
which a part has a successor or is processed-laslly, at each stage for each part there is owkecaly
one machine satisfying both of the previous twoditions by (6).

Constraints (7) and (8) take care of the completiimes of the parts at stage 1, 2. Inequalitiese(®ure
that the completion timeg/ andelof partsi andj scheduled consecutively on the same machine respec
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this order. Inequality (8) implies that the partstrough the stages in the right order, i.e. fsiage 1 to
stage 2. Inequalities (9) take care of the starési of the products at the assembly stage. Theidtiegs
(20), (11), and (12) express the completion timgmiducts. Inequalities (11) and (12) ensure that t
completion time of product h and h' scheduled comseely on the assembly stage respect this order.
The constraint that the makespan is not smaller tha completion time of any product is expressgd b
constraints (13). Calculating the earliness andinass is shown in equations (14), and (15), resmde
and the equation (16) presents the sum of earlameddardiness for all products. The last four taists
specify the domains of the decision variables.

3- The Multi-objective Optimization
3-1- The Multi-objective Optimization Problem

The Multi-objective Optimization ProblerfMOP) that also called multi-criteria optimizatiomulti-
performance or vector optimization problem, cardbned (in words) as the problem of finding (Coell
et al 2007):

A vector of decision variables which satisfibge tconstraints and optimizes a vector function whos
elements represents the objective functions. THesetions form a mathematical description of
performance criteria which are usually in conflidgth each other. Hence, the term “optimizes” means
finding such a solution which would give the valugfsall the objective functions acceptable to the
decision maker.

The decision variables are the numerical quastfor which values are to be chosen in an opttion
problem. These quantities are denotedjajs =1,23,..,n.

The vectorX of n decision variables is represented by:

X = (%1, %2, X3, w00, X)

Wheren indicates the number of variables.
Also the vector functiofi(x) of k objectives is represented by:

f(x) = [£; (%), £, (%), f3(%), ..., fi(¥)]

Having several objective functions, the notidriaptimum” changes, because in MOPs, the aim is to
find good compromises (or “trade-offs”) rather tharsingle solution as in global optimization. Irsth
condition the optimum concept is also changed hadhtost commonly accepted term is Pareto-optimal.
In words,X* is a solution of thePareto-optimal if there existsfeasible vectok which would decrease
some criteria without causing a simultaneous irsge@n at least one other criterion (assuming
minimization). The objective vectors correspondiofigthe Pareto-optimal solutions are termed non-
dominated. A general definition of dominance saolutis as follows (Karimi et al. 2010):

A vectorU = (uq, Uy, us, ..., Uy)is said to dominaté = (vy, vy, vs, ..., V) if and only ifU is partially less
thanV, i.e:

Vi € {1,2,3,...,k},ul- < Ui/\ﬂi € {1,2,3,...,k},ul- < ;.

When a vector is dominated by no other solutiohds icalled non-dominated vector and the non-
dominated vectors are collectively known as thesteairont. Generally in MOPs, the main goal isitalf
the Pareto-frontand the decision maker select dtigecsolution on Pareto-frontbase on more anabysis
trade-offs.

The normal procedure to generate the Paretadisramcomputemany points in solution spaamnd their
corresponding objective spa¢gé€Q). When there are a sufficient number of theses then possible to
determine the non-dominated points andto produe®#reto-front.
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3-2- The M ulti-objective Optimization techniques

There are many approaches that can be usedlidgng MOPs, that is, to find the Pareto-optimal
solutions or at least an approximation to it. Thalg®rithms can be categorized into two major eagsf
algorithms, the exact and the approximate (heasisti
Exact algorithms are guaranteed to find an optiseéition and to prove its optimality for every iaste
of an MOP. The run-time, however, often increasesnatically with the instance size, and often only
small or moderately-sized problems can be solvgutantice to provable optimality.
Two exact methods are described as below:
The linear Combination of Weights
This method combines multiple objectives into agragated scalar objective function by multiplying
each objective function by a weighting factor anctheing up all terms. The new objective functionl wil
be as (21):

Z =min¥F , w;fi(X) (21)

Subiject to:
XeQ

Wherew; > 0 for alliand};; w; = 1. By varying these weights we can find all non-doatéd points,
for problems with a convex non-dominated set.

The € — Constraint Method

Thee — Constraint is another well known technique used to solve MQirthis approach, we optimize
one of the objective functions using the other cdije functions as constraints. Then by varying
constantly the constraint bounds we can obtainaildominated points. The— Constraint problem can
be formulated as (22):

Z = min(f;(X)) (22)
Subiject to:
filX) <egfori=1,2,3,..., kandi # j

Whereg; are assumed values of the objective functions rinagt not be exceeded. The idea of this
method is to minimize one (the most preferred amary) objective function at a time, considering th
other objectives as constraints bound by some altevlevelsg;. By varying these levels;, the non-
inferior solutions of the problem can be obtained.

Heuristics are simple procedures that providedgeasible solutions in a reasonable computatioa,t
but not necessarily an optimal one. In harder mmoisl with many objectives and large instancesgxaet
algorithms might not be able to solve it or wheeyttdo it they take too much time.Hence, many
metaheuristic have been implemented to obtaina gewmdtion in acceptable time. Among these
techniques, the potential of evolutionary algorighfior solving multi-objective optimization problemss
hinted as early as the late 1960s by RosenbergsifPthD thesis (Coello et al. 2007). After that many
researcher implement the evolutionary algorithnpeeislly genetic algorithms (GAs) to solve the NP-
Hard problems.

Konak et al. (2006) presented an overview amoritd of genetic algorithms developed for problems
with multiple objectives. The first multi-objectiv@A, called vector evaluated genetic algorithm (VG
was proposed by Schaffer. After that, several rufifective evolutionary algorithms were developed a
implemented.

3-3- Fitness assignment and diver sity mechanism

Implementation of GA in multi-objective optimizationeeds two important consideratiofstness
assignmenanddiversity mechanism
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3-3-1- Fitness assignment

Fitness assignment is used to rank the solutiomsder to select the parents, doing the crossaver a
mutation operations and select the new populati@ach generation.
The simplest and classical approach to fithesgas®nt of solutions in MOGA is to assign a weight
to each normalized objective functifiiX) so that the problem is converted to a single dhje@roblem
with a scalar objective function as follows:

Min Z = w,f;(X) + w,f,(X) + ... +wifi (X)

Where f;(X) is the normalized objective functiof(X)and ¥ w; = 1. The main difficulty with this
approach is selecting a weight vector for each run.

Another fitness assignment is altering objecfiwactions. In this method the populatiBnis randomly
divided intoK equal sized sub-populatiog,, P,, ..., Pk, ). Each solution in subpopulatidhAssigns a
fithess value based on the objective fundjorSolutions are selected from these subpopulatisirsy
proportional selection for crossover and mutation.

The third technique is Pareto-ranking approached thilize the concept of Pareto-dominance in
evaluating fitness or assigning selection probabit solutions. The population is ranked accordim@
dominance rule, and then each solution is assigrfédess value based on its rank in the populafitwe

first Pareto-ranking technique was proposed by gl (Ehrgott 2005) and after that several methods
have been proposed (see Coello et al. 2007).

3-3-2- Diversity mechanism

Diversity mechanism is need to obtain solutianfformly distributed over the Pareto-front. Withou
taking preventive measures, the population tendsro relatively few clusters in multi-objective GA
This phenomenon is called genetic drift, and sé\agproaches have been devised to prevent gemnétic d
as follows.

The first approach is fitness sharing that erages the search in unexplored sections of a Ramib
by artificially reducing the fitness of solutions densely populated areas. To achieve this goakele
populated areas are identified and a penalty methosked to penalize the solutions located in suehs.
The second approach is crowding distance that @iaobtain a uniform spread of solutions along th&t-be
known Pareto-front without using a fitness shapagameter.

Finally the third approach is cell-based denditythis approach the objective space is dividded K-
dimensional cells. The number of solutions in ezalhis defined as the density of the cell, anddeesity
of a solution is equal to the density of the cellihich the solution is located. This density imfiation is
used to achieve diversity similar to the fitnesarsty approach.

4- The proposed solving algorithm
4-1- General scheme of the proposed algorithm

Multi-objective optimization was originally coeiwed with finding Pareto-optimal solutions (Pareto
1981), also called efficient solutions. Such solusi are non-dominated, i.e., no other solutiorupesor
to them when all objectives are taken into acco8imce in GA a population-based approach is usésl, i
well suited to solve multi-objective optimizationoplems, and hence several multi-objective evohaig
algorithms were developed after presenting the fimglti-objective GA by Schaffer (Coello et al. 200
Therefore a heuristic based on GA is proposedhercbnsidered problem in this paper. The pseude-cod
of the proposed algorithm is as algorithm (1):
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Algorithm 1 The pseudo code of the proposed algorit

1) Step 0: Initializatior(population size, fithess, crossover and mutatjperations
and stopping criterion)

2) Step 1: Start with an initial populatiBp and set = 0.

3) Step 2: If the stopping criterion is satisfied uretP,.

4) Step 3: Evaluate the fithess value of the poputadi®weighted sum approach.

5) Step 4:Use a stochastic selection method baseithesd value to select parents.

6) Step 5: Apply crossover and mutation on parentggeteerate child populatiod,

7) Step 6: Evaluate fitness value of fpeas weighted sum approach.

8) Step 7: Set =t + 1 and selecP, from P, andQ,according the nondominance
property and the fitness values to create new géinar(see section4.6).

9) Step 8: Gotostep 3

4-2- Solution representation

Implementation a metaheuristic needs to decife th represent and relate solutions in an effioweany
to the searching space. Representation should dyetealecode and calculate to reduce the run tiime o
algorithm. In the considered problem,several prigl(€) of different kinds are ordered to be scheduled
and produced. Each product needs a set of pgrts 1,2,3,...,n,) to complete that fabricated in a
hybrid flow shop.
According the assumption (3), If produktis going to be assembled before prodhgtthen, process
operations of all parts of the productdoesn't start before processing of all parts efgtoduck. Hence
in proposed algorithm the product and the partseahneduled in two phases separated. During phabke 1,
sequence of the products is determined and thgogeeing of the parts is done for each produchisp
2. For example consider the numerical exampleillnatrated in section 2.3 . Two steps of schedybf
this problem can be done as figure 2.

Product : Product : Product :
Phase 1:
Scheduling the product

Product : Product : Product :

Phase 2:
each product

Fig 2. An example of the two-phases scheduling

In order to coding the solutions as chromosonmesGA proposed algorithm, each solution
(sequence)isconsidered in a two-row matrix thatabeve row shows the number of products and the
below indicates the parts of the above product.example the sequence of the figure 3 is showgasdi
3.

Product number: 2 2 1 1 1 3 3 3
Part number: 4 5 1 2 3 6 1 &
Fig 3.Presentation the products and their parts as ardsome
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The schedule of the parts in each product isidened only on stage 1. After that, each partiiabse
earlier from stage 1, will process on stage 2.
The chromosome and probability of crossover andatiant is defined as below:
ChromosomeEach sequence of all products including sequenteeaf parts.
P.p,: Probability of crossover operation on productsach chromosome.
P-p, . Probability of crossover operation on the paftsach product in every chromosome.
Py p,r: Probability of mutation operation on productsach chromosome.
Pypq : Probability of mutation operation on the partgach product in every chromosome.
Crossover and mutation operation is implementedpmduct and their parts in each chromosome
separately.

4-3- Initialization

The best value of the parameters for the prapagorithm is obtained using Taguchi settings
considering plan of.,, in three levels. In order to determine the beshlmioation of these parameters,
three levels of each parameters was examined kes2ab

Table 2. The values of the parameters of hybrid proposgoridhm

parameter Number of level Test values
N 3 35,40, 45
Pcpr 3 0.95,0.97, 0.99
Pypr 3 0.05,0.07,0.1
Pypa 3 0.1.,0.15,0.2

Due to the considered problem is a two-objectiveblam, theMID index is used to determine better
solution as equation (23).
(23)

n
i=1€i

MID =

whenc; = ffj +f3 Vi =1.2...n

This index is calculated for each set of paretottmh. So, for each 27 cases of Taguchi plan a mumb
will be obtained. Based on this number, comparidtn Relative Percentage Deviation (RPD) will be
possible.

Finally, after doing experiments, the best comliamabf the parameters for the proposed algorithrs wa
determined as below:

N =40
Pcpr = 0.95
Pcpg =0
Pypr = 0.1
Pypqa = 0.2

Also, in order to reduce the run time of algorithitris better to do mutation operator only on tleets.
Hence, it supposed thBtp, = 0.

The stopping criterion is the number of iterati@msl it is considered as a variable that is equ#hao
number of products in each problem but it musttdeast 30 iterations.
The fitness value is calculated as the weighted appmoach. Hence, at first the objective functibase
to be normalized. We defing,(x) andf,;(x) as objective function for the makespan and dexiatif due
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date respectively. Therefore the normalized oféhte® objective functions for each solution is oddted
as (24) and (25):

1

() = —Im&__ (24)
X€Pt £ ()
1
falo) = 145 (25)
ZXEPt fd(x)

Finally the fitness value (fv) for each solution {x obtained as (26):

fr(x) = wy X fin () + wy X f(x) (26)

The weight ofw; andw, is assumed the same and equdl.50

4-4- Theinitial population Py
Most evolutionary algorithms use a random pracedo generate an initial set of solutions. Howeve

since the output results are strongly respondinghéoinitial set, it is better that some of thetiali
solutionsare identified as suitable rules.Hencejnitial population three solutions are determiriad
regulative as below and the others are generateonzly.

* One solution is determined based on the earliestddte (EDD) of the product.

e The second solution is determined according noreasing in assembly time.

» The third is determined according non-decreasirgggembly time.
After generation the initial sequencing for thedarots, all of the parts are scheduled randomly.

4-5- Selection, recombination and mutation

Selection is done based on the roulette-wheel Afer calculation the fitness valuév(x)) for the
solutions as equation (25), the operation of thiette-wheel is done to select the parents.
There exist a variety of crossover operators faromgbination that are suitable for the scheduling
problems. We tested some of them and finally twerafors that were selected for the proposed akgorit
are: one-point crossover (1PX), and two-point avess (2PX).
The mutation operator used here is the inserti@mnatpr, which randomly selects a product or a ipatte
sequence and inserts it in a random position oféugience.

4-6- Selection the new generation P, 4

The new generatidh,,is selected from the current generation and thepafig(P.UQ,) based on non-
dominance rule and also considering the fitnesseglln other word, first all of the solutionsofthen-
dominated set are selected for the new generatidrttee remained required solution is selected filoen
points with the more fitness value to completertbe generatiop, ;.

Figures 4 and 5 show an example of this rulsdlection a new generation. Figure 4 sh®wsthe
current generation) an@k (the offspring). As the above rule, the new getienas selected as it is shown
in figure 5.When the solutions of the non-dominasetlis more than the population size, only thbs¢ t
are maximally apart from their neighbors accordimthe crowding distance are chosen.
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Figure 6 presents a graphical illustration of cringdfor an example and the computations are done as
(27) to (29).

@ Pt (current generation) OAQt (the offspring)

I\. 0
e o °
oe o o
c o o
s o—e ® ®
2 o O o o
2 .0080. Qo
= 5 Qo OCe o e
3 o e0 o°® o
e o0 © o o
[o} o o e 00O o
© ©° o _ o° .
~ 0 fe) @

Sum of earliness and tardiness

Fig 4. Forty solutions with maximum of the fitness vahetween total parents and their offspring

@ Pt+1 (the new generation)

Makespan

Sum of earliness and tardiness

Fig 5. Selection the new generation oftotal parents heit bffspring
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O
O
F,
Fig 6. A graphical illustration of crowding
dl = fi(xiv1) — f1(xi2q) 27)
P = -
flmax _ flmm
fa(xiv1) — fo(xi—1)
dlz = - fl;lix_fzmiri - (28)
2 2
d; = d! + d? (29)

The proposed algorithm that used both the non-datméh solutions and weighted average of the
normalized objectives based on the genetic alguarithcalled as N-WBGA in this article.

5- Computational experimentsand results

In this section, the computational experimemtsarried out in order to evaluate the performaidbe
proposed algorithm. The tests have been performedadous condition of the problem. The considered
algorithms are coded in MATLAB 7/10/0/499 (R2010&he experiments are executed on a Pc with a
2.0GHz Intel Core 2 Duo processor and 1GB of RAMmogy.

5-1- Design of problems

To show the efficiency of the proposed algoritlitns necessary to design problems in a varietevef
conditions and test the proposed algorithm by thdence, the processing and assembly times have been
generated from a discrete uniform distribution watliefined range to provide three conditions: &) t
hybrid flow shop is a bottleneck, (b) the assensithyge is a bottleneck, and (c) there is a balaoaditton
between two stages. In order to evaluate the algosi, each problem has been run ten times anddsolve
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by the algorithms. In each run, the processingamsgmbly times have been generated in a defingégan
randomly.

Also, in the scheduling problems that the eadgand tardiness are considered in the objecthatibn,
the problems are designed in a variety wide of dage. Hence the researchers have considered two
significant factors consisting the tardinessghd the range of due date (R) in these probl&ftasiehi et
al. 2009). Generally, by considering these twodes;tthe due dates can be obtained as (30):

d=[(1—r—§)xM,(1—r+§)xM] (30)

Researchers usually design the problems by ahgutlge factorssandR. Moslehi et al.(2009), present
that whent = 0.2and = 0.6 , the primary jobs of the sequence have earlirmss,the remaining ones
often have tardiness. This combinatorial is considen this study and so due date of the product is
defined within a discrete uniform distribution widhrangedf0.5M , 1.1M]. Mis the maximum completion
times of all jobs that usually is obtained from exist algorithm and we use the GRASP algorithm to
obtainM.

Table 3.The test problems

Problem Problem  Number of Numberof

size name products parts K ke Pij An
Smal s1 5 2 2 1 [25,75  [50, 100
Sz 5 2 1 2 [25,75  [50, 100
sz 5 2 2 2 [25, 75 [50, 100
sS4 10 3 3 2 [25,75  [50, 100
SE 10 3 2 3 [25,75  [50, 100
SE 10 3 3 3 [25,75  [50, 100
Mediumr M1 25 5 4 3 [25, 75 [50, 100
M2 25 5 3 4 [25, 75 [50, 100
M3 25 5 4 4 [25, 75 [50 , 100
M4 50 7 5 4 [25, 75 [50, 100
M5 50 7 4 5 [25, 75 [50, 100
M6 50 7 5 5 [25, 75 [50, 100
Large L1 10C 10 6 5 [25, 75 [50 , 100
L2 10C 10 5 6 [25, 75 [50, 100
L3 10C 10 6 6 [25, 75 [50, 100
L4 15€ 12 7 6 [25, 75 [50, 100
L5 15C 12 6 7 [25, 75 [50 , 100
L6 15€ 12 7 7 [25, 75 [50, 100

The testing data is divided into the small problethe medium problems, and the large problems by
changing the parameters. The following parametersansidered to design and generate these problems
totally:

Numbers of jobsK): 5, 10, 25, 50, 100, and 150.

Number of parts for each productn,): 2, 3, 5, 7, 10, and 12.

147



Number of machinesn stages of HFSK;): 1, 2, 3, 4, 5,6, and 7.

Process time of the parts on stages 1 arP;;): generated from the discrete uniform distributvaith a

range of [25, 75].

Assembly times of a produci{): generated from the discrete uniform distributigith a range of{50,
100].

Due date fodelivery of product hd;,): generated from the discrete uniform distributiith a range of
[0.5M ,1.1M].

By combinatiorof all parameters, the problems and their datalefieed as tabl3.

5-2- Comparisons of results

This section presents the results of algorithm described in section Bach problem has been run
times by the algorithm. Théest and theaverage of results obtained of ten runs of eaclbl@no
areevaluated in this sectidime performanc of the proposed algorithm (WBGA) in solving the
problems is evaluated in comparison of the restithe mathematical model and also tpowerful
techniques WBGA and NSGA-

5-2-1-Small-sized problems

At first, the experimdnis carried out on tt small-sizedproblemd.he proposed algorithm is applied
the smallsized problems and its performance is compareddbas some comparison metrics, with
two other multiebjective genetic algorithms WBGA and NS-II. In these comparisons ttPareto-
optimalis needed that is obtained from the mathematicaleh
There are a number of methods available to comipergoerformance of different algorithms. Ral-
Vahedet al.(2007and many other researchers use the number of -solutions as a quantitati
measure of the performance of the algorithms stuudidne Overall Nondominated Vector Generatic
(ONVG), the Overall Nordominated Vector Generation Ratio (ONVGR), ferror ratio (ER), and
thegenerational distance (G@ye alo used as the performance measureindicators wherPahnet-
optimal solutions areknowiiCoello et al. 200". The comparison metrics that we implemented
explained in the next sections.

5-2-1-1- Number of pareto-optimal solutions

The first result about the performance of the psgpkalgorithm is presented in figure 7. This figt
shows the number of paretptimal solution that the proposed algorithm cofitdi in comparision o
total number. The total number is obtained by g the mathematical model. This result shows a ¢
performance of the proposed algorithm in this in

35
30

25
20
1
1
S1 S2 S3 S4 S5

S6
Problem
Fig 7. Finding paret-optimal solutions using the proposed algori

(€]

Number of pareto-optimal
o

(€]
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5-2-1-2- Overall Non-dominated Vector Generation (ONVG)
The Overall Non-dominated Vector Generation (@Y\measures the total number of non-dominated
vectors found during algorithm execution. This Bawrgon-compliant metric is defined as equation (31)

ONVG = |PFknown| (3 1)

5-2-1-3- Overall Non-dominated Vector Generation Ratio (ONVGR)

Overall Non-dominated Vector Generation Ratio (ONR)Gneasures the ratio of the total number of
non-dominated vectors founeFy,.wnduring algorithm execution to the number of vectéoand in
PF,,.,.. This metric indicator is calculated as equatig®)(

ONVGR = PFinown| (32)
|PFtrue|

WhenONVGR = 1, this states only that the same number of poiate tbeen found in botBF,,,.and
PFown- It does not infer tha®F e = PF jnown-

5-2-1-4- Error Ratio (ER)

After finishing the solving process, the numbersolutions on the finalPareto-fronP Fy,own) iS
termed as|PFy,ownl and the number of solutions on the optimumPanetotf(PF,..)is termed as
|PFyel- The Error Ratio (ER) metric reports the number solutions on the final Pareto-front
(|PFgnownl)that are not members of the optimum Pareto-fl@RF;,.1) [21]. This metricwhich is
Pareto-compliant, requires thBF,.,. iS known and that the proposed algorithm approathe Pareto-
front. In this study the lingo is used to obtaie BF,.,. for the small problems according the proposed
mathematical modeling and varying ting After determining thé® Fy,,,.»bYy proposed algorithm and the
PFuebY lingo, ER is calculated as (33).

ER — ZliFlknowM e; (33)
|PFknown|

Wheree; is one if thei™ vector ofPFy,owniS NOt an element d?F,.,.. WhenER = 1, this indicates
that none of the points iBFy,,wn are inPF,., that is none solutions outcome from the proposed
algorithm is positioned on the optimum Pareto-fr@n the other hand, whéfR = 0, the PFy,,w,iS the
same a®F -

5-2-1-5- Generational distance (GD)
The Generational Distance (GD) reports how faraeeragePF jnowniS from PF,,.... This indicator is
mathematically defined as equation (34).

/ i df (34)
- IPFknownI

Where |PFyhownliS the number of vectors iBFy,,wn, andd; is the Euclidean phenotypic distance
between each membey,of PFy,,wnand the closest memberR¥,,.,. to that member.

The values of the above indicator according the Betutions often run for each small problems is
presented as tables4 and 5.

The results show that the proposed algorithmahlastter performance in comparison to the WBGA but
the NSGA-lIpresented the best results. Accordintabde4, the number of non-dominance solution come
out from the two algorithms N-WBGA and NSGA-Il ampproximately equal. Also table 5, shows that
more than 90% solution of algorithms N-WBGA and MS{Bare identical to the Pareto-optimal result.

GD

149



Table4. Comparison of the ONVG and ONVGR

ONVG ONVGR

Problem \BGa wgc-; o NSGA WBGA ng(-B o NSGA
s1 12 14 14 1 1 1
S2 13 13 13 1 1 1
S3 19 20 21 0.90 1 1
S4 22 22 22 0.87 1 1
S5 21 22 23 0.88 0.92 1
S6 26 28 28 0.84 0.90 0.90

Table4. Comparison of the Error Ratio (ER) and Genenali®istance (GD)
ER GD

Problem \/BGa Wgé NSGA-II WBGA W:;'('s A NSGA
s1 0.14 0.00 0.00 0.21 0.00 0.00
S2 0.15 0.00 0.00 0.23 0.00 0.00
S3 0.05 0.05 0.00 0.14 0.20 0.00
S4 0.13 0.04 0.04 0.31 0.19 0.16
S5 0.17 0.08 0.04 0.34 0.18 0.17
SE 0.1€ 0.1¢ 0.1¢ 0.31 0.22 0.22

5-2-2- Medium and lar ge-sized problems

It is impossible or very time complexity for tmeedium and large-sized problems to find the Pareto
optimal solutions. Therefore, the comparison metrdhich are used in the medium and large-sized
problems must be restricted to indicators that doeéd to Pareto-optimal solutions. Hence, indkistion
two indicators Overall Non-dominated Vector Geriera{ ONVG) and Spacing (S) are used to evaluate
performance of the proposed algorithm in solvirgytMedium and large-sized problems.

5-2-2-1- Overall Non-dominated Vector Generation (ONVG)
The Overall Non-dominated Vector generation (ON\&S)was explained in section 5.2.1.1., measures
the total number of non-dominated vectors foundndualgorithm execution.

5-2-2-2- Spacing (S)

The spacing (S) metric numerically describes theagp of the vectors iBFy,qwn- IN Other word, this
indicator measures the distance variance of neigidpoectors irPFy,,wn@s equation (35).
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|PFknown|

1

—~2
S§= | —/——X Z d,—d ori,j=1,2,3,..,n
|PFknown| -1 =1 ( ' ) f J

(35)

Whered; indicates distances between tfésolution from the nearest solution to it and iscakdted as
equation (36).

d; = minj(|f1i(x) —flj(x)| + |f2i(x) - fzj(x)D fori,j=1,2,3,..,n (36)

In equation (32)f; (x) andf,(x) can be supposed as the makespan and sum of sardind tardiness in
the considered problem.

Also d is the mean of all; andn is is the number of vectors RF;own-

Table 6represents the average values of the tweealnentioned metrics in medium and large problems.
As illustrated in this table,the NSGA-II algorithimas the best performance. Also the proposed N-WBGA
shows better performance than.

Table 6. Comparison of the Overall Non-dominated Vecton&ation (ONVG) and Spacing (S)

ONVG S
Problem
WBGA N-WBGA  NSGA-II WBGA N-WBGA  NSGA-II

Medium M1 101.2 125.3 129.2 9.15 7.52 6.95
M2 100.5 131.4 1335 8.41 6.31 6.01

M3 111.8 120.9 125.8 8.93 7.08 6.78

M4 121.5 143.4 144.1 9.23 7.72 7.71

M5 119.8 145.6 145.2 9.02 6.96 7.02

M6 131.6 152.7 154.7 9.82 8.02 7.92

Large L1 158.4 195.6 197.1 11.16 9.25 8.85
L2 156.2 206.4 202.8 11.21 9.15 9.20

L3 159.6 199.7 199.2 11.52 8.95 9.05

L4 163.4 207.6 207.3 11.91 10.01 9.51

L5 168.4 209.8 211.4 11.72 10.65 10.11

L6 172.1 212.1 212.6 12.67 10.17 10.12

Table7 presents the average of computational tspegt by algorithms after 10 generations executed i
each test problem. As illustrated in this table pmoposed N-WBGA consumes less computational time
than the others in all categories of problems. Bseaf the implemented structure of the calculatidime
higher value of computationaltime of the NSGA-Iré&msonableespecially for the small-sized problems.
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Table 7. Run time of the algorithms

Algorithm
Problem
WBGA N-WBGA NSGA-II
Small 35 31 42
Medium 325 305 315
Large 1758 1476 1495

In total, the difference in computational time waftalgorithms N-WBGA and NSGA-II is insignificant.
So, the performance measures used in comparisoms thiat NSGA-II outperforms the other proposed
algorithms.

6- Conclusion and future studies

In this paper a multi-objective scheduling problevas studied for a two-stage production system
including a hybrid flow shop and an assembly stageiis production system it is assumed that sévera
products of differentkinds are ordered to be predLithe parts are manufactured in the hybrid floapsh
and then the products are assembled in the assestdije after preparing the parts. Two objective
functions are considered simultaneously that dfetd minimizing the completion time of all prodsct
(makespan), and (2) minimizing the sum of earlireess tardiness of all products;(E; / T;). Since this
problem is NP-hard, a new multi-objective algorittmased on GA was designed for searching locally
Pareto-optimal frontier for the problem. Variousttproblems were designed and the reliability & th
proposed algorithm was presented in comparison bigorithms WBGA, and NSGA-Il. The
computational results show that the performandb@proposed algorithms is good in both efficieany
effectiveness.

For the future works, we recommend to addresptbblem with uncertain processing or setup times.
Also considering this problem with a number of prod of the samekind may be interestingas a future
study. Consideringthe limitation in buffers is als@gested.
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