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Abstract 
Scheduling for a two-stage production system is one of the most common 
problems in production management. In this production system, a number of 
products is produced and each product is assembledfrom a set of parts. The parts 
are produced in the first stage that is a fabrication stage and thenthey are 
assembled in the second stage that usually is an assembly stage. In this article the 
first stage assumed as a hybrid flow shopwith identical parallel machines and the 
second stage will be an assemble work station. Twoobjective functionsare 
considered that are minimizing the makespan, and minimizing the sum of 
earliness andtardiness of products.At first the problem is defined and its 
mathematical model is presented. Since the considered problem is NP-
hard,themulti-objective genetic algorithm (MOGA) is used to solve this problem 
in two phases. In the first phase the sequence of the products assembly is 
determined and in the second phase the parts of each products is scheduled to be 
fabricated. In each iteration of the proposed algorithm, the new population is 
selected based on non-dominance rule and fitness value. To validate the 
performance of the proposed algorithm, in terms of solution quality and diversity 
level, various test problems are designed and the reliability of the proposed 
algorithm is compared with two prominent multi-objective genetic algorithms, 
i.e. WBGA, and NSGA-II. The computational results show that the performance 
of the proposed algorithms is good in both efficiency and effectiveness criteria. In 
small-sized problems, the number of non-dominance solution come out from the 
two algorithms N-WBGA (the proposed algorithm) and NSGA-II are 
approximately equal. Also more than 90% solution of algorithms N-WBGA and 
NSGA-II are identical to the Pareto-optimal result. Also in medium problems, 
two algorithms N-WBGA and NSGA-II have approximately an equal 
performance and both of them are better than WBGA. But in large-sized 
problems, N-WBGA presents the best results in all indicators. 
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1- Introduction  
    Two-stage assembly scheduling problem contains a machining operation that fabricates and prepares 
the parts (preassembly stage), and an assembly stage that joins the parts into the products. This production 
system has applications in many industries, and therefore has received increasing attention from many 
researchers (Sup Sung, &Juhn, 2009; Lin, &Liao, 2012; Allahverdi, A., &Aydilek, H., 2015; Jung, Woo, 
& Kim, 2017). For example Lee et al. (1993) described an application in a fire engine assembly plant 
while Potts et al. (1995) described an application in personal computer manufacturing. In particular, 
manufacturing of almost all items may be modeled as a two-stage assembly scheduling problem including 
machining operations and assembly operations (Allahverdi et al., 2009). Despite the importance of this 
problem, the review studied shows that scant attention has been given to solve it, especially in the case of 
multiple criteria. 
   In this paper this problem is studiesd in which that the machining operation is done in a hybrid flow 
shop and there a work station for the assembly operation. Two objectives are considered for this problem: 
to minimizemakespan, and minimizing the sum of earliness and tardiness of products. 
   Most of researches in production scheduling are concerned with the minimization of a single criterion. 
Up to the 1980s, scheduling research was mainly concentrated on optimizing single performance measures 
such as makespan (C���), total flowtime (F), maximum tardiness (T���), total tardiness (�) and number of 
tardy jobs (n�)(Arroyo, &Armetano, 2005). C���andF are related to maximizing system utilization and 
minimizing work-in-process inventories, respectively, while the remaining measures are related to job due 
dates. However, scheduling problems often involve more than one aspect and therefore require multiple 
criteria analysis.In allcompanies, each particular department decision makerwants to minimize a special 
criterion. For examplein a company, the commercial manager is interestedin satisfying customers and then 
minimizingthe tardiness. On the other hand, the productionmanager wishes to optimize the use of the 
machinesby minimizing the makespan or the work in processby minimizing the maximum flow time. Each 
of these objectives is valid from a generalpoint of view. Since these objectives are conflicting,a solution 
may perform well for one objective,but giving bad results for the others. For this reason,scheduling 
problems have often a multi-objectivenature (Loukilet al. 2005; Fattahi et al. 2014). 
   The first study in assembly-type flow-shop scheduling problem was done in 1993 (Lee et al. 1993). A 
two-stage assembly flow-shop scheduling problem considering a single objective function (
��) was 
studied by them. They showed that the problem is strongly NP-complete and identified several special 
cases of the problem that can be solved in polynomial time and suggested a branch and bound solution and 
also three heuristics. After that Potts et al. (1995) studied and extend the problem with the same objective 
function as Lee et al. Hariri and Potts (1997) also studied the same problem as Potts et al. with the same 
objective function and proposed a branch and bound algorithm. Cheng and Wang (1999) considered 
minimizing the makespan in a two-machine flow-shop scheduling with a special structure and developed 
several properties of an optimal solution and obtained optimal schedules for some special cases.  
   In most studies of assembly type scheduling problem, it is assumed that the preassembly stage has a 
parallel machine format followed by an assembly stage. This production system is named two-stage 
assembly flow shop. The objective function of these studies is single criterion such as the completion time 
of all jobs. For example see Koulamas and Kyparisis (2007), Sung and Kim (2008), and Allahverdi and 
Al-Anzi (2009). In all of these studies it has been shown that the problem is NP-Hard, and hence most of 
them have presented some approximately solution based on metaheuristic algorithms. 
   Some studies have been done by Yokoyama (2001, 2008) and Yokoyama et al. (2005) in the assembly 
type production system in which that the reassembly stage is a two or three stage flowshop. The objective 
function is still single criterion such asmakespan, mean completion time for all products, and weighted 
sum of completion time ofeach product. This problem is NP-Hard and they presented some heuristic 
solutions or B&B algorithm for the special cases of the problem. 
   Fattahi et al. (2012) introduced the hybrid flow shop with assembly operations for the first time in 2012 . 
Their objective function is makespan and they considered the preassembly stage as a two-stage hybrid 
flow shop and presented a mathematical model for the considered problem. Since the considered problem 
is strongly NP-Hard, they presented some heuristic solution that can solve the problem up to 150 products 
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and 16 parts for each product. A new hybrid improvement algorithm for the finite capacity material 
requirement planning (FCMRP) system in a flexible flow shop with assembly operations was proposed by 
Watcharapanand Teeradej (2016). The proposed algorithm is a hybrid of genetic algorithm (GA) and tabu 
search (TS). There are six primary steps in the proposed algorithm. In step 1, a production schedule is 
generated by variable lead-time MRP. In step 2, dispatching and random rules are applied to generate 
initial sequences of orders. From step 3 to step 5, the sequences of orders are iteratively improved by 
characteristics of TS and GA. Finally, in step 6, the start times of operations are optimally determined by 
linear programming. The results validate the performance of the proposed algorithm.Allahverdi et al. 
(2016) also studied the two-stage assembly flowshop scheduling problemwith separate setup times. Their 
objective considered wasto minimize total tardiness. Some new algorithms have been developed based on 
different versions of simulated annealing, genetic, andinsertion algorithms by them. 
   The majority of papers on these problems have concentrated on single-objective problems, while 
consideration of multiple objectives is more realistic. One of the most differences between this paper and 
the other similar research is the objective function and solving techniques. 
   Since multi-objective scheduling problem (MOSP) plays a key role in practical scheduling, there has 
been an increasing interest in MOSP according to the literature. Hence, there has been a noticeable 
increase in published the MOSP especiallymulti-objective evolutionary algorithms (MOEA). 
   Konak et al. (2006) and Sun et al. (2010) presented a review and prospects of multi-objective 
optimization algorithms. Also Coello et al (2007) presented a comprehensive evolutionary algorithm for 
solving multi-objective problems. According these studies, being a population-based approach, genetic 
algorithms (GA) are well suited to solve multi-objective optimization problems. Therefore, GA has been 
the most popular heuristic approach to multi-objective design and optimization problems.  
   The first multi-objective GA, called vector evaluated GA(or VEGA), was proposed by Schaffer (1985). 
Afterwards,several multi-objective evolutionary algorithms were developedincluding Multi-objective 
Genetic Algorithm(MOGA), Niched Pareto Genetic Algorithm (NPGA), Weight-based Genetic Algorithm 
(WBGA), RandomWeighted Genetic Algorithm (RWGA), NondominatedSorting Genetic Algorithm 
(NSGA), StrengthPareto Evolutionary Algorithm (SPEA), improvedSPEA (SPEA2), Pareto-Archived 
Evolution Strategy (PAES), Pareto Envelope-based Selection Algorithm(PESA), Region-based Selection 
in Evolutionary Multiobjective Optimization (PESA-II), Fast NondominatedSorting Genetic Algorithm 
(NSGA-II),Multi-objective Evolutionary Algorithm (MEA),Micro-GA, Rank-Density Based Genetic 
Algorithm(RDGA), and Dynamic Multi-objective EvolutionaryAlgorithm (DMOEA) (Coello et al. 2007 
and Konak et al. 2006). 
To illustrate the novelties of this paper, the following items could be presented: 

• To properly address the hybrid flow shop scheduling problem with assembly operation in multi-
objective condition. The goals of JIT production management is added as a new objective. 

• To develop a mathematical programing model for the considered problem. 
• A new extension of MOGA with a new approach in two phases to solve the considered problem in 

large-sized scale. 
• Using both the non-dominated solutions and weighted average of the normalized objectives in the 

generation transmissionof the proposed algorithm. 
 
   This paper proceeds as follows: In section 2, the problem is described completely. The multi-objective 
optimization and some common techniqueswill be expressed in section 3. The proposed solving algorithm 
is presented in section 4. In section 5, designing of the problems and Computational experiment and 
results is presented. Finally, a Concluding remarks and summary of the work and direction for the future 
research are given in section 6. 
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2- Problem description 
   The scheduling problem for a two-stage production system with multi-objective criteria is considered in 
this paper. This system contains a hybrid flow shop stage followed by an assembly stage. Suppose that 
several products of different kinds (�)are ordered andeach product needs a set of parts (�� =1, 2, 3, … , ��) to complete. At first, the parts are manufactured in a two-stage hybrid flow shop. Each part � has a fixed processing time ��� on stage �. The machines are identical in the hybrid flow shop and the 
number of machines is K�	, K! on stage one and two of the hybrid flow shop respectively. After 
manufacturing the parts, they are assembled into the products on an assembly stage. The assembly 
operationscannot be started for a product until the set of parts is completed in machining operations. The 
considered objective is to minimize makespan and the sum of earliness and tardiness (C���	, ∑ E$/T$$ ). 
Decision variables are sequence of the products to be assembled and also sequence of the parts and 
assigning them to machines in each stage of the hybrid flow shop to be processed.  
   One of the applications of this problem is body making of car manufacturing industry. A car making 
manufactory generally contains the units of production engine, chassis and body. The unit of body making 
includes a press shop, assembly and painting. The press shop that produces some parts such as doors and 
roofs has usually a flow shop or hybrid flow shop format. 
Usually in these systems the inputs contain raw material, parts or unfinished products that are processed in 
a hybrid flow shop. When the set of parts of a product complete, they are joined on assembly stage. 
Typically, buffers are located between stages to store intermediate products and it is supposed that there is 
no limited in buffer storages. The number of machines in hybrid flow shop stages is free and it can be no 
equivalent at two stages. 
 
2-1- Notations 
The notation of the proposed problem can be introduced as bellow: 
H Total number of products 
h Product index (h = 1, 2, . . . , H) 
n Total number of parts 
j Part index (j = 1, 2, . . . ,n) �� Total number of parts of product h (h = 1, 2, . . .,H) 
l Stage index (l=1,2) ��� Processing time of machining operations for part j in stage l (l=1, 2) &� Number of parallel machines in stage l 
k Machine index,  '� Assembly time of product h (� Due date for delivery of product h 
M A very big and positive amount 
 
Also variables of the mathematical model are as follow: )*�+� 1, if job j is processed directly after job i on machine k in stage l, 0 otherwise, ),*+� 1, if job i is the first job on machine k in stage l, 0 otherwise, )*,+� 1, if job i is the last job on machine k in stage l, 0 otherwise, 
�-�) Completion time of job j in stage l, .� Finish time of the parts for hth product and ready to assemble /�′� 0, if all parts of product ℎ′ is ready to assemble before the parts of product h, a positive amount 
otherwise, 
� Completion time of assemble of the product h 1� Earliness of completion time of the product h �� Tardiness of completion time of the product h 2 Sum of earliness and tardiness of the products (2 = ∑ -1�/��)3�4� ) 
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The problem is to decide about sequencing of the products and their parts, and the objective function of 
the considered problem is expressed as: 
Min 5 = 678)-
�)	, ∑ -1�/��)3�4� 9 or :
��	, 2; 
While 2 is a function of earliness and tardiness and computed as (1) 
 

	2 = <=>78)-0	, 
� − (�) + 78)-0	, (� − 
�)B3
�4� C     (1) 

2-2- Assumptions 
(1) All parts are available at time zero. 
(2) There are two series satge with some parallel machines in each stage for fabrication the parts. 
(3) The parallel machines in each stage are uniform. 
(4) If product h is going to be assembled before product h', then, on each stage, processing of any part 

of product h' doesn't start before starting the processing of all parts for product h. 
(5) Assembly operations for a product will not start until all parts of its product are completed. 
(6) When assembly operations of a product is start, it doesn't stop until completed (no preemption in 

assembly stage) 
(7) There is no limited in buffer storages 

 
2-3- Numerical example 
   In order to clarify the problem, consider a simple numerical example as table 1. Assume that there are 
two machines at stage 1 and two machinesat stage 2. Also, there is an assembly stage at the end of the 
production system. Total number of products is � = 3and the data for parts and their processing time of 
machining operations and assembly are given in table 1.  
 

Table 1. Processing time of machining and assembly 

Stage (l) 

Products and parts 

Product 1 Product 2 Product 3 

j=1 j=2 j=3 j=4 j=5 j=6 j=7 j=8 

Stage 1 4 3 3 3 2 4 3 4 

Stage 2 2 3 2 3 3 2 2 2 

Assembly 6 4 3 

Due date 16 12 22 
 

   One solution for scheduling the products and their parts is shown in figure 1. According this solution, 
the products will be produced in a sequencing of 2-1-3 and scheduling the parts of each product is 
according their numbers in both of two stages of the hybrid flow shop. This solution leads in result of C��� = 20 , D = 5. 
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Fig 1. A solution of the example with C��� = 20 and D = 5 
 
2-4- Mathematical modeling 
    The mathematical definition of a multi-objective problem (MOP) is important in providing a foundation 
of understanding between the interdisciplinary nature of deriving possible solution techniques 
(deterministic, stochastic); i.e., search algorithms. Fattahi et al. (2012)presented a mathematical model for 
the assembly flexible flow shop scheduling problem with a single objective. Their model is developed for 
the considered problem in this study. Thus, there is not one unique solution but a set of solutions. Theses 
set of solutions is found through the use of Pareto Optimality Theory (Coello et al. 2007).Note that multi-
objective problems require a decision maker to make a choice of x∗ values. The selection is essentially a 
tradeoff of one complete solution x over another in multi-objective space. 
Based on the notations, the mathematical formulation of the problem is presented as follows: 

Machine 1

Machine 2
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 parts machining and assembly operations for product 1
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Min 5� = 
��     (2) 

Min 5! = 2  (3) 

Subject to:   

= = )*�+�
HI

+4� = 1J
*4,,*K�  j=1,2,3,…,n l=1,2

 
(4) 

= )*�+�
J

�4, ≤ 1 M = 1	, 2	, …	, &� 
i=0,1,2,3,…,n      l=1,2 

(5) 

= )*�+�J
*4,,*K� − = )��+�

J
�4,,�K� = 0 M = 1	, 2	, …	, &� 

h=1,2,3,…,n     l=1,2     	
(6) 
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   Equations (2) and (3) determine the objective functions ofthe given problem that are minimizing the 
maximum completiontime (makespan) and the sum of earliness and tardiness,respectively. Constraints (4), 
(5) and (6) ensure that each part is processed precisely once at each stage. In particular, constraint (4) 
guarantees that at each stage l for each part JO there is a unique machine such that either JO is processed first 
or after another job on that machine. The inequalities (5) imply that at each stage there is a machine on 
which a part has a successor or is processed last. Finally, at each stage for each part there is one and only 
one machine satisfying both of the previous two conditions by (6). 
Constraints (7) and (8) take care of the completion times of the parts at stage 1, 2. Inequalities (7) ensure 
that the completion times 
*� and 
��of parts i and j scheduled consecutively on the same machine respect 


*-�) + = )*�+�
HI

+4� × ��� + Q= )*�+� − 1HI
+4� R × S ≤ 
�-�) i=1,2,3,…,n     j=1,2,3,…,n     l=1,2 (7) 


�-�) + �!� ≤ 
�-!) j=1,2,3,…,n (8) 


�-!) ≤ .�	 ∀	� ∈ 	 :��;   ,   h=2,3,4,…,H (9) 

.� + '� ≤ 
� h =1,2,3,…,H (10) 


�V + '� − /�V� × S ≤ 
� h , h' = 1,2,3,…,H , ℎW ≠ ℎ (11) 

/�V� = Y 1			Z[		.�V ≥ .�0							]^ℎ_`aZb_c h , h' = 1,2,3,…,H , ℎW ≠ ℎ (12) 

C$ ≤ C��� 
h=1,2,3,…,H (13) 

1� ≥ -(� − 
�) h=1,2,3,…,H (14) 

�� ≥ -
� − (�) h=1,2,3,…,H (15) 

2 = =>1� + ��B3
�4�  h=1,2,3,…,H (16) 

)dOef ∈ :0,1; i=1,2,3,…,n  ,  j=1,2,3,…,n   ,  l=1,2     k ≤ 1,2, … , Kf (17) 


O-f) ≥ 0 j=1,2,3,…,n     l=1,2 (18) 

E$ ≥ 0 h=1,2,3,…,H (19) T$ ≥ 0 h=1,2,3,…,H (20) 



139 

 

this order. Inequality (8) implies that the parts go through the stages in the right order, i.e. from stage 1 to 
stage 2. Inequalities (9) take care of the start times of the products at the assembly stage. The inequalities 
(10), (11), and (12) express the completion time of products. Inequalities (11) and (12) ensure that the 
completion time of product h and h' scheduled consecutively on the assembly stage respect this order. 
The constraint that the makespan is not smaller than the completion time of any product is expressed by 
constraints (13). Calculating the earliness and tardiness is shown in equations (14), and (15), respectively 
and the equation (16) presents the sum of earliness and tardiness for all products. The last four constraints 
specify the domains of the decision variables. 
 
3- The Multi-objective Optimization 
3-1- The Multi-objective Optimization Problem 
   The Multi-objective Optimization Problem (MOP) that also called multi-criteria optimization, multi-
performance or vector optimization problem, can be defined (in words) as the problem of finding (Coello 
et al 2007): 
   A vector of decision variables which satisfies the constraints and optimizes a vector function whose 
elements represents the objective functions. These functions form a mathematical description of 
performance criteria which are usually in conflict with each other. Hence, the term “optimizes” means 
finding such a solution which would give the values of all the objective functions acceptable to the 
decision maker. 
   The decision variables are the numerical quantities for which values are to be chosen in an optimization 
problem. These quantities are denoted as h�, � = 1, 2, 3, … , �. 
The vector h of � decision variables is represented by: 
 h = -)�, )!, )i, … , )J) 
 
Where � indicates the number of variables. 
Also the vector function f-x) of M objectives is represented by: 
 f-x) = >f�-x), f!-x), fi-x), … , fe-x)B 
 
   Having several objective functions, the notion of “optimum” changes, because in MOPs, the aim is to 
find good compromises (or “trade-offs”) rather than a single solution as in global optimization. In this 
condition the optimum concept is also changed and the most commonly accepted term is Pareto-optimal. 
In words, h∗ is a solution of thePareto-optimal if there exists no feasible vector h which would decrease 
some criteria without causing a simultaneous increase in at least one other criterion (assuming 
minimization). The objective vectors corresponding of the Pareto-optimal solutions are termed non-
dominated. A general definition of dominance solution is as follows (Karimi et al. 2010): 
A vector k = -l�, l!, li, … , l+)is said to dominatem = -n�, n!, ni, … , n+) if and only if k is partially less 
than m, i.e: 
 ∀Z ∈ :1, 2, 3, … , M;	, l* ≤ n* ∧ ∃Z ∈ :1, 2, 3, … , M;	, l* < n*. 
 
When a vector is dominated by no other solutions, it is called non-dominated vector and the non-
dominated vectors are collectively known as the Pareto-front. Generally in MOPs, the main goal is to find 
the Pareto-frontand the decision maker select one of the solution on Pareto-frontbase on more analysis and 
trade-offs. 
   The normal procedure to generate the Pareto-frontis to computemany points in solution spaceΩ and their 
corresponding objective space [-Ω). When there are a sufficient number of these, it is then possible to 
determine the non-dominated points andto produce the Pareto-front. 
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3-2- The Multi-objective Optimization techniques 
   There are many approaches that can be used for solving MOPs, that is, to find the Pareto-optimal 
solutions or at least an approximation to it. These algorithms can be categorized into two major classes of 
algorithms, the exact and the approximate (heuristics). 
Exact algorithms are guaranteed to find an optimal solution and to prove its optimality for every instance 
of an MOP. The run-time, however, often increases dramatically with the instance size, and often only 
small or moderately-sized problems can be solved in practice to provable optimality. 
Two exact methods are described as below: 
The linear Combination of Weights 
This method combines multiple objectives into an aggregated scalar objective function by multiplying 
each objective function by a weighting factor and summing up all terms. The new objective function will 
be as (21): 				5 = 7Z� ∑ a*[*-h)+*4�                 (21) 

Subject to: h ∈ Ω 
    
   Where a* ≥ 0 for all iand ∑ a** = 1. By varying these weights we can find all non-dominated points, 
for problems with a convex non-dominated set. 
 
The r − stuvwxyzuw Method 
   The { − Constraint is another well known technique used to solve MOPs. In this approach, we optimize 
one of the objective functions using the other objective functions as constraints. Then by varying 
constantly the constraint bounds we can obtain all non-dominated points. The { − Constraint problem can 
be formulated as (22): 				5 = 7Z��[�-h)�   (22) 

Subject to: [*-h) ≤ �*[]`Z = 1, 2, 3, … , M8�(Z ≠ � 
   Where εd are assumed values of the objective functions that must not be exceeded. The idea of this 
method is to minimize one (the most preferred or primary) objective function at a time, considering the 
other objectives as constraints bound by some allowable levels εd. By varying these levels εd, the non-
inferior solutions of the problem can be obtained. 
   Heuristics are simple procedures that provide good feasible solutions in a reasonable computation time, 
but not necessarily an optimal one. In harder problems, with many objectives and large instances, the exact 
algorithms might not be able to solve it or when they do it they take too much time.Hence, many 
metaheuristic have been implemented to obtaina good solution in acceptable time. Among these 
techniques, the potential of evolutionary algorithms for solving multi-objective optimization problems was 
hinted as early as the late 1960s by Rosenberg in his PhD thesis (Coello et al. 2007). After that many 
researcher implement the evolutionary algorithms especially genetic algorithms (GAs) to solve the NP-
Hard problems. 
   Konak et al. (2006) presented an overview and tutorial of genetic algorithms developed for problems 
with multiple objectives. The first multi-objective GA, called vector evaluated genetic algorithm (VEGA), 
was proposed by Schaffer. After that, several multi-objective evolutionary algorithms were developed and 
implemented.  
 
3-3- Fitness assignment and diversity mechanism 
   Implementation of GA in multi-objective optimization needs two important considerations: Fitness 
assignment and diversity mechanism. 
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3-3-1- Fitness assignment 
   Fitness assignment is used to rank the solutions in order to select the parents, doing the crossover and 
mutation operations and select the new population in each generation.  
The simplest and classical approach to fitness assignment of solutions in MOGA is to assign a weight wd 
to each normalized objective function fd′-X) so that the problem is converted to a single objective problem 
with a scalar objective function as follows: Min 		Z = w�f�′ -X) + w!f!′ -X) + … +	wefe′ -X) 

Where fd′-X) is the normalized objective function fd-X)and ∑ wd = 1. The main difficulty with this 
approach is selecting a weight vector for each run. 
  Another fitness assignment is altering objective functions. In this method the population P� is randomly 
divided into & equal sized sub-populations -P�, P!, … , P�, ). Each solution in subpopulation PdAssigns a 
fitness value based on the objective functionZd. Solutions are selected from these subpopulations using 
proportional selection for crossover and mutation. 
The third technique is Pareto-ranking approaches that utilize the concept of Pareto-dominance in 
evaluating fitness or assigning selection probability to solutions. The population is ranked according to a 
dominance rule, and then each solution is assigned a fitness value based on its rank in the population. The 
first Pareto-ranking technique was proposed by Goldberg (Ehrgott 2005) and after that several methods 
have been proposed (see Coello et al. 2007). 
 
3-3-2- Diversity mechanism 
   Diversity mechanism is need to obtain solutions uniformly distributed over the Pareto-front. Without 
taking preventive measures, the population tends to form relatively few clusters in multi-objective GA. 
This phenomenon is called genetic drift, and several approaches have been devised to prevent genetic drift 
as follows. 
   The first approach is fitness sharing that encourages the search in unexplored sections of a Pareto-front 
by artificially reducing the fitness of solutions in densely populated areas. To achieve this goal, densely 
populated areas are identified and a penalty method is used to penalize the solutions located in such areas. 
The second approach is crowding distance that aim to obtain a uniform spread of solutions along the best-
known Pareto-front without using a fitness sharing parameter. 
   Finally the third approach is cell-based density. In this approach the objective space is divided into K-
dimensional cells. The number of solutions in each cell is defined as the density of the cell, and the density 
of a solution is equal to the density of the cell in which the solution is located. This density information is 
used to achieve diversity similar to the fitness sharing approach. 
 
4- The proposed solving algorithm 
4-1- General scheme of the proposed algorithm 
   Multi-objective optimization was originally conceived with finding Pareto-optimal solutions (Pareto, 
1981), also called efficient solutions. Such solutions are non-dominated, i.e., no other solution is superior 
to them when all objectives are taken into account. Since in GA a population-based approach is used, it is 
well suited to solve multi-objective optimization problems, and hence several multi-objective evolutionary 
algorithms were developed after presenting the first multi-objective GA by Schaffer (Coello et al. 2007). 
Therefore a heuristic based on GA is proposed for the considered problem in this paper. The pseudo-code 
of the proposed algorithm is as algorithm (1): 
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Algorithm 1 The pseudo code of the proposed algorithm 

1) Step 0: Initialization (population size, fitness, crossover and mutation operations, 

and stopping criterion) 

2) Step 1: Start with an initial population�,  and set t = 0. 

3) Step 2: If the stopping criterion is satisfied, return P�. 
4) Step 3: Evaluate the fitness value of the population as weighted sum approach. 

5) Step 4:Use a stochastic selection method based on fitness value to select parents. 

6) Step 5: Apply crossover and mutation on parents to generate child population �� 
. 

7) Step 6: Evaluate fitness value of the �� as weighted sum approach. 

8) Step 7: Set ^ = ^ + 1		 and select �� from �� and ��according the nondominance 

property and the fitness values to create new generation (see section4.6). 

9) Step 8: Go to step 3 

 
4-2- Solution representation 
   Implementation a metaheuristic needs to decide how to represent and relate solutions in an efficient way 
to the searching space. Representation should be easy to decode and calculate to reduce the run time of 
algorithm. In the considered problem,several products (�) of different kinds are ordered to be scheduled 
and produced. Each product needs a set of parts (J$ = 1, 2, 3, … , n$) to complete that fabricated in a 
hybrid flow shop.  
According the assumption (3), If product ℎ is going to be assembled before product ℎ′, then, process 
operations of all parts of the product ℎ′ doesn't start before processing of all parts of the productℎ. Hence 
in proposed algorithm the product and the parts are scheduled in two phases separated. During phase 1, the 
sequence of the products is determined and then, sequencing of the parts is done for each product in phase 
2.  For example consider the numerical example that illustrated in section 2.3 . Two steps of scheduling of 
this problem can be done as figure 2. 
 
 
 
 
 
 
 
 
 
 

Fig 2. An example of the two-phases scheduling 

   In order to coding the solutions as chromosomes in GA proposed algorithm, each solution 
(sequence)isconsidered in a two-row matrix that the above row shows the number of products and the 
below indicates the parts of the above product. For example the sequence of the figure 3 is shownas figure 
3. 

Product  number: 2 2 1 1 1 3 3 3 

Part  number: 4 5 1 2 3 6 7 8 

Fig 3.Presentation the products and their parts as a chromosome 

Product 1 Product 3 Product 2 

Phase 1:  
Scheduling the products 

Product 2 Product 1 Product 3 
Phase 2:  
Scheduling the parts of 
each product 

4 - 5 1 - 2 - 3 6 -7 - 8 
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   The schedule of the parts in each product is considered only on stage 1. After that, each part that release 
earlier from stage 1, will process on stage 2.  
The chromosome and probability of crossover and mutation is defined as below: 
Chromosome: Each sequence of all products including sequence of their parts. ����: Probability of crossover operation on products in each chromosome. ���� : Probability of crossover operation on the parts of each product in every chromosome. ����: Probability of mutation operation on products in each chromosome. ���� : Probability of mutation operation on the parts of each product in every chromosome. 
Crossover and mutation operation is implemented on product and their parts in each chromosome 
separately. 
 
4-3- Initialization 
   The best value of the parameters for the proposed algorithm is obtained using Taguchi settings 
considering plan of �J in three levels. In order to determine the best combination of these parameters, 
three levels of each parameters was examined as table 2.  

Table 2. The values of the parameters of hybrid proposed algorithm 

parameter Number of level Test values 

N 3 35 , 40 , 45 ���� 3 0.95 , 0.97 , 0.99 ���� 3 0. .05  , 0.07 , 0.1 ���� 3 0. .1  , 0.15 , 0.2 

 
Due to the considered problem is a two-objective problem, the S�2 index is used to determine better 
solution as equation (23). S�2 = 	 ∑ ������J             

when �* = �[*�! + [*!! ∀Z	 = 1. 2. … . � 

   This index is calculated for each set of pareto solution. So, for each 27 cases of Taguchi plan a number 
will be obtained. Based on this number, comparison the Relative Percentage Deviation (RPD) will be 
possible.  
Finally, after doing experiments, the best combination of the parameters for the proposed algorithm was 
determined as below: � = 40 ���� = 0.95 ���� = 0 ���� = 0.1 ���� = 0.2 
Also, in order to reduce the run time of algorithm, it is better to do mutation operator only on the parts. 
Hence, it supposed that ���� = 0. 
   The stopping criterion is the number of iterations and it is considered as a variable that is equal to the 
number of products in each problem but it must be at least 30 iterations. 
The fitness value is calculated as the weighted sum approach. Hence, at first the objective functions have 
to be normalized. We define [�-)) and [�-)) as objective function for the makespan and deviation of due 

(23) 
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date respectively. Therefore the normalized of these two objective functions for each solution is calculated 
as (24) and (25): 

						[�′ -)) = � ¡-)∑ � ¡-)∈�¢                      (24) 

					[�′ -)) = � £-)∑ � £-)∈�¢                    (25) 

 
 
Finally the fitness value (fv) for each solution (x) is obtained as (26): 

		[n-)) = a� × [�′ -)) + a! × [�′ -)) 
          

(26) 

The weight of w� and w! is assumed the same and equal to 0.5. 

4-4- The initial population ¤¥ 
   Most evolutionary algorithms use a random procedure to generate an initial set of solutions. However, 
since the output results are strongly responding to the initial set, it is better that some of the initial 
solutionsare identified as suitable rules.Hence, in initial population three solutions are determined in 
regulative as below and the others are generatedrandomly.  

• One solution is determined based on the earliest due date (EDD) of the product. 
• The second solution is determined according non-increasing in assembly time. 
• The third is determined according non-decreasing in assembly time. 

After generation the initial sequencing for the products, all of the parts are scheduled randomly. 
 
4-5- Selection, recombination and mutation 
   Selection is done based on the roulette-wheel rule. After calculation the fitness value (fv-x)) for the 
solutions as equation (25), the operation of the roulette-wheel is done to select the parents. 
There exist a variety of crossover operators for recombination that are suitable for the scheduling 
problems. We tested some of them and finally two operators that were selected for the proposed algorithm 
are: one-point crossover (1PX), and two-point crossover (2PX). 
The mutation operator used here is the insertion operator, which randomly selects a product or a part in the 
sequence and inserts it in a random position of the sequence. 
 
4-6- Selection the new generation ¤w§¨ 
   The new generation P�§�is selected from the current generation and the offspring -P�⋃Q�) based on non-
dominance rule and also considering the fitness values. In other word, first all of the solutionsofthe non-
dominated set are selected for the new generation and the remained required solution is selected from the 
points with the more fitness value to complete the new generationP�§�. 
   Figures 4 and 5 show an example of this rule in selection a new generation. Figure 4 shows P� (the 
current generation) and Q� (the offspring). As the above rule, the new generation is selected as it is shown 
in figure 5.When the solutions of the non-dominated set is more than the population size, only those that 
are maximally apart from their neighbors according to the crowding distance are chosen. 
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Figure 6 presents a graphical illustration of crowding for an example and the computations are done as 
(27) to (29). 

 
 

Fig 4. Forty solutions with maximum of the fitness value between total parents and their offspring 

 

Fig 5. Selection the new generation oftotal parents and their offspring 
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Fig  6. A graphical illustration of crowding 

  

			(*� = [�-)*§�) − [�-)*«�)[��� − [��*J     (27) 

			(*! = [!-)*§�) − [!-)*«�)[!�� − [!�*J     (28) 

			(* = (*� + (*!    (29) 

 
The proposed algorithm that used both the non-dominated solutions and weighted average of the 
normalized objectives based on the genetic algorithm is called as N-WBGA in this article. 

 
5- Computational experiments and results 
   In this section, the computational experimentsare carried out in order to evaluate the performance of the 
proposed algorithm. The tests have been performed on various condition of the problem. The considered 
algorithms are coded in MATLAB 7/10/0/499 (R2010a). The experiments are executed on a Pc with a 
2.0GHz Intel Core 2 Duo processor and 1GB of RAM memory. 
 
5-1- Design of problems 
   To show the efficiency of the proposed algorithm, it is necessary to design problems in a variety wide of 
conditions and test the proposed algorithm by them. Hence, the processing and assembly times have been 
generated from a discrete uniform distribution with a defined range to provide three conditions: (a) the 
hybrid flow shop is a bottleneck, (b) the assembly stage is a bottleneck, and (c) there is a balance condition 
between two stages. In order to evaluate the algorithms, each problem has been run ten times and solved 
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by the algorithms. In each run, the processing and assembly times have been generated in a defined ranges 
randomly. 
   Also, in the scheduling problems that the earliness and tardiness are considered in the objective function, 
the problems are designed in a variety wide of due date. Hence the researchers have considered two 
significant factors consisting the tardiness (τ) and the range of due date (R) in these problems (Moslehi et 
al. 2009). Generally, by considering these two factors, the due dates can be obtained as (30): 				( = ¬1 − ® − 2̄° × S	, 1 − ® + 2̄° × S±     (30) 

    
   Researchers usually design the problems by changing the factors ®and ̄ . Moslehi et al.(2009), present 
that when ® = 0.2and = 0.6 , the primary jobs of the sequence have earliness, and the remaining ones 
often have tardiness. This combinatorial is considered in this study and so due date of the product is 
defined within a discrete uniform distribution with a rangeof>0.5S	, 1.1SB. Sis the maximum completion 
times of all jobs that usually is obtained from an exist algorithm and we use the GRASP algorithm to 
obtain S. 
 

Table 3.The test problems 

Problem 
size 

Problem 
name 

Number of 
products 

Number of 
parts &� &! ��� '� 

Small S1 5 2 2 1 [25 , 75] [50 , 100] 

 S2 5 2 1 2 [25 , 75] [50 , 100] 

 S3 5 2 2 2 [25 , 75] [50 , 100] 

 S4 10 3 3 2 [25 , 75] [50 , 100] 

 S5 10 3 2 3 [25 , 75] [50 , 100] 

 S6 10 3 3 3 [25 , 75] [50 , 100] 

Medium M1 25 5 4 3 [25 , 75] [50 , 100] 

 M2 25 5 3 4 [25 , 75] [50 , 100] 

 M3 25 5 4 4 [25 , 75] [50 , 100] 

 M4 50 7 5 4 [25 , 75] [50 , 100] 

 M5 50 7 4 5 [25 , 75] [50 , 100] 

 M6 50 7 5 5 [25 , 75] [50 , 100] 

Large L1 100 10 6 5 [25 , 75] [50 , 100] 

 L2 100 10 5 6 [25 , 75] [50 , 100] 

 L3 100 10 6 6 [25 , 75] [50 , 100] 

 L4 150 12 7 6 [25 , 75] [50 , 100] 

 L5 150 12 6 7 [25 , 75] [50 , 100] 

 L6 150 12 7 7 [25 , 75] [50 , 100] 

 
The testing data is divided into the small problems, the medium problems, and the large problems by 
changing the parameters. The following parameters are considered to design and generate these problems 
totally: 
Numbers of jobs (�): 5, 10, 25, 50, 100, and 150. 
Number of parts for each product ℎ	-��): 2, 3, 5, 7, 10, and 12. 



 

Number of machines on stages of HFS (
Process time of the parts on stages 1 and 2 (
range of [25, 75]. 
Assembly times of a product ('
100]. 
Due date for delivery of product h (>0.5S	, 1.1SB. 
By combination of all parameters, the problems and their data are defined as table 
 
5-2- Comparisons of results 
   This section presents the results of the 
times by the algorithm. The best and the 
areevaluated in this section.The performance
problems is evaluated in comparison of the result of the mathematical model and also two 
techniques WBGA and NSGA-II.
 
5-2-1-Small-sized problems 
   At first, the experiment is carried out on the
the small-sized problems and its performance is compared, based on some comparison metrics, with the 
two other multi-objective genetic algorithms WBGA and NSGA
optimal is needed that is obtained from the mathematical model.
There are a number of methods available to compare the performance of different algorithms. Rahimi
Vahedet al.(2007) and many other researchers use the number of Pareto
measure of the performance of the algorithms studied. The 
(ONVG), the Overall Non-dominated Vector Generation Ratio (ONVGR), the 
thegenerational distance (GD) are als
optimal solutions areknown (Coello et al. 2007)
explained in the next sections. 
 
5-2-1-1- Number of pareto-optimal solutions 
   The first result about the performance of the proposed 
shows the number of pareto-optimal solution that the proposed algorithm could find in comparision of 
total number. The total number is obtained by solvin
performance of the proposed algorithm in this index.

Fig 7. Finding pareto
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on stages of HFS (&�): 1, 2, 3, 4, 5, 6, and 7. 
Process time of the parts on stages 1 and 2 (���): generated from the discrete uniform distribution with 

'�): generated from the discrete uniform distribution with 

delivery of product h ((��: generated from the discrete uniform distribution with 

of all parameters, the problems and their data are defined as table 

 
This section presents the results of the algorithm described in section 4. Each problem has been run ten 

best and the average of results obtained of ten runs of each problem 
The performance of the proposed algorithm (N-

problems is evaluated in comparison of the result of the mathematical model and also two 
II.  

t is carried out on the small-sizedproblems. The proposed algorithm is applied to 
sized problems and its performance is compared, based on some comparison metrics, with the 

objective genetic algorithms WBGA and NSGA-II. In these comparisons the 
is needed that is obtained from the mathematical model. 

There are a number of methods available to compare the performance of different algorithms. Rahimi
and many other researchers use the number of Pareto-solutions as a quantitative 

measure of the performance of the algorithms studied. The Overall Non-dominated Vector Generation 
dominated Vector Generation Ratio (ONVGR), the 

are also used as the performance measureindicators when the Pareto
(Coello et al. 2007). The comparison metrics that we implemented are 

optimal solutions  
The first result about the performance of the proposed algorithm is presented in figure 7. This figure 

optimal solution that the proposed algorithm could find in comparision of 
total number. The total number is obtained by solving the mathematical model. This result shows a good 
performance of the proposed algorithm in this index. 

inding pareto-optimal solutions using the proposed algorithm

S2 S3 S4 S5 S6

): generated from the discrete uniform distribution with a 

): generated from the discrete uniform distribution with a range  of[50, 

: generated from the discrete uniform distribution with a range of 

of all parameters, the problems and their data are defined as table 3.  

. Each problem has been run ten 
average of results obtained of ten runs of each problem 

-WBGA) in solving the 
problems is evaluated in comparison of the result of the mathematical model and also two powerful 

The proposed algorithm is applied to 
sized problems and its performance is compared, based on some comparison metrics, with the 

In these comparisons the Pareto-

There are a number of methods available to compare the performance of different algorithms. Rahimi-
solutions as a quantitative 

dominated Vector Generation 
dominated Vector Generation Ratio (ONVGR), the error ratio (ER), and 

o used as the performance measureindicators when the Pareto-
The comparison metrics that we implemented are 

lgorithm is presented in figure 7. This figure 
optimal solution that the proposed algorithm could find in comparision of 

g the mathematical model. This result shows a good 

 
optimal solutions using the proposed algorithm 

S6
Problem
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5-2-1-2- Overall Non-dominated Vector Generation (ONVG)  
   The Overall Non-dominated Vector Generation (ONVG) measures the total number of non-dominated 
vectors found during algorithm execution. This Pareto-non-compliant metric is defined as equation (31). 

			³´µ¶ = |¤ ¹̧utºu|    (31) 

5-2-1-3- Overall Non-dominated Vector Generation Ratio (ONVGR) 
   Overall Non-dominated Vector Generation Ratio (ONVGR) measures the ratio of the total number of 
non-dominated vectors found PFe»¼½»during algorithm execution to the number of vectors found in ¾¿ÀÁÂÃ. This metric indicator is calculated as equation (32). 

					ONVGR = |¾¿ÉÊËÌÊ||¾¿ÀÁÂÃ|   (32) 

   
When ONVGR = 1, this states only that the same number of points have been found in both ¾¿ÀÁÂÃand ¾¿ÉÊËÌÊ. It does not infer that ¾¿ÀÁÂÃ = ¾¿ÉÊËÌÊ. 
 
5-2-1-4- Error Ratio (ER)  
    After finishing the solving process, the number of solutions on the finalPareto-front (¾¿ÉÊËÌÊ) is 
termed as |¾¿ÉÊËÌÊ| and the number of solutions on the optimumPareto-front -¾¿�ÍÎÏ)is termed as |¾¿ÀÁÂÃ|. The Error Ratio (ER) metric reports the number of solutions on the final Pareto-front -|¾¿ÉÊËÌÊ|)that are not members of the optimum Pareto-front -|¾¿ÀÁÂÃ|) [21]. This metricwhich is 
Pareto-compliant, requires that ¾¿�ÍÎÏ is known and that the proposed algorithm approaches the Pareto-
front. In this study the lingo is used to obtain the ¾¿�ÍÎÏ for the small problems according the proposed 
mathematical modeling and varying the a*. After determining the ¾¿ÉÊËÌÊby proposed algorithm and the PF�ÍÎÏby lingo, ER is calculated as (33). 		1¯ = ∑ _*|�ÐÑ�ÒÓ�|*4�|�.+JÔÕJ|  

     (33) 

 
   Where ed is one if the i�$ vector of PFe»¼½»is not an element of PF�ÍÎÏ. When 1¯ = 1, this indicates 
that none of the points in PFe»¼½» are in PF�ÍÎÏ, that is none solutions outcome from the proposed 
algorithm is positioned on the optimum Pareto-front. On the other hand, when 1¯ = 0, the PFe»¼½»is the 
same as PF�ÍÎÏ. 
 
5-2-1-5- Generational distance (GD)  
    The Generational Distance (GD) reports how far, on average, ¾¿ÉÊËÌÊis from ¾¿ÀÁÂÃ. This indicator is 
mathematically defined as equation (34). 

×2 = �∑ (*!J*4�|¾¿ÉÊËÌÊ|      (34) 

 
   Where |PFe»¼½»|is the number of vectors in PFe»¼½», and (* is the Euclidean phenotypic distance 
between each member, Z, of ¾¿ÉÊËÌÊand the closest member in ¾¿ÀÁÂÃ to that member. 
The values of the above indicator according the best solutions often run for each small problems is 
presented as tables4 and 5. 
   The results show that the proposed algorithm has a better performance in comparison to the WBGA but 
the NSGA-IIpresented the best results. According to table4, the number of non-dominance solution come 
out from the two algorithms N-WBGA and NSGA-II are approximately equal. Also table 5, shows that 
more than 90% solution of algorithms N-WBGA and NSGA-II are identical to the Pareto-optimal result.  
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Table 4.  Comparison of the  ONVG and ONVGR 

Problem 
Ø�m×  Ø�m×¯ 

WBGA 
N-

WBGA 
NSGA-II 

 
WBGA 

N-
WBGA 

NSGA-II 

S1 12 14 14  1 1 1 

S2 13 13 13  1 1 1 

S3 19 20 21  0.90 1 1 

S4 22 22 22  0.87 1 1 

S5 21 22 23  0.88 0.92 1 

S6 26 28 28  0.84 0.90 0.90 

 
 

Table 4.  Comparison of the  Error Ratio (ER) and Generational Distance (GD) 

Problem 
1¯  ×2 

WBGA 
N-

WBGA 
NSGA-II  WBGA 

N-
WBGA 

NSGA-II 

S1 0.14 0.00 0.00  0.21 0.00 0.00 

S2 0.15 0.00 0.00  0.23 0.00 0.00 

S3 0.05 0.05 0.00  0.14 0.20 0.00 

S4 0.13 0.04 0.04  0.31 0.19 0.16 

S5 0.17 0.08 0.04  0.34 0.18 0.17 

S6 0.16 0.10 0.10  0.31 0.22 0.22 
 

5-2-2- Medium and large-sized problems 
   It is impossible or very time complexity for the medium and large-sized problems to find the Pareto-
optimal solutions. Therefore, the comparison metrics which are used in the medium and large-sized 
problems must be restricted to indicators that don’t need to Pareto-optimal solutions. Hence, in this section 
two indicators Overall Non-dominated Vector Generation (ONVG) and Spacing (S) are used to evaluate 
performance of the proposed algorithm in solving the Medium and large-sized problems. 
 
5-2-2-1- Overall Non-dominated Vector Generation (ONVG)  
    The Overall Non-dominated Vector generation (ONVG) as was explained in section 5.2.1.1., measures 
the total number of non-dominated vectors found during algorithm execution. 
 
5-2-2-2- Spacing (S)  
   The spacing (S) metric numerically describes the spread of the vectors in PFe»¼½». In other word, this 
indicator measures the distance variance of neighboring vectors in PFe»¼½»as equation (35). 
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			/ = Ù 1|�.+JÔÕJ| − 1 × = �(* − (̅�!|�ÐÑ�ÒÓ�|
*4� 					[]`	Z, � = 1, 2, 3, … , �             (35) 

 
Where (* indicates distances between the Z��solution from the nearest solution to it and is calculated as 
equation (36). 	(* = 7Z���Û[�*-)) − [��-))Û + Û[!*-)) − [!�-))Û�					[]`	Z, � = 1, 2, 3, … , �         (36) 

In equation (32), f�-x) and f!-x) can be supposed as the makespan and sum of earliness and tardiness in 
the considered problem. 
Also dÝ is the mean of all dd and n is is the number of vectors in PFe»¼½». 
Table 6represents the average values of the two above mentioned metrics in medium and large problems. 
As illustrated in this table,the NSGA-II algorithm has the best performance. Also the proposed N-WBGA 
shows better performance than. 

Table 6. Comparison of the  Overall Non-dominated Vector Generation (ONVG) and Spacing (S) 

Problem 
ONVG  S 

WBGA N-WBGA NSGA-II  WBGA N-WBGA NSGA-II 

Medium M1 101.2 125.3 129.2  9.15 7.52 6.95 

 M2 100.5 131.4 133.5  8.41 6.31 6.01 

 M3 111.8 120.9 125.8  8.93 7.08 6.78 

 M4 121.5 143.4 144.1  9.23 7.72 7.71 

 M5 119.8 145.6 145.2  9.02 6.96 7.02 

 M6 131.6 152.7 154.7  9.82 8.02 7.92 

Large L1 158.4 195.6 197.1  11.16 9.25 8.85 

 L2 156.2 206.4 202.8  11.21 9.15 9.20 

 L3 159.6 199.7 199.2  11.52 8.95 9.05 

 L4 163.4 207.6 207.3  11.91 10.01 9.51 

 L5 168.4 209.8 211.4  11.72 10.65 10.11 

 L6 172.1 212.1 212.6  12.67 10.17 10.12 

Table7 presents the average of computational times spent by algorithms after 10 generations executed in 
each test problem. As illustrated in this table, the proposed N-WBGA consumes less computational time 
than the others in all categories of problems. Because of the implemented structure of the calculations, the 
higher value of computationaltime of the NSGA-II is reasonableespecially for the small-sized problems. 

 

 

 



152 

 

Table 7. Run time of the algorithms 

Problem 
Algorithm 

WBGA N-WBGA NSGA-II 

Small 35 31 42 

Medium 325 305 315 

Large 1758 1476 1495 

In total, the difference in computational time of two algorithms N-WBGA and NSGA-II is insignificant. 
So, the performance measures used in comparisons show that NSGA-II outperforms the other proposed 
algorithms. 

 
6- Conclusion and future studies 
  In this paper a multi-objective scheduling problem was studied for a two-stage production system 
including a hybrid flow shop and an assembly stage.In this production system it is assumed that several 
products of differentkinds are ordered to be produced.The parts are manufactured in the hybrid flow shop 
and then the products are assembled in the assembly stage after preparing the parts. Two objective 
functions are considered simultaneously that are: (1) to minimizing the completion time of all products 
(makespan), and (2) minimizing the sum of earliness and tardiness of all products (∑ -Ed ∕ Td)d . Since this 
problem is NP-hard, a new multi-objective algorithm based on GA was designed for searching locally 
Pareto-optimal frontier for the problem. Various test problems were designed and the reliability of the 
proposed algorithm was presented in comparison two algorithms WBGA, and NSGA-II. The 
computational results show that the performance of the proposed algorithms is good in both efficiency and 
effectiveness. 
   For the future works, we recommend to address the problem with uncertain processing or setup times. 
Also considering this problem with a number of products of the samekind may be interestingas a future 
study. Consideringthe limitation in buffers is also suggested. 
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