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Abstract 
The application of control charts for monitoring financial processes has received a 
greater focus after recent global crisis. The Generelized AutoRegressive Conditional 
Heteroskedasticity (GARCH) time series model is widely applied for modelling 
financial processes. Therefore, traditional Shewhart control chart is developed to 
monitor GARCH processes. There are some difficulties in financial surveillance 
especially in the retrospective phase one of which being the posibility of existing 
outliers in the samples data. For this aim, in this paper some methods were proposed 
to estimate the parameters of the GARCH model based on maximum likelihood and 
robust estimation procedures. Then, the performance of Phase II residual Shewhart 
control chart with estimated parameters was evaluated according to in-control Average 
Run Length in the presence of outliers. The Monte Carlo simulation study was applied 
to evaluate the proposed methods considering different numerical examples. Finally, 
the US Dollar/Iran Rial (USD/IRR) exchange rate was considered for monitoring in 
which the results showed that the control chart was more sensitive when the robust 
methods were applied in the estimation procedure. 
Keywords: Financial surveillance, retrospective phase, GARCH model, robust 
estimation, foreign exchange rate 

1- Introduction 
   Recent financial crisis reveals the necessity of new methods for detecting unnatural conditions as 
soon as possible. Horel and Snee (2009) discussed about the importance of more attention to 
statistical engineering rather than statistical science to help practitioners. They also encourage the 
application of control charts in monitoring financial processes with the aim of insightful view from 
the process. The control chart is a powerful tool in statistical process control which is vastly 
developed to monitor industrial processes (Woodall and Montgomery, 2014). In recent years, control 
charts have taken more attention for monitoring financial processes (Golosnoy, 2016).  
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   The application of control charts for monitoring financial processes needs some justifications. For 
example, the financial processes based on their nature should be modeled with more advanced time 
series models rather than industrial processes. One of these models is general autoregressive 
conditional heteroskedasticity (GARCH) time series model which can well define many financial 
processes (Garthoff et al. 2014). Therefore, most of researches in this area are performed with this 
model structure. Frisen (2008) classified the subject of financial surveillance by presenting required 
steps and adjustments. 
   The practical application of control chart starts with Phase I analysis which is known as 
retrospective phase (Jones-Farmer et al. 2014). Traditionally, this phase consists of estimating the 
parameters, designing control chart and detecting the out-of-control samples in historical data. These 
steps are iteratively repeated until accurate and precise estimated parameters for process and control 
chart are obtained. Then, this designed control chart is performed in phase II to monitor future 
observations. Alongside the vast development of Phase I analysis and Phase II control charts 
separately, recently, investigating the effect of parameter estimation (as a part of phase I analyses) is 
involved in the control chart performance in Phase II (Psarakis et al. 2014). In spite of extra 
researches in this subject for independent processes, there are few works for time dependent 
observations. 
   Adams and Tseng (1998) investigated the robustness of Shewhart, exponentially weighted moving 
average (EWMA) and cumulative sum (CUSUM) control charts with estimated parameters when 
there are errors in sample data for monitoring autoregressive (AR) and integrated moving average 
(IMA) processes. Apley (2002) performed a survey on the effect of model uncertainty on the 
performance of adjusted EWMA control chart for monitoring ARMA processes. They concluded that 
the minimum required sample size is related to the autocorrelation value. Chin and Apley (2008) 
examined the effect of different types of errors on the robustness of control charts for monitoring 
processes with ARMA time series model. Dasdemir et al. (2016) compared the performance of 
modified Shewhart control chart with different estimators for monitoring AR processes. They 
considered several examples which contain outliers in sample data. 
   To the best of our knowledge, there is no research on the effect of parameter estimation for 
monitoring financial GARCH processes. In this paper, first, some difficulties in Phase I analysis in 
monitoring financial processes are explained. One of these problems is the possibility of existing 
outliers in sample data. To tackle with the outliers, it is proposed to consider robust estimators to 
design control chart for monitoring GARCH processes. In addition, there is no paper in the literature 
of designing control charts to estimate the parameters of the GARCH model with robust methods. 
There are different approaches in the robust estimation procedures in which some of them are too 
complicated. For example, Muler and Yohai (2008) proposed the robust M-estimator for GARCH 
models. For practical simplicity, in this paper, a simple filtering procedure is proposed based on the 
confidence interval (CI) to reduce the effect of possible outliers in sample data. Then, the performance 
of Phase II residual Shewhart control chart with estimated parameters is evaluated for monitoring 
financial GARCH processes in the presence of outliers based on in-control average run length (ARL). 
The effect of different estimation methods on the performance of the control chart are compared in 
several numerical examples through simulation studies. Finally, the proposed methods are performed 
to estimate the GARCH model parameters for monitoring USD/IRR exchange rate as the main 
motivation of this research. 
   The rest of the paper is organized as follows: In the next section, Phase I analysis in monitoring 
financial processes is deliberated. Then, the GARCH model, four estimation methods and residual 
Shewhart control chart are explained in Section 3. In Section 4, the effect of estimation methods on 
the control chart performance are compared in different numerical examples through simulation 
studies based on descriptive statistics. Application of the proposed methods is illustrated through a 
real case corresponding to financial processes in Section 5. Concluding remarks are presented in the 
final section. 
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2- Retrospective analysis in financial surveillance 
   The main motivation of developing control chart to monitor financial processes is the power of this 
tool in detecting assignable causes. In this subject, the control chart is adjusted with some special 
features of financial processes. Indeed, some assumptions of industrial applications are different from 
financial processes. For example, in industrial processes, if an assignable cause(s) occurs and the 
control chart signals, the practitioner can stop the machine and implement corrective action(s). While, 
financial processes, in most of the cases, based on their nature perform continuously and they cannot 
be stopped or changed easily by corrective action(s). Hence, expert can only recognize the behavior of 
the process using statistical methods and can make a proper decision in due time. Therefore, defining 
stable conditions to gather in-control data for Phase I analysis is rather impossible in some cases. In 
the other words, performing Phase I analyses faces with the high probability of existing outliers in 
sample data. For example, Herwarts and Reimers (2002) pointed out the problem of defining stable 
financial target process in the monetary policies of the US and Japan foreign exchange rates. 
Correspondingly, Garthoff et al. (2014) stated “Phase I cannot be clearly defined regarding financial 
time series”. 
   Furthermore, a basic inference in financial data is the nature of time dependency. According to this 
feature, one sample could not easily be neglected in Phase I analysis (like the simple independent 
observations). Eliminating one sample in time series leads to complexity in estimator. Thus, in spite 
of vast development of control charts in Phase I analysis of time independent processes, there are few 
works for time dependent processes (Boyles, 2000). In time series control charts, usually retrospective 
analyses have been limited to the effect of parameter estimation. Form the other side; financial experts 
believe that each observation contains information. Therefore, they recommend modeling the 
financial processes based on the maximum possible samples. Usually, the parameters of the model are 
estimated based on the large size of in-control sample data. 
   In this paper, time dependent GARCH process is considered to define financial process. In addition 
to traditional maximum likelihood estimation (MLE), three estimation methods are proposed based on 
robust M-estimator and the filtering procedure to estimate the parameters of the model. Then, phase II 
residual Shewhart control chart is designed to monitor financial GARCH processes. To evaluate the 
effect of parameter estimation on the performance of Phase II financial control chart, the large sizes of 
sample data are generated with different rates of outlier based on Monte Carlo simulation. Hence, the 
effect of estimation methods are compared under different numerical examples based on the in-control 
ARL. The final aim is producing some adjustments to improve the performance of control chart in the 
presence of outliers. In the most of researches in this area, the average, median and standard deviation 
of in-control ARL are considered as criteria. It is desired to have the average and median of ARL 
close to a predefined value, while the minimum value of standard deviation is required. 
 
3- Control chart design 
   In the previous section, the problem of retrospective phase I analyses in financial processes is 
defined generally. In this section, the GARCH model is defined as the most popular model in 
financial processes. The reason of this selection is to model USD/IRR exchange rate as the main 
motivation of this research. Then, four methods are explained to estimate the parameters of the 
GARCH model. Finally, the residual Shewhart control chart is described for performance analyses of 
Phase II control chart. 
 
3-1- GARCH model 
   Engle (1982) presented ARCH model to define volatility in conditional variance mode. Then, Engle 
and Bollerslev (1986) developed GARCH model as a natural development of AR models to ARMA 
ones. The GARCH (p,q) model is defined as Equation (1). 
 

,t t tx hε=  (1) 

 
For 1,2,...,t m=  in which tε  is innovation and th  is defined as Equation (2). 



96 

2

1 1

.
q p

t i t i j t j
i j

h hω α ε β− −
= =

= + +∑ ∑  (2) 
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GARCH model. In the following, four methods are explained to estimate the parameters of the 
financial GARCH processes. Note that the residuals of the model ( tε ) is computed based on Equation 
(3). 
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3-2- Maximum likelihood estimation (MLE) 
   As the first method, the maximum likelihood estimation is considered as the most usual method to 
estimate the parameters of the GARCH model. In this method, if ( )1, , mε εK  is defined as the residuals 

of length m, the likelihood function is calculated as Equation (4). It is usual to maximize the natural 
logarithm of likelihood function. The simplified log likelihood function is presented in Equations (5) 
as expressed in Engle and Bollerslev (1986). 
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Note that the initial values 2 2

0 1 0 1, , , , ,q ph hε ε − −K K  should be predefined or initiated. Then, θ is estimated 

such that ̂θ  maximizes log likelihood function in Equations (6). 

( )ˆ argmax .I=θ θ  (6) 

 
Equation (6) is the general form of MLE method (Scholz, 2006). Bollerslev (1986) calculated partial 
derivatives of the log likelihood model to obtain MLE of parameters. There are also software 
packages such as MATLAB and R to estimate the parameters of the GARCH model based on MLE 
method. 

3-3- Robust M-estimation (RME) 
   In the second method, using the robust M-estimator (Muler and Yohai, 2008) is proposed to design 
control chart. This method performs based on the quasi maximum likelihood function (Berkes et al., 
2003) for GARCH model which can be written as Equation (7). 

( ) ( )
1

1
.

m

t p

M w
m p

ρ
= +

=
− ∑θ  (7) 

 
In this function, ( ) ( )( )logw g wρ = −  and ( ) ( )2log logt tw x h= − . If ( )1, , mε εK  identically follow 

independent standard normal distribution, ( )g w  can be written as Equation (8). 
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Muler and Yohai (2008) showed that if the ρ  function is replaced with *ρ  in Equation (9), the robust 
M-estimator for the parameters of the GARCH model (θ) is defined as Equation (10). 
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The function of ( )P ρ  in Equation (9) is a polynomial trend between a=4 and b=4.3, and defined as 

Equation (11). 
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Muler and Yohai (2008) showed that this method performs well in comparison with the other 
estimation methods. 

3-4- Filtered maximum likelihood estimation (FMLE) 
   It is well known that the financial indices are affected by many parameters in the real side of 
economy. Therefore, diagnosing the outliers or defining a real assignable cause for an outlier is rather 
impossible. Furthermore, searching for the out-of-control samples and finding the source of variation 
in a long period of the past data are not cost efficient procedures. Moreover, the complexity of the 
robust methods leads the practitioners to the traditional simple methods. Therefore, in the third 
estimation method, it is proposed to filter the residuals based on the presumed confidence interval. 
Let define tε  as the residual of the model. Since, the residuals of the model independently follow 
identical standard normal distribution, two sided (1-α) percent confidence interval (CI) is defined as 
[ ]1 / 2 / 2,z zα α−  . Hence, the residuals which are outside of this CI are simply omitted in the estimation 

procedure regardless to their cause. If the parameters of the model are re-estimated based on the 
remained data, this filtering procedure could lead to the robust result in the next estimation. It should 
be noted that some software packages can easily deal with not available (N.A.) samples in MLE 
method. Moreover, the similar filtering procedure was performed by Grossi and Morelli (2006) and 
Carnero et al. (2008). Although this method has a weakness in possibly eliminating the common cause 
samples. However, it guarantees the robustness of the estimator in the presence of outliers. Therefore, 
as can be seen in the result of the next section, we recommend this method only in cases with high 
percent of the outliers. Finally, this filtering procedure continuously is repeated until there are no 
outliers in sample data. Accordingly, the following steps are proposed to estimate the parameters of 
the financial GARCH processes. 

Do 
a. Estimate the parameters of the model based on maximum likelihood estimation 
b. Filter the residuals of the model based on (1-α)% CI 
 

Repeat until there is no outlier in sample data 



98 

3-5- Filtered robust M-estimation (FRME) 
   In the fourth method, the same filtering procedure in the previous method (FMLE) is proposed, this 
time, with the robust M-estimator (Muler and Yohai, 2008). Therefore, the following steps are 
proposed to estimate the parameters of the financial GARCH processes. 
 

Do 
a. Estimate the parameters of the model using M-estimator (Muler and Yohai, 2008) 
b. Filter the residuals of the model based on (1-α)% CI 

 
Repeat until there is no outlier in sample data 

3-6- Phase II residual Shewhart control chart 
   After estimating the parameters of the GARCH model, the residual Shewhart control chart (Severin 
and Schmid, 1998) is applied to monitor the process in Phase II. The control statistic is the residual of 
the model ( tε ) in Equation (3). Therefore, the symmetric control limits (UCL and LCL) are 
determined based on the standard normal distribution. The process is considered in-control until both 
conditions in Equation (12) are satisfied, simultaneously. 

,

.
t

t

UCL

LCL

ε
ε

≤
≥  (12) 

   Usually, the control limits are determined such that the in-control ARL in Phase II equals to the 
predefined value. Traditionally, in-control ARL is considered equal to 370 in industrial applications, 
while the desired in-control ARL in financial applications is commonly set as 60, 120 and 240. When 
the process goes to the out-of-control state, the normal distribution is violated and control chart 
signals. In the next section, the performance of the residual Shewhart control chart with the estimated 
parameters is evaluated based on descriptive statistics of the in-control ARL. 

4- Simulation studies 
   In this section, the performance of Shewhart control chart with estimated parameters is evaluated 
through simulation studies. Without loss of generality, the parameters (ω, α1, β1) in GARCH (1,1) 
model is considered equal to (0.4, 0.3, 0.3) . The outliers are involved in simulation studies as 
Equation (13). 

,t
t

t

x if nu r
x

Sx if nu r

≥
=  <

 (13) 

 
   Where nu is a random data generated from uniform distribution in the range of [0,1], r and S are the 
rate and the size of nuisance in data, respectively. This equation is the reformulation of volatility 
outlier (VO) in GARCH process by Hotta and Tsay (2012). The extraordinary shock of a sample in 
this formulation is considered as the S multiplied by the same sample. 
   Two examples are considered in this section. In these examples, the in-control ARLs are set equal to 
120 and 370, respectively. For sensitivity analyses, two other ARL values equals to 60 and 240 are 
studied as well. The results of sensitivity analyses are not reported in this paper and available upon 
request. Because the similar results are obtained in these cases (in-control ARL equals to 60 and 240) 
and confirms the results in the cases of in-control ARL equals to 120 and 370. 
   In each simulation run, the parameters of the model are estimated based on 5000 samples using 
MLE, RME, FMLE and FRME methods. Then, in-control ARL, the average number of filtering 
iterations (itr) and the average number of total filtered samples (nfs) are obtained through 5000 
replications. Finally, these steps are repeated 100 times to obtain descriptive statistics including mean, 
median and standard deviation for each mentioned criterion. For sensitivity analysis, the r and S 
values are changed in the range of (0, 0.02, 0.05, 0.1, 0.25) and (1.5, 3), respectively. The final aim is 
to find the proper method under different situations such that the average and median of in-control 
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ARL and estimated parameters close to the corresponding expected values with minimum standard 
deviation. 

4-1- Example I 
   In this example, MLE, RME, FMLE and FRME methods are applied to estimate the parameters of 
GARCH(1,1) process in the presence of different rates of nuisance. CI in the filtering procedure is set 
based on 99.17 percent confidence level. Then, the performance of the residual Shewhart control chart 
with estimated parameters is evaluated based on the in-control ARL criterion. Note that the control 
limits (UCL and LCL) for the residual Shewhart control chart in Phase II is set equal to ±2.6383 for 
predefined in-control ARL equals to 120. Table 1 shows mean, median and standard deviation of the 
in-control ARL, the parameters of the GARCH model, the average number of filtering iterations and 
the average number of filtered samples when the size of nuisance (S) is set equal to 1.5. The 
highlighted columns in this table mark the first two best methods and the bold data indicate the best 
results. 
 

Table 1. Descriptive statistics of the results when S is set equal to 1.5 for the first example 
Statistic Mean Median Standard Deviation 
Method MLE RME FMLE FRME MLE RME FMLE FRME MLE RME FMLE FRME 

r Criteria             

0 

ARL 120.45 119.34 92.943 98.013 120.57 120.60 92.590 98.529 9.8118 9.5238 8.1947 8.9954 
ω 0.3962 0.3972 0.3679 0.3773 0.3989 0.3971 0.3726 0.3768 0.0341 0.0363 0.0391 0.0387 
α1 0.3012 0.3003 0.2822 0.2851 0.3043 0.2992 0.2812 0.2854 0.0263 0.0247 0.0291 0.0272 
β1 0.3045 0.3026 0.3063 0.3020 0.3053 0.3029 0.3057 0.2996 0.0465 0.0463 0.0552 0.0523 
itr   5.3600 4.8100   5.0000 5.0000   1.4321 1.3310 
nfs   69.190 65.720   68.000 64.000   12.953 12.106 

0.02 

ARL 129.65 125.53 96.323 102.34 129.88 123.06 96.027 102.02 10.228 11.078 7.9529 9.5706 
ω 0.4164 0.4043 0.3848 0.3821 0.4175 0.4015 0.3773 0.3797 0.0386 0.0389 0.0428 0.0462 
α1 0.3022 0.2987 0.2802 0.2855 0.3032 0.2984 0.2798 0.2873 0.0249 0.0269 0.0283 0.0303 
β1 0.2938 0.3044 0.2947 0.3039 0.2947 0.3006 0.3000 0.2989 0.0455 0.0466 0.0554 0.0620 
itr   5.4700 4.6400   5.0000 5.0000   1.6296 1.1328 
nfs   74.560 69.480   74.000 69.000   11.761 11.513 

0.05 

ARL 143.14 137.43 101.98 108.72 142.96 136.08 102.81 107.66 12.514 12.347 8.6808 10.323 
ω 0.4307 0.4382 0.3852 0.4089 0.4344 0.4368 0.3883 0.4054 0.0418 0.0430 0.0467 0.0497 
α1 0.2990 0.2952 0.2735 0.2828 0.2946 0.2920 0.2719 0.2821 0.0271 0.0256 0.0296 0.0275 
β1 0.2972 0.2848 0.3091 0.2856 0.2924 0.2910 0.3110 0.2905 0.0517 0.0500 0.0669 0.0621 
itr   5.4100 4.9500   5.0000 5.0000   1.4914 1.4521 
nfs   79.280 77.890   79.000 77.000   10.572 13.250 

0.1 

ARL 171.32 153.95 112.30 119.20 170.03 154.98 111.44 120.42 16.554 13.642 10.202 10.884 
ω 0.4662 0.4539 0.4139 0.4159 0.4650 0.4499 0.4183 0.4080 0.0411 0.0452 0.0484 0.0472 
α1 0.3018 0.2881 0.2787 0.2750 0.3017 0.2848 0.2785 0.2752 0.0296 0.0237 0.0289 0.0260 
β1 0.2883 0.2928 0.2892 0.3000 0.2906 0.2897 0.2826 0.3025 0.0468 0.0467 0.0574 0.0566 
itr   5.4000 5.1100   5.0000 5.0000   1.4284 1.4764 
nfs   91.310 87.250   90.500 85.500   12.103 13.478 

0.25 

ARL 278.11 237.95 156.82 169.43 276.29 231.83 157.01 167.55 29.417 28.816 16.860 19.844 
ω 0.5455 0.5329 0.4639 0.4739 0.5400 0.5292 0.4706 0.4744 0.0524 0.0518 0.0621 0.0524 
α1 0.2929 0.2773 0.2636 0.2681 0.2894 0.2749 0.2661 0.2682 0.0299 0.0295 0.0274 0.0294 
β1 0.2962 0.2945 0.3044 0.3035 0.2922 0.2943 0.2976 0.3087 0.0496 0.0527 0.0693 0.0609 
itr   6.1200 4.9700   6.0000 5.0000   1.8818 1.2099 
nfs   111.23 107.81   111.00 108.00   14.980 12.917 

 
   The results of Table 1 show that when the rate of nuisance (r) in samples is very small, here equal or 
less than 0.02, RME method performs well and MLE method is the second proper method. Indeed, 
this reveals the weakness of filtering procedure in the absence of outliers. The reason of this weakness 
is enforcement of filtering procedure for reducing the volatility of the process when it is not 
necessary. When r increases to 0.05, FRME and RME methods are the first and second appropriate 
methods. In this situation, the robust procedure could well overcome the nuisance in both RME and 
FRME methods. Afterwards, when r becomes equal to 0.1, FRME and FMLE are the first and second 
well methods. As r increases, the performance of the filtering procedure improves and gets better than 
the robust procedure. This shows the robustness of the filtering procedure under large rates of outliers. 
Table 2 shows the same results when the size of nuisance (S) is set equal to 3. 
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Table 2. Descriptive statistics of the results when S is set equal to 3 for the first example 
Statistic Mean Median Standard Deviation 
Method MLE RME FMLE FRME MLE RME FMLE FRME MLE RME FMLE FRME 

r Criteria             

0 

ARL 120.45 119.34 92.943 98.013 120.57 120.60 92.590 98.529 9.8118 9.5238 8.1947 8.9954 
ω 0.3962 0.3972 0.3679 0.3773 0.3989 0.3971 0.3726 0.3768 0.0341 0.0363 0.0391 0.0387 
α1 0.3012 0.3003 0.2822 0.2851 0.3043 0.2992 0.2812 0.2854 0.0263 0.0247 0.0291 0.0272 
β1 0.3045 0.3026 0.3063 0.3020 0.3053 0.3029 0.3057 0.2996 0.0465 0.0463 0.0552 0.0523 
itr   5.3600 4.8100   5.0000 5.0000   1.4321 1.3310 
nfs   69.190 65.720   68.000 64.000   12.953 12.106 

0.02 

ARL 203.40 127.70 97.489 103.87 200.71 126.59 96.594 101.98 29.186 13.095 8.8907 10.020 
ω 0.5187 0.4602 0.3877 0.3986 0.5149 0.4603 0.3822 0.3903 0.0665 0.0508 0.0479 0.0463 
α1 0.3102 0.2808 0.2722 0.2838 0.3108 0.2805 0.2739 0.2814 0.0418 0.0315 0.0268 0.0316 
β1 0.2597 0.2596 0.2988 0.2888 0.2595 0.2634 0.3015 0.2915 0.0721 0.0580 0.0597 0.0598 
itr   5.8200 4.9100   6.0000 5.0000   1.6167 1.4220 
nfs   104.80 99.380   105.50 98.000   14.129 11.839 

0.05 

ARL 426.48 142.58 105.88 112.06 420.29 142.21 105.84 111.36 73.703 14.425 9.7056 10.159 
ω 0.6785 0.5176 0.4043 0.4094 0.6689 0.5235 0.4062 0.4110 0.1012 0.0624 0.0536 0.0457 
α1 0.3137 0.2483 0.2676 0.2723 0.3045 0.2456 0.2652 0.2703 0.0499 0.0298 0.0302 0.0305 
β1 0.2393 0.2453 0.2981 0.2985 0.2317 0.2414 0.3007 0.2906 0.0897 0.0652 0.0697 0.0577 
itr   6.3500 5.0200   6.0000 5.0000   1.4933 1.3407 
nfs   155.22 152.67   154.50 153.00   16.586 14.618 

0.1 

ARL 1128.2 173.58 124.98 128.16 1067.6 171.81 123.51 126.81 284.55 23.673 14.320 14.642 
ω 0.9583 0.6536 0.4352 0.4699 0.9641 0.6493 0.4330 0.4658 0.1723 0.0916 0.0593 0.0741 
α1 0.3050 0.1891 0.2562 0.2495 0.2892 0.1859 0.2558 0.2480 0.0722 0.0375 0.0340 0.0312 
β1 0.2124 0.2093 0.3020 0.2745 0.2067 0.2067 0.3010 0.2736 0.1119 0.0879 0.0759 0.0834 
itr   6.8800 5.4700   7.0000 5.0000   1.5128 1.3887 
nfs   232.64 233.81   232.00 235.50   17.554 16.255 

0.25 

ARL 5699.1 583.52 236.91 254.60 5400.7 583.68 233.65 256.01 1820.1 131.28 34.607 36.713 
ω 1.5545 0.8926 0.6337 0.6041 1.5358 0.8797 0.6149 0.5939 0.2771 0.2480 0.1277 0.1330 
α1 0.2054 0.1102 0.2092 0.2067 0.2046 0.1079 0.2131 0.2038 0.0529 0.0323 0.0401 0.0373 
β1 0.2971 0.3616 0.2671 0.3078 0.2953 0.3671 0.2801 0.3251 0.1068 0.1531 0.1131 0.1195 
itr   9.5900 8.0400   9.0000 8.0000   1.7928 1.9588 
nfs   422.70 414.63   418.00 416.50   24.641 24.726 

 
   The results of Table 2 show that when there is not nuisance in samples, RME method performs well 
and MLE method is the second proper method. This confirms the weakness of the filtering procedure 
in the absence of the outliers. When r increases to 0.02, FRME and RME methods are so closed in 
performance. In this situation, the robust procedure could well tackle the nuisance in both RME and 
FRME methods. Afterwards, when r becomes equal to 0.05, FRME and FMLE are the first and 
second well methods. This shows the replacement of robust procedure with filtering procedure in 
performance. Then, in the rate of 0.1 and 0.25, FMLE and FRME are the first and second ranked 
methods. This confirms the obtained results in the previous table which the proposed filtering 
procedure performs better than the other methods in dealing with large size of outliers in samples. 

4-2- Example II 
   In this example, MLE, RME, FMLE and FRME methods are applied to estimate GARCH(1,1) 
parameters in the presence of different nuisance rates. The confidence level in the filtering procedure 
is set equal to 99.73 percent. Then, the performance of the residual Shewhart control chart with 
estimated parameters is evaluated based on in-control ARL criterion. The control limits (UCL and 
LCL) for the residual Shewhart control chart in Phase II is set equal to ±3 for predefined in-control 
ARL of 370. Table 3 shows mean, median and standard deviation of the in-control ARL, the 
estimated parameters of the GARCH model, the average number of filtering iterations and the average 
number of filtered samples when the size of nuisance (S) is set equal to 1.5. The highlighted columns 
in this table mark the first two best methods and the bold data indicate the best results. 
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Table 3. Descriptive statistics of the results when S is set equal to 1.5 for the second example 
Statistic Mean Median Standard Deviation 
Method MLE RME FMLE FRME MLE RME FMLE FRME MLE RME FMLE FRME 

r Criteria             

0 

ARL 370.03 368.47 330.26 351.00 365.39 368.68 328.60 350.71 36.727 35.944 34.040 33.335 
ω 0.4083 0.4038 0.3968 0.3974 0.4051 0.4027 0.3946 0.3968 0.0365 0.0334 0.0397 0.0359 
α1 0.2982 0.2980 0.2919 0.2944 0.2982 0.3002 0.2906 0.2945 0.0257 0.0235 0.0268 0.0236 
β1 0.2931 0.2969 0.2946 0.3004 0.2934 0.3013 0.2957 0.3012 0.0430 0.0427 0.0488 0.0461 
itr   3.3700 2.8300   3.0000 3.0000   1.2685 1.2477 
nfs   19.000 17.810   18.000 17.000   5.4772 5.1673 

0.02 

ARL 404.15 385.08 351.68 368.48 398.49 388.06 346.54 368.39 47.508 39.351 39.727 36.596 
ω 0.4121 0.4069 0.3984 0.4026 0.4162 0.3999 0.3984 0.4003 0.0317 0.0470 0.0338 0.0470 
α1 0.2990 0.2900 0.2926 0.2887 0.2995 0.2891 0.2921 0.2862 0.0234 0.0273 0.0217 0.0274 
β1 0.2995 0.3062 0.2998 0.3059 0.2971 0.3041 0.2992 0.3037 0.0398 0.0573 0.0447 0.0581 
itr   3.1400 2.6400   3.0000 3.0000   1.3182 0.8471 
nfs   21.260 19.970   21.000 20.000   5.9876 5.1354 

0.05 

ARL 464.07 430.78 381.65 409.08 459.20 429.56 378.78 404.37 50.986 46.756 41.447 45.881 
ω 0.4336 0.4263 0.4140 0.4165 0.4309 0.4258 0.4088 0.4177 0.0450 0.0370 0.0427 0.0391 
α1 0.2962 0.2972 0.2864 0.2974 0.2986 0.2980 0.2869 0.2968 0.0252 0.0285 0.0261 0.0294 
β1 0.2973 0.2940 0.2997 0.2977 0.2979 0.2928 0.3039 0.2965 0.0491 0.0485 0.0522 0.0522 
itr   3.3500 2.8700   3.0000 3.0000   1.2822 1.1517 
nfs   26.410 25.500   25.000 25.000   6.3566 6.1669 

0.1 

ARL 562.93 499.83 434.87 474.27 561.35 498.46 433.28 475.51 68.548 59.004 51.958 55.387 
ω 0.4631 0.4551 0.4305 0.4449 0.4585 0.4545 0.4240 0.4413 0.0457 0.0474 0.0471 0.0482 
α1 0.2979 0.2893 0.2865 0.2922 0.2969 0.2895 0.2905 0.2919 0.0263 0.0290 0.0272 0.0305 
β1 0.2909 0.2903 0.2993 0.2917 0.2964 0.2860 0.3097 0.2881 0.0503 0.0520 0.0549 0.0555 
itr   3.4700 3.0100   3.0000 3.0000   1.0867 1.0683 
nfs   32.770 30.940   33.000 31.000   7.7926 6.7432 

0.25 

ARL 1027.4 858.24 698.32 796.90 1013.3 856.35 696.69 785.15 143.98 122.98 91.630 111.87 
ω 0.5516 0.5270 0.5077 0.5086 0.5417 0.5214 0.5049 0.5020 0.0635 0.0593 0.0649 0.0627 
α1 0.2898 0.2746 0.2710 0.2777 0.2933 0.2783 0.2698 0.2776 0.0295 0.0290 0.0306 0.0288 
β1 0.2921 0.3035 0.2984 0.3083 0.2988 0.3079 0.2975 0.3214 0.0581 0.0592 0.0646 0.0631 
itr   4.0100 2.9300   4.0000 3.0000   1.3521 0.9771 
nfs   44.490 41.260   45.000 40.000   7.3409 7.8491 

 
   The results of Table 3 show that when there is not nuisance in samples, RME method performs well 
and MLE method is the second proper method. When r increases to 0.02, FRME and RME 
performance is so closed. Afterwards, when r becomes equal or greater than 0.05, FMLE and FRME 
are the first and second well methods. This confirms the replacement of the robust procedure by the 
filtering procedure in performance as well as the result in the first example. Moreover, when the 
confidence interval widened, the performance of the filtering procedure dominate the robust 
procedure under lower levels of r when the size of nuisance is moderate (1.5). Table 4 shows the same 
results when the size of nuisance (S) is set equal to 3. 
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Table 4. Descriptive statistics of the results when S is set equal to 3 for the second example 
Statistic Mean Median Standard Deviation 
Method MLE RME FMLE FRME MLE RME FMLE FRME MLE RME FMLE FRME 

r Criteria             

0 

ARL 370.03 368.47 330.26 351.00 365.39 368.68 328.60 350.71 36.727 35.944 34.040 33.335 
ω 0.4083 0.4038 0.3968 0.3974 0.4051 0.4027 0.3946 0.3968 0.0365 0.0334 0.0397 0.0359 
α1 0.2982 0.2980 0.2919 0.2944 0.2982 0.3002 0.2906 0.2945 0.0257 0.0235 0.0268 0.0236 
β1 0.2931 0.2969 0.2946 0.3004 0.2934 0.3013 0.2957 0.3012 0.0430 0.0427 0.0488 0.0461 
itr   3.3700 2.8300   3.0000 3.0000   1.2685 1.2477 
nfs   19.000 17.810   18.000 17.000   5.4772 5.1673 

0.02 

ARL 703.82 391.96 360.61 387.56 698.12 387.35 359.73 382.26 113.50 46.056 41.968 45.432 
ω 0.5079 0.4542 0.4116 0.4157 0.5046 0.4513 0.4116 0.4070 0.0728 0.0461 0.0451 0.0423 
α1 0.3123 0.2795 0.2870 0.2924 0.3069 0.2793 0.2856 0.2912 0.0452 0.0241 0.0237 0.0235 
β1 0.2679 0.2657 0.2938 0.2949 0.2615 0.2627 0.2922 0.2944 0.0833 0.0522 0.0525 0.0516 
itr   3.7500 2.9100   3.5000 3.0000   1.2092 0.9545 
nfs   48.910 47.570   50.000 48.000   7.9583 8.6389 

0.05 

ARL 1764.5 442.04 428.85 454.16 1744.6 440.71 429.76 452.26 412.24 69.481 46.673 60.704 
ω 0.6938 0.5413 0.4423 0.4600 0.6980 0.5435 0.4472 0.4558 0.0953 0.0608 0.0490 0.0504 
α1 0.3245 0.2530 0.2846 0.2908 0.3190 0.2534 0.2823 0.2918 0.0611 0.0303 0.0280 0.0297 
β1 0.2232 0.2181 0.2868 0.2714 0.2229 0.2159 0.2809 0.2752 0.0816 0.0655 0.0577 0.0581 
itr   4.5400 3.1500   4.0000 3.0000   1.2825 1.2503 
nfs   91.180 91.920   91.000 90.500   10.026 11.571 

0.1 

ARL 5557.5 531.82 593.65 596.13 5608.4 526.77 587.59 592.95 1842.6 88.517 88.209 74.790 
ω 0.9363 0.6285 0.4950 0.5080 0.9345 0.6238 0.4914 0.4978 0.1573 0.0950 0.0691 0.0658 
α1 0.3072 0.1869 0.2710 0.2557 0.3072 0.1832 0.2685 0.2559 0.0731 0.0376 0.0339 0.0308 
β1 0.2264 0.2385 0.2891 0.2906 0.2235 0.2285 0.2842 0.2934 0.1114 0.0935 0.0730 0.0655 
itr   5.2400 3.8300   5.0000 4.0000   1.2722 1.0736 
nfs   153.16 157.83   154.00 158.50   12.602 12.900 

0.25 

ARL 30424 1726.1 1826.4 1844.0 23151 1622.7 1705.9 1775.3 20183 471.15 549.20 445.19 
ω 1.5657 0.8936 0.7947 0.7769 1.5859 0.9092 0.7801 0.7406 0.3455 0.2279 0.1886 0.1962 
α1 0.2150 0.1119 0.1871 0.1805 0.2045 0.1078 0.1839 0.1796 0.0666 0.0355 0.0480 0.0402 
β1 0.2939 0.3567 0.3033 0.3248 0.2746 0.3391 0.2909 0.3228 0.1402 0.1436 0.1324 0.1300 
itr   8.7115 6.1400   8.5000 6.0000   2.0033 1.6019 
nfs   260.48 258.10   264.00 254.50   22.920 19.869 

 
   The results of Table 4 show that when there is not nuisance in samples, RME method performs well 
and MLE method is the second proper method. When r becomes equal or greater than 0.02, FMLE 
and FRME are the first and second well methods. This confirms the replacement of the robust 
procedure by the filtering procedure under lower levels of r when the size of nuisance (S) is rather 
high (equal to 3). 

5- Foreign exchange rate 
   The main motivation of this research is monitoring the USD/IRR exchange rate. The effect of 
foreign exchange rate on the economy is vast and obvious (Mankiw, 2014). The effect of currency 
fluctuations on the international trades forced decision makers to investigate changes in exchange rate 
(Oskooee and Hegerty, 2007). For example, a country with high volatile currency could face with 
less foreign investments. The control chart can help practitioners in detecting any atypical changes in 
foreign exchange rate. If these diagnostics are followed by appropriate decisions, it can lead to a less 
volatile process based on the concept of six sigma (Frisen, 2008). The USD/IRR exchange rate is also 
well studied in the literature of the econometrics (Norouzzadeh and Rahmani, 2006). There are 
different approaches for modeling the USD/IRR exchange rate (Fahimifard et al. 2009). To the best of 
our knowledge, there is no paper for monitoring the USD/IRR exchange rate by using control charts. 
The most promising model in this subject is GARCH model (Araghi and Pak, 2013). Therefore, in 
this section, the performance of the proposed methods is illustrated through a real case study. 
The data set, available upon request, consists of 3279 daily observations from the first working day of 
the year 1384 Solar Hijri (S.H.) until 13th days of the month Mordad from the year of 1395 S.H. In 
financial analyses, it is usual to transform samples in logarithm of daily returns as Equation (14). 
Therefore, let ty  denotes the original observation, then, tx  reports the daily log return. Figure 1 
shows the original and daily log returns of USD/IRR exchange rate. 



 

Figure 1. The original and daily log returns of USD/IRR exchange rate
 
   Figures 2 and 3 respectively show 
second order of log returns based on autocorrelation function (ACF) and partial ACF (PACF). As it 
can be seen, there are significant autocorrelations especially in the second order of log ret
conditions, the GARCH model can well define the process behavior.

Figure 2.

Figure 3.
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The original and daily log returns of USD/IRR exchange rate

Figures 2 and 3 respectively show the autocorrelation and partial autocorrelation of the first and 
second order of log returns based on autocorrelation function (ACF) and partial ACF (PACF). As it 
can be seen, there are significant autocorrelations especially in the second order of log ret
conditions, the GARCH model can well define the process behavior. 

Figure 2. ACF and PACF of the first order of log returns 

Figure 3. ACF and PACF of the second order of log returns 

(14) 

 
The original and daily log returns of USD/IRR exchange rate 

the autocorrelation and partial autocorrelation of the first and 
second order of log returns based on autocorrelation function (ACF) and partial ACF (PACF). As it 
can be seen, there are significant autocorrelations especially in the second order of log returns. In such 



   The samples of the first 9 years including 2594 observations are selected for 
following 685 samples are considered for monitoring purpose in Phase II. The augmented Dickey
Fuller test rejects the null hypothesis of unit root in log re
estimated based on MLE, RME, FMLE and FRME methods. Note that the confidence level in 
filtering procedure is set equal to 99.17 percent. The results of residual analyses confirm that the 
model is sufficient. As instance, the residual analyses of MLE method are reported. The similar 
outcomes are obtained for the other methods as well. Figures 4 and 5 show the autocorrelation and 
partial autocorrelation of the first and second orders of the residuals based on ACF a
respectively. 

Figure 4. ACF and PACF of the first order of

Figure 5. ACF and PACF of the second order of
 

   As shown in Figures 4 and 5, the autocorrelations in both orders are 
residuals is equal to 0.0854 which is so close to zero. Although, the normality assumption of the 
residuals is rejected, as shown in Figure 6 the histogram of the residuals is so close to the normal 
distribution. The stability of the variance over time can be seen in this figure as well.
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The samples of the first 9 years including 2594 observations are selected for p
following 685 samples are considered for monitoring purpose in Phase II. The augmented Dickey
Fuller test rejects the null hypothesis of unit root in log returns. Then, the parameters of the model are 
estimated based on MLE, RME, FMLE and FRME methods. Note that the confidence level in 
filtering procedure is set equal to 99.17 percent. The results of residual analyses confirm that the 
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ACF and PACF of the first order of the residuals in MLE method

ACF and PACF of the second order of the residuals in MLE method

As shown in Figures 4 and 5, the autocorrelations in both orders are eliminated. The average of the 
residuals is equal to 0.0854 which is so close to zero. Although, the normality assumption of the 
residuals is rejected, as shown in Figure 6 the histogram of the residuals is so close to the normal 

y of the variance over time can be seen in this figure as well.
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Figure 6. Histogram and trends of the residuals in MLE method 

   Table 5 shows the estimated parameters in all methods. The results of this table show that the 
numbers of filtered samples in FMLE and FRME methods are 363 and 400, respectively. The percent 
of filtered samples respectively are 14% and 15% for FMLE and FRME methods which are rather 
great respect to 2594 sample data. This demonstrates the existence of outliers in sample data. 
Therefore, it is expected that the robust or filtering approach performs better than the traditional MLE 
method. The analyses of the values of the estimated parameters indicate significant difference 
between the estimators. In the other words, adding filtering and robust procedures to the estimation 
method results in more accurate and precise parameters values. For example, the estimated value of 
ARCH parameter (α1) in MLE, FMLE, RME and FRME methods are respectively increasing from 
0.1503 to 0.3159 which is more significant. Hence, FRME method is recommended to design residual 
Shewhart control chart in Phase II. 

Table 5. The estimation results for the real example 
Method MLE RME FMLE FRME 
ω 0.0006 0.0009 0.0002 0.0009 
α1 0.1503 0.2676 0.1999 0.3159 
β1 0.8497 0.6892 0.8001 0.6638 
itr   24 36 
nfs   363 400 

 
   Afterwards, the residual Shewhart control chart is designed with the estimated parameters based on 
FRME method for monitoring the rest of the samples. The control limits are set equal to ±2.6383 for 
the in-control ARL equals to 120. Figure 7 shows the control limits as well as the control statistics 
over time. 

Figure 7. Control statistics in Phase II with the estimated parameters based on FRME method 
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After each signal, the out-of-control state could be interpreted based on the market analyses. These 
signals could be useful for decision makers. Moreover, if these decisions are followed by real actions 
in the market, they can bring less volatility for the future trends of the market. However, according to 
the results of the simulation studies, it is expected that Phase II control chart with estimated 
parameters based on MLE method is less sensitive. Table 6 shows the number of signals given by 
Phase II control chart based on different estimation methods. 

Table 6. The number of control chart signals in the real example 
Estimation 

Method 
MLE RME FMLE FRME 

The number of 
signals 

17 34 21 32 

 
As it is expected, MLE method is insensitive to changes in process. This is confirmed by the obtained 
results in the real example. Figure 8 shows the control statistics with the estimated parameters based 
on MLE method over time as well as the corresponding control limits. 

Figure 8. Control statistics in Phase II with the estimated parameters based on MLE method 

 

5- Conclusions and future research 
   In this paper, the performance of residual Shewhart control chart with the estimated parameters was 
evaluated for monitoring financial GARCH process in the presence of outliers. The reason for 
selecting GARCH model was the generality of the model for describing the financial process 
behavior. Moreover, this model could well define USD/IRR exchange rate as the main motivation of 
this research. To estimate the parameters of the model, in addition to the traditional MLE method, 
some robust methods were proposed to handle the outliers. Simulation studies revealed that the 
control chart was significantly affected by the outliers. Generally, the outliers made the in-control 
ARL greater than the predefined expected value. In other words, the control chart was insensitive to 
the changes in the process. In different numerical examples, the control chart based on RME and 
MLE methods performed better than the others when there is only clean historical data. While by 
increasing the rate of the outliers, the control chart based on FMLE and FRME methods resulted in 
slightly better in-control ARL performance. Finally, the proposed methods were applied for 
monitoring USD/IRR exchange rate. In the real example, the control chart was more sensitive when 
the robust methods were applied in estimation procedure. This confirmed the obtained results in 
simulation studies. The performance of control charts in monitoring financial processes in the 
presence of outliers can be investigated in future research. 
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