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ABSTRACT 
 

It has been proved that process capability indices provide very efficient measures of the 
capability of processes from many different perspectives. These indices have been widely used 
in the manufacturing industry for measuring process reproduction capability according to 
manufacturing specifications. In the past few years, univariate capability indices have been 
introduced and used to characterize process performance, but are comparatively neglected for 
multivariate processes where multiple dependent characteristics are involved in quality 
measurement. Also, most of researches related to process capability indices have assumed no 
gauge measurement errors. Unfortunately, such an assumption does not reflect real situations 
accurately even with highly sophisticated advanced measuring instruments. Conclusions drawn 
from process capability analysis are hence unreliable. In this paper, we consider the effect of 
process variables correlation coefficient on the multivariate process capability index (MCp) for 
different gauge measurement capabilities. Also, with respect to correlation coefficient and 
measurement capability we investigate the statistical properties of the estimated MCp. The 
results indicate that gauge measurement capability has an important role in determining process 
capability. This factor would increase the effect of correlation coefficient on estimating the 
process capability, such that for different gauge measurement capabilities, correlation 
coefficients will change the results of estimating and testing the process capability. 

 

Keywords: Capability analysis, Correlation coefficient, Critical value, Hypothesis testing, 
Multivariate process, Gauge measurement errors. 

 
1. INTRODUCTION 
 
In manufacturing industry, there is growing interest in quantitative measures of industrial processes 
variation. One of the measuring tools most frequently used to measure the capability of a 
manufacturing process is process capability indices, designed to quantify the relation between the 
actual performance of the process and its specified requirements. These indices have received much 
interest in statistical literature during recent years (Vannman and Hubele , 2003). It has been proved 
that process capability indices provide very efficient measures of the capability of processes from 
many different perspectives (Chang and Wu, 2008). These capability indices, quantifying process 
potential and performance, are important for any successful quality improvement activity and 
quality program implementation. 
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Capability indices, Cp, Cpk, Cpm, and Cpmk, have been proposed in the manufacturing and service 
industries providing numerical measures on whether a process is capable of reproducing items 
within the specification limits preset in the factory. A large number of papers have dealt with the 
statistical properties and the estimation of these univariate indices. Kotz and Johnson (2002) 
provided a compact survey and commented on some 170 publications on process capability indices 
during the years 1992 to 2000. Also Pearn and Kotz (2006) provided a comprehensive survey on 
process capability indices during the beginning of introducing these indices up to late 2005. 
 
One interesting fact about the characteristic measuring in a process is that the inevitable variations in 
process measurements come from two sources: the manufacturing process and the gauge. Gauge 
capability reflects the gauge's precision, or lack of variation, but is not the same as calibration which 
assures the gauge's accuracy. As it has been emphasized in numerous occasions, process capability 
measures the ability of a process to meet reassigned specifications. 
 
Most of research papers related to capability measure have assumed no gauge measurement errors 
(Pearn and Liao, 2005). Unfortunately, such an assumption does not reflect real situations 
accurately even with highly sophisticated advanced measuring instruments. Montgomery and 
Runger (1993) pointed out that the quality of data on the process characteristics relies very much on 
the gauge. Pearn et al. (2007) mentioned that any variation in the measurement process has a direct 
impact on the ability to make sound judgment about the manufacturing process. An inaccurate 
measurement system can thwart all the benefits of improvement endeavors resulting in poor quality. 
On the other hand, improving the gauge measurements and employing properly trained operators 
can reduce the measurement errors. However, the reality is that no measurement is free from error 
or uncertainty even if it is carried out with the aid of highly sophisticated and precise measuring 
instruments. Some research has been done for the case of univariate process capability while 
considering the measurement error in particular states. Pearn and Kotz (2006) provided a compact 
survey on pervious researches capability indices with gauge measurement errors during the 
beginning of introducing these indices up to late 2005. 
 
Another point that is crucial in process capability indices is the bulk of the studies associated with 
analyzing the quality and efficiency of a process due to a single quality specification; but in modern 
manufacturing environments where complex processes require monitoring, the possibility of 
simultaneously monitoring and controlling two or more quality features is rapidly gaining 
importance. So, our studies on capability indices can not be restricted to the univariate domain. For 
this reason, multivariate methods for assessing process capability are proposed. 
 
Chan et al. (1991), Taam et al. (1993), Pearn et al. (1992), Chen (1994), Karl et al. (1994), Shahriari 
et al. (1995), Boyles (1996), Wang and Du (2000), Wang et al. (2000), and others have developed 
and presented multivariate capability indices for assessing capability. Wang and Chen (1998) and 
Wang and Du (2000) proposed multivariate extensions for Cp, Cpk, Cpm, and Cpmk based on the 
principal component analysis, which transforms numbers of original related measurement variables 
into a set of uncorrected linear functions. A comparison of three novel multivariate methodologies 
for assessing capability is illustrated in Wang et al. (2000). Although some multivariate capability 
indices have been studied, and an extensive study has been done for the case of univariate process 
capability while considering the measurement error, there is a real need for considering this effect on 
the multivariate quality characteristics as there no study conducted in this regard. 
 
In this paper we focus on the common capability index, MCp in multivariate state and consider the 
effect of correlation coefficient on the MCp and its statistical properties for different gauge 
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measurement capabilities; in other words, we try to answer the question if there is a sound effect of 
correlation coefficient on the estimation of MCp , when the measurement error increases. 
 
2. MULTIVARITAL PROCESS CAPABILITY IN PRESENCE OF GAUGE 
MEASUREMENT ERRORS 
 
The multivariate capability index MCp is defined as (Taam et al. (1993)):  
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Where k(q) is the 99.73th percentile of the 2χ  distribution with v degrees of freedom or the 

dimension of variables; μ is the mean vector and ∑  represents the variance–covariance matrix of 
X; ∑  is the determinant of ∑ and ( ).Γ  is the gamma function; Vol (modified tolerance region) is 
the largest ellipsoid centered at the target completely within the original tolerance region; and 

)]q(k)X()X[(vol 1 ≤μ−∑′μ− −  indicates a scaled 99.73% process elliptical region. 
 
Gauge repeatability and reproducibility (GR&R) studies focus on quantifying the measurement 
errors. Suppose that in the multivariate case, the measurement errors are described by a random 
variable M ~ Normal ( MeMe ∑,μ ), where Meμ = 0, is the mean vector, and Me∑ is the Variance 
covariance matrix of the measurement error. So, based on the definition of Montgomery and Runger 
(1993), the gauge capability for the multivariate case is defined by: 
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Where Me∑  is the determinant of Me∑  and and Mλ  is the gauge capability index for the 
multivariate case. For the measurement system to be deemed acceptable, the variability in the 
measurements due to the measurement system must be less than a predetermined percentage of the 
engineering tolerance. So based on the recommendations, some guidelines for gauge acceptance are 
offered (Montgomery, 1996). 
 
Considering the process capability in the measurement error system, we assume that the 
observations X have a multivariate normal distribution Nv(μ, ∑ ) and show the relevant quality 
characteristic of a manufacturing process. Because of measurement errors, the observed variable Y 
~ Nv ),( MeYY ∑+∑=∑μ=μ  is measured by the assumption that X and Me are stochastically 
independent, instead of measuring the true variable X. The empirical process capability index 
( Y

pMC ) is obtained after substituting Y∑  for ∑ , so the multivariate capability index Y
pMC  is 

defined as: 
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It is easy to show that the relationship between the true process MCp and the empirical process 
capability Y

pMC  is given as (Shishebori and Hamadani, 2008): 
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Since the variation of data we observe is larger than that of the original data, the denominator of the 
index MCp becomes larger and we will underestimate the true capability of the process. 
 
3. ESTIMATION OF MCp IN PRESENCE OF GAUGE MEASUREMENT ERRORS 
 
An estimator of MCp can be expressed as 
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Where S is the sample variance-covariance matrix from process and |S| is the determinant of S. 

pCM̂  is a biased estimator of MCp multiplied by bv given as: 
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We get an unbiased estimation of MCp as pCM

v
bpCM ˆ~ = . Pearn et al. (2007) showed that pCM~  is 

the UMVUE (Uniformly Minimum Variance Unbiased Estimator) of MCp. 
 
With respect to gauge measurement capability and using the estimators, SY, SMe and pCM̂  for the 

parameters Y∑ , Me∑  and MCp, the biased estimator of MCp is given as: 
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Where SY is the sample variance-covariance matrix and |SY| is the determinant of SY.  
So the relationship between the estimators of the true process MCp and the empirical process 
capability Y

pMC  is given as: 
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Illustration Example 
 
It is assumed a bivariate quality control involving joint control of the length (L) and width (W) of a 
plastic product from a multivariate normality (both quality characteristics/ dimensions have the 
same unit of measure). Twenty five observations were collected from a plastic production line using 



The Effect of Gauge Measurement Capability and… 63 

the same gauging device. The specification limits for L and W were set at (112.7, 241.3) and (32.7, 
73.3), respectively. The center of the specifications was T

0μ  = [177, 53]. The sample mean vector 
and sample covariance matrix were 
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Using 2

9973.0,2χ  = 11.829 and |SY| = 8297.4, then we obtain the practical estimated value of process 
capability index as: 
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This value is calculated by ignoring the gauge measurement capability. Now by considering the 
gauge measurement error for the data, and with respect to the independence of measuring 
instruments for two variables, we assume that the variance-covariance matrix of gauge measurement 
is: 
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Thus we get 7637121MeS .=  as an estimation of Me∑ . Using (2), one can get the gauge 

measurement capability as 0.1 ).( 10M =λ ; therefore, from (6) we obtain 7282.1ˆ =pCM  and 

58421.~ =pCM . 

 
Comparing pCM̂ ( pCM~ ) with Y

pCM̂ ( pCM~ ), it is obvious that the effect of Mλ  on the Y
pMC  will 

increase; in other words, with increasing Mλ , the Y
pMC  will decrease. 

 
It is assumed that, the correlation matrix between process variables, considering the measurement 
error is given by: 
 

 ⎥
⎦

⎤
⎢
⎣

⎡
=

18007.0
8007.01

ρ  

 
4. EXPECTED VALUE, VARIANCE AND MSE OF Y

pCM̂  
 
According to Pearn et al. (2007), the probability density function of Y

pCM̂  is expressed as: 
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and the rth moment of Y

pCM̂ , according to the equation (7), is given by: 
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So, the expected value of Y

pCM̂ : 
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Where vb  is a correction factor so that Y

pv
Y
p CMbCM ˆ~

×=  is an unbiased estimator of Y
pMC . From 

equation (8) and the definition of variance, we have the variance of Y
pCM̂  as: 
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For 0M >λ , it is clear that Y

pCM~  is a biased estimator of MCp and the bias is given as: 
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Which is a decreasing function of Mλ . 
 
Taking into account both the bias and the variance of the estimators pCM~  and Y

pCM~ , and using the 

fact that MSE= (bias)2 +variance, the MSEs of  pCM~  and Y
pCM~ , denoted by MSE( pCM~ ) and 

MSE( Y
pCM~ ) are given as: 
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(b) (a) 

(d) (c) 

(a)  Mλ  = 0.05,  (b)  Mλ  = 0.30  (c) Mλ  = 0.60,  (d) Mλ  = 0.95. 
 

Figure 1 Surface plot of γ for n = 5(1)100 and ρ∈  [0, 1] 
 
For comparing MSE ( Y

pCM~ ) with MSE ( pCM~ ), we consider the function: 
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Equation (14) was written in MATLAB 7.0 software and the three dimensional surface of γ was 
obtained. Figure 1 shows the three dimensional surface of γ for MCp = 1.5842 with ρ ∈  [0 , 1] for 
different gauge measurement errors ( Mλ ). 
 
According to figure 1, it is obvious that for a known value of measurement capability, the increase 
in mean square error of Y

pMC  is more pronounced than that in mean square error of pMC . 

Therefore one can say that for a known value of Mλ , increasing the correlation coefficient between 
process variables and also increasing the sample size will increase the mean square error of pMC . 
Of course, one can see in figure 1 that for a known value of measurement capability and correlation 
coefficient, γ increases with the growth of sample size, because the effect of correlation coefficient 
and also of measurement errors on process capability estimation is more observable with growing of 
sample size. 
 
5. CONFIDENCE INTERVAL FOR MCp 
 
Since pCM~  is a statistical estimator like other statistics, it is subject to the sampling variation, 
therefore one needs to compute an interval to provide a range that includes the true MCp with high 
probability. Based on the definition, a 100(1−α)% confidence interval for MCp can be established 
(Pearn et al. (2007)). 100(1− α)% confidence interval bound can be written as (15): 
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Furthermore, a 100(1−α)% lower confidence bound for MCp can be obtained as: 
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However, as a result of the measurement errors, we take Y

pCM~  as an estimator of MCp. Thus the 
confidence bounds are: 
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In the discussed example, a 95% confidence interval and lower bound for MCp are given as 
[ ]8265254160 .,.  and [ )∞,.62950  respectively. 
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It is interesting to find out the confidence coefficient θ (the probability that the confidence interval 
contains the actual MCp value) for the confidence bound given in (17). One can calculate this 
coefficient using the following definition: 
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By substituting y in the above equation we get: 
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If we are interested in evaluating θ for the discussed example, then 5560.0=θ , in other words, 
the probability that the calculated confidence interval contains the real value of MCp is equal to 
0.5560, which is small compared to 0.95. Accordingly, producers will be damaged if they ignore the 
effect of measurement error on the calculation of confidence interval which will result in rejecting 
many of their conformed products and making a lot of losses for their process. 
 
In order to improve the confidence interval for the given confidence coefficient (α =1-  θ ), one can 
recalculate the confidence bounds such that it contains the actual value of MCp with the probability 
of θ. Hence, if we consider the proposed confidence interval to be L* and U*, then with respect to 
the gauge measurement capability, the adjusted 100(1 − α)% confidence interval bound can be 
written as (20): 
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For the discussed example, the new confidence interval is given as 46732U030731L .,. ** ==  ; 
therefore, the 0.95 confidence interval for the actual value of MCp is [1.0307 , 2.4673]. 
 
Figure 2 shows the changing pattern of θ for different sample sizes, different Mλ and also different 
correlation coefficients at 95% confidence interval. 
 
According to figure 2, one can see that for a known sample size, by growing the amount of 
correlation coefficient, the decreasing pattern of confidence coefficient (θ) is affected considerably; 
in other words, by increasing the value of correlation coefficient, the effect of measurement 
capability on the value of θ will increase and the probability that the 95% calculated confidence 
interval contains the true value of MCp will decrease considerably. In addition, one can conclude 
that, with growing the value of gauge measurement errors ( Mλ ), the effect of correlation 
coefficient on reducing the value of confidence coefficient (θ) will increase considerably (figure 2). 
 
Figure 3 shows the curve of the unadjusted lower confidence bound as a function of the correlation 
coefficients for different gauge measurement capabilities and α = 0.05. In figure 4, one can see the 
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behavior of the adjusted lower confidence bound as a function of the correlation coefficients. In 
both figures, the upper continuous straight line shows the lower confidence bound for the case of no 
measurement error, and the striped lines show the lower confidence bounds for different gauge 
measurement capabilities. 
 

(b) (a) 

  
(d) (c) 

(a)  Mλ  = 0.05,     (b) Mλ  =0.30,    (c) r Mλ  =0.60,    (d) Mλ  =0.95 
 

Figure 2 Changing procedure of θ with n = 25(25)100 (from bottom to top) and ρ in [0, 1] 
 
According to Figure 3, it is obvious that by increasing the measurement capability index, the effect 
of correlation coefficient on the lower confidence bound for pMC will decrease, such that for large 
ρ and small λ   the change is not considerable, but for large λ the effect of correlation on the lower 
confidence bound is noticeable. In other words, the lower confidence bound will be underestimated 
and it will reduce the precision of estimated process parameters. 
 
The lower bound estimation improves considerably with correcting the lower bound of 

Y
pMC (Figure 4), and the effect of this improvement is more observable on the small values of 

correlation coefficients. 

ρ ρ 

ρ ρ 
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Figure 3    ρ ∈   [0 , 1] for  (a) Mλ  = 0.05, (b) Mλ  =0.30, (c) Mλ  =0.60, (d) Mλ  =0.95 

 
Figure 4    ρ ∈  [0 , 1]  for  (a) Mλ  = 0.05, (b) Mλ  =0.30, (c) Mλ  =0.60, (d) Mλ  =0.95 

 
6. HYPOTHESIS TESTING FOR CAPABILITY INDEX UNDER GAUGE 
MEASUREMENT ERRORS 
 
In hypothesis testing, we determine whether or not a hypothesized value of a parameter is true 
based on the sample taken and the parameter estimate derived from it. That is, we are trying to find 
out where the estimated capability is relative to either true capability, hypothesized capability, or 
how different the estimated and true capabilities are. To do this, we estimate an index value, 
compare it to a lower bound c0, and compute the so-called p-value. The quantity p refers to the 
actual risk of incorrectly concluding that the process is capable of a particular test. In general, we 
want p-value to be no greater than 0.05. To test whether a given process is capable, we may 
consider the following statistical hypothesis testing: 
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Where c is the standard minimal criteria for MCp. The critical value, c, can be determined as: 
 

 α
χχχ

==≥
−−××−×−

==≥
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ cpMCc
vnvnnn

pMCvb
PcpMCcpCMP 0

)1(2...2
2

2
1

0
~  (21) 

 
With respect to )...( 22

2
2

1 vnnny −−− ×××= χχχ , then we have: 
 

 
2

1
2

0

2)()1(

0

2)()1(
0)1(

 )(
c

cvbvn
c

cvbvnyPcvn
cvbP YF

y

−=−≤→=≥
−

=→
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
− ααα  

 
Thus, the critical value can be expressed as: 
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And the power of the test (the chance of correctly judging a capable process as capable) can be 
computed as: 
 

 { } ( )
⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛ ×−
<=>=

−

p
pvy

ppp MC
c

MCbF
yPMCcCMPMC

2

21

0
)1(

|ˆ)(
α

π  (23) 

 
In the presence of measurement errors, the critical value (denoted by Yc0 ) α-risk (denoted by Yα ) 

and the power of the test (denoted by Yπ ) are: 
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With respect to (25), it can be seen that the right side of this probability equation is multiplied by 

1

||
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⎢⎣
⎡ +

MeY

MeYcMλ . So, we underestimate the true capability of the process when we calculate 

process capability index using Y
pCM~  instead of pCM~ , and the probability that Y

pCM~  is greater 
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than c0 will be less than the probability of that using pCM~ . Thus, the α-risk using Y
pCM~  to 

estimate MCp is less than the α-risk using pCM~  to estimate MCp ( Yα  ≤α). Also in comparison of 

(23) with (26); one can see that equation (26) is multiplied by [ ] 1
||
||||2

p
M

MeY

MeY)MC(
−

∑−∑
∑−∑+λ ; so the 

power using Y
pCM~  to estimate MCp is also less than the power using pCM~  to estimate MCp 

( Yπ ≤π ). 

 
To improve the method of testing hypothesis for the MCp, one can reconsider the testing procedure 
such that in the case of gauge measurement errors, a better estimation of critical region and power 
of the test is obtained. 
 
If we define Y

pCM~ , using the mentioned definitions in the previous sections then: 
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Therefore, the new α value is given by: 
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Based on the above probability phrase, the new critical value is obtained as (28): 
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Also, to improve the power function of the mentioned testing hypothesis, one can use Y

pCM~  based 
on (27): 
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For the discussed example, assume that we want to test the following hypothesis at )05.0( =α : 
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Using (24) and (25), the critical value ( Yc0 ), and alpha value ( Yα ) are calculated 3.0179 and 0.001 

respectively; so the calculated Yα  is considerably smaller than the significant level of the test 

( )05.0()001.0( =<= ααY  ), and it will lead to accept the null hypothesis in many cases. 
 
Accepting the null hypothesis means rejecting the actual capability of the process with respect to 
consumer view; therefore, it is essential to calculate the critical value by using (28) for testing 
hypothesis in the presence of measurement errors in order to avoid the false decision. 
 
For the discussed example, the critical value using (28) is 1102.2*

0 =c . Using this value for testing 
hypothesis we get the desired α value ( 05.0=α ). Now if the capability index is increased to 

3MC p =  then the power of the test without considering the measurement error (26) is given as 

0677.0)( =p
Y MCπ . If the measurement error is taken into account for evaluating the power of the test 

(29), then 5521.0)(* =pMCπ . Comparing these two values shows that taking into account the gauge 
measurement errors will cause a great deal of improvement in testing hypothesis for process 
capability index. 
 

(b) (a) 

 

  
(d)(c) 

(a) Mλ = 0.05,  (b) Mλ  =0.30, (c) Mλ  =0.60,  (d) Mλ  =0.95. 
 

Figure 5 Changing procedure of α ( Y
Mα ) for ρ in [0, 1] and n= 5(1)100 

ρ 
ρ

ρ ρ 
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Figure 5 shows the changing procedure of α ( Y
Mα ) according to the changing values of correlation 

coefficient, gauge measurement capability and sample size for a type one error probability (α=0.05). 
As can be seen, increasing the value of correlation coefficient will reduce the value of Y

Mα  with 
respect to the measurement capability index.  
 
According to figure 5, one can see that with growing the correlation coefficient among process 
variables, the Y

Mα  value decreases depending on the measurement capability. So it can be included 

that with growing the correlation coefficient and also sample size, the Y
Mα  value have a decreasing 

behavior depending on measurement capability. On the other hand, whenever the measurement 
error increases, the effect of correlation coefficient on Y

Mα  grows and Y
Mα  decreases considerably. 

 
(b) (a) 

  
(d) (c) 

(a)  Mλ = 0.05,  (b)  Mλ  =0.30, (c) Mλ  =0.60,  (d) Mλ  =0.95. 
 

Figure 6 Changing procedure of )( p
Y
M MCπ  versus ρ for MCp =2.00(0.20)3.00 (from bottom to top) 
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Figure 6 shows the changing procedure of unadjusted power of testing ( )MC( p
Y
Mπ ) with different 

values of correlation coefficients, gauge measurement capability for different values of deviation 
from testing value (c=2). The sample size and α value in this example are  n=25 and 05.0=α , 
respectively. 
 
As it is shown in figure 6, for a given value of measurement capability index, )( p

Y
M MCπ  decreases 

gradually as the correlation coefficient increases. This result shows that the deviation of process 
capability from the proposed value of c = 2 is not obvious and the testing hypothesis is not 
confirmed. 
 

(b) (a) 

  

(d) (c) 

(a) Mλ = 0.05,  (b)  Mλ  =0.30, (c) Mλ  =0.60,  (d) Mλ  =0.95. 
 

Figure 7 Changing procedure of )(*
pM MCπ  versus ρ for MCp=2.00(0.20)3.00 (from bottom to top) 
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The effect of correlation coefficient on the adjusted power of the test given by (27) ( )(*
pM MCπ ) 

versus ρ for different measurement capabilities, given sample size (n=25), α=0.05 and c=2 is shown 
in figure 7. 
 
According to figure 7, for a given value of Gauge measurement capability, using the adjusted power 
of the test ( )(*

pM MCπ ), the effect of correlation coefficient on the power of the test is negligible for 
0 < ρ < 0.7 and the reduced precision is not noticeable. 
 
7. CONCLUSIONS 
 
Most process capability researches in the literatures have been carried out irrespective of gauge 
measurement errors. Gauge capability has a significant effect on process capability measurement. An 
inaccurate measurement system can remove the benefits of such endeavors resulting in poor quality. 
Furthermore, the bulk of the studies associated with analyzing the quality and efficiency of a 
process are so far limited to discussing one single quality specification, but in real applications, 
manufactured products often have multiple quality characteristics and multiple characteristics 
processes are by now so common that our studies on capability indices can't be restricted to the 
univariate domain. In this paper, we considered the effect of process variables correlation coefficient 
on the index MCp for different gauge measurement capabilities. With respect to the results obtained 
in this paper, it is specified that gauge measurement capability has an important effect on 
determining the process capability and this effect grows with increasing the correlation coefficients 
of process variables. On the other hand, the effect of correlation coefficient on incorrect estimation of 
the index MCp increases with growing of the gauge measurement errors. 
 
So, conclusions about capability of the process without considering the gauge measurement 
capability are not reliable especially in processes with high correlation coefficients. Also we showed 
that the α-risk and the power of the test may decrease with a significant magnitude due to gauge 
measurement errors, which result in understating capability of the process. Since measurement errors 
may not be avoided, having proper confidence coefficients and power becomes essential. This 
necessity will be growing when the correlation coefficient of the process variables increases. Thus, 
we provided adjusted confidence bounds and critical values for practitioners to use in determining 
whether their processes meet the capability requirements. 
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