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ABSTRACT 
 

Parameter estimation is the first step in constructing any control chart. Most estimators of mean 
and dispersion are sensitive to the presence of outliers. The data may be contaminated by 
outliers either locally or globally. The exciting robust estimators deal only with global 
contamination. In this paper a robust estimator for dispersion is proposed to reduce the effect of 
local contamination when estimating the parameters. The results have shown that the introduced 
estimator is more precise in estimating the dispersion when there are outliers within the 
subgroups. Simulation results indicate that robustness and efficiency of the proposed dispersion 
estimator is considerably high and its sensitivity to the changes in mean and standard deviation 
of any subgroup is roughly lower than the other estimators being compared. 
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1. INTRODUCTION 
 
Process control charts are effective techniques, demonstrated to be able to assess quality and 
productivity. 
 
The common practice is to take random samples of pre specified sizes and then to construct the 
reasonable control charts. The main focus of this research is to introduce a method of estimating the 
process variability for a dispersion control chart such as R chart. In this chart, when the range of a 
sample subgroup falls beyond the upper limit of the chart, it is a sign showing the process 
variability is out of control.  
 
In designing a control chart, defining the control limits is highly important. Incorrect estimation of 
the process dispersion may result in narrower or wider limits. The presence of inlier or outlier 
observations cause an increase in risk of a type I or risk of a type II error, respectively. The risk of 
falling any point above the upper control limit increases when limits are defined incorrectly narrow. 
It is a sign for an out of control situation, while the process is in control. On the other hand, defining 
incorrectly wider limits increases the risk of any point falling between the limits. This is a sign of an 
out of control situation, while in fact the process is out of control. 
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Although, we may have both outliers and inliers, when only outliers are presented is being 
investigated in this paper. Using classical methods may seriously influence the parameters estimates 
in the presence of outliers. However, adaptive trimmer methods which iteratively delete the 
subgroups whose ranges fall outside the upper control limit is an effective technique for reducing 
the influence of outliers. Then, the limits are revised and the procedure is continued until all 
subgroups with ranges outside the upper control limit are eliminated. This procedure has some 
deficiencies; the most important of which is mentioned here. Having a few outliers, the average of 
the ranges may be highly increased and the 3-sigma distance will be overstated. Hence, the outliers 
remain unobserved. 
 
One new approach of estimating parameters is robust estimation. Robust estimation provides 
methods to emulate classical estimation. The outlier or violations from assumption made for the 
model do not greatly affect these methods. As long as the model assumptions are valid the classical 
methods are more efficient in the absence of outliers, Maronna et al. (2006). Sampling from a 
normal distribution, the classical estimators are in some scene optimal. But any deviation from the 
normality results suboptimal estimator. In the other word, robust estimators maintain approximate 
optimal performance under normality assumption and any partial departure from this distribution. 
 
Robust statistics have been rarely used in statistical process control in the past decade. Rocke 
(1992) has well acknowledged the role of robust estimation, and recognized the followings: 
 

• Statistics that are used to calculate the control limits should be robust against outliers. 

• Statistics that are indicated in the control chart should be sensitive to outliers. 
 
The trimmed mean of subgroup ranges was proposed by Langenberg and Iglewicz (1986) to 
estimate the process dispersion. The interquartile range (IQR) was also proposed by Rocke (1989) 
as an estimator for process variation. The modified bisquare A-estimator was recommended by 
Tatum (1997) to estimate the process standard deviation. Mast and Roes (2004) also used A-
estimator to construct the limits for an individual control chart. Use of the mean of the subgroups’ 
medians absolute deviations (MAD) was suggested by Omar (2008) to estimate the process 
dispersion. 
 
In statistical quality control two possible situations of contaminated data may be experienced, 
general and local. The general contamination encounters to all observations, while the local 
contamination occurs only in some subgroup samples. The observations in a subgroup are taken at 
the same time from the same population, while the subgroups are taken in time periods. On the 
other hand when the process is out of statistical control the data in any subgroup are collected from 
a population different than the assumed one (Montgomery (2005)). There are chances to have some 
subgroups from different distributions, called outlying subgroups. In this paper outlying subgroups, 
which is called local contamination is considered for evaluation. 
 
More precisely it is assumed that m subgroups of size n are selected from the process. Observations 
in m q− subgroups are from standard normal distribution and q  subgroups are from a normal 
distribution having mean a  and standard deviation sd. These q subgroups are outlying subgroups. 
In fact, the process is out of control in terms of mean or dispersion or both when these  q  
subgroups are collected. This type of contamination is well described by three parameters ,q a  and 
sd. Any changes in these parameters result in a new type of local contamination. 
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An estimation method of dispersion which reduces the effects of the presence of local 
contamination is proposed in this paper. This suggested estimator may be used to define the control 
limits for mean and dispersion control charts. This method will be introduced in more detail in 
section 2. In section 3, the robustness of the proposed estimator will be assessed. The efficiency of 
the suggested estimator is compared with the other estimators of dispersion in section 4, using MSE 
as a criterion. Finally the results will be discussed and conclusions made in section 5. 
 
2. PROPOSED METHOD 
 
M-estimation is the general form of maximum likelihood estimation (MLE) which was defined by 
Huber (1981). M-estimator is the solution of the equation  
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where, ρ  is a function with certain properties. If ln fρ = −  where f  is a density function, then 

the vector θ̂  will be interpreted as the maximum likelihood estimation of the distribution 
parameters. Several ρ -functions with special properties exist. Two of them are bisquare and Huber 
ρ -function. They are presented in Table 1. To ensure a high efficiency under normality 
assumption, a special value for k  is chosen. This value for k  is selected in such a way to obtain the 
minimum variance for M-estimator. The proposed ρ - functions are bisquare with 4.68k =  when 
estimating mean and 1k = when estimating dispersion. 
 
M-estimators of location (µ) and scale (σ) are the solutions of the equations (2) and (3), respectively 
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Where, 0μ̂  and 0σ̂  are the previous estimates and 0.5δ = . 
 

Table 1 three different bisquare and huber functions 
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In this paper the case of local contamination is considered when dispersion is estimated. So the 
dispersion estimator must be defined in such a way to reduce the effect of outlying subgroups. This 
estimator must estimate the parameter properly when the process is statistically in control. In 
general when control limits for dispersion or mean are defined, m random samples of size n are 
selected from the process and subgroup dispersion is estimated applying some statistic. Then, a 
measure of central tendency such as mean or trimmed mean may be used to estimate the process 
dispersion. Assume that the statistic used to estimate subgroup dispersion is shown byτ . Let 

{ }1 ,..., mτ τΔ =  shows the dispersion vector whose element jτ is the j th subgroup dispersion 

estimate. Then the process dispersion will be estimated, using vectorΔ . In classical methods 
jτ may be j th subgroup range and the mean of subgroup ranges is used to estimate process 

dispersion. In rational subgrouping random samples must be selected in a way that X chart shows 
variation between subgroup means and R chart shows variation within each subgroup. It is obvious 
that the chance for having local contamination is higher than general contamination. In this paper it 
will be shown that the proposed dispersion estimation method will provide a robust estimator in 
presence of local contamination. The suggested estimator performs better than some classical 
estimators   even in presence of general contamination. Reducing the effect of general 
contamination, the dispersion estimator given in equation (3) with 0.5δ =  and scaleρ given in Table 
(1) for a bisquare with 1k = , is used to estimate the dispersion within each subgroup. For each of m 
subgroup the sample median is computed and the algorithm from Shahriari et. al. (2009) and 
provided in Appendix (A) is used to estimate the subgroup dispersion ( )jτ and then the vector Δ is 
obtained. In order to reduce the effect of local contamination a location bisquare estimator, given in 
equation (2) is used to estimate the centrality of dispersion vectorΔ . In equation (2) the ψ is the 
bisquare ψ  function given in Table (1) with 4.68k = . The centrality of the dispersion vector Δ  
could be obtained by using the algorithm for computing μ̂which is supplied in Appendix (B). 
 
In this paper the proposed method is compared with the following classical and robust methods of 
estimating process dispersion.  
 

1. Sbar: The estimator based on mean of subgroup sample standard deviations, S . 

2. Rbar: The estimator based on mean of subgroup ranges,  R . 
3. IQRbar: The estimator based on mean of subgroups IQRs. It reduces the effect of outliers. 

4. B: The estimator based on bisquare scale M-estimator for estimating the dispersion of a 
single sample of size N=m×n observations, Shahriari et al (2009). The dispersion estimated 
by this method includes the variation among subgroups as well as the variation within 
subgroups. While, σ̂ must only show the variation within subgroups. 

5. TRbar: The estimator based on a 25% trimmed means of subgroups ranges. The process 
dispersion estimated by this method would not be much affected by outlying subgroups, 
Langenberg P., Iglewicz, B. (1986). 

6. MR: The estimator based on median of subgroups ranges. 

7. TIQRbar: The estimator based on a 25% trimmed means of subgroups IQRs. This estimator 
reduces the effect of outlying subgroups and outliers in subgroups, Rocke (1989). 
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When there are outlying subgroups, the estimators given in methods 1 and 2 fail to estimate the 
process dispersion precisely. 
 
The above estimators including the proposed one must be multiplied by some correction factors to 
obtain the unbiased estimators under normality assumption. The correction factors are computed for 
different values of n using the algorithm given in Appendix(C) and presented in Table (2). 
 

Table 2 correction factor for estimators defined by different methods 
 

TIQRbarMR  TRbar  B  IQRbarRbar  Sbar  *BB  n  

1.0068 1.0364 1.0051 0.641 0.8871 0.8865 1.2533 0.88 2 

0.8275 0.6274 0.6228 0.641 0.7830 0.5907 1.1284 1.19 3 

0.7820 0.5040 0.5009 0.641 0.7510 0.4857 1.0854 0.87 4 

0.7874 0.4418 0.44 0.641 0.7517 0.4299 1.0638 0.87 ٥ 

0.81 0.4032 0.4 0.641 0.7766 0.3946 1.051 0.8 ٦ 

0.7827 0.3775 0.3764 0.641 0.7651 0.6398 1.0423 0.78 ٧ 

0.7728 0.358 0.3563 0.641 0.7592 0.3512 1.0363 0.76 ٨ 

0.7745 0.3425 0.3419 0.641 0.7537 0.3367 1.0318 0.74 ٩ 

0.7809 0.3300 0.3296 0.641 0.7608 0.3249 1.0281 0.73 10 

0.7689 0.3203 0.3194 0.641 0.7524 0.3152 1.0252 0.72 11 

0.7649 0.3119 0.3109 0.641 0.7520 0.3069 1.0229 0.72 12 
*proposed method 
 
3. ROBUSTNESS OF ESTIMATORS 
 
Three measures of robustness including Breakdown Point (BP), Influence Function (IF) and 
Maximum Bias (MB) are proposed by Maronna et al. (2006). While the breakdown point deals with 
larger proportion of outliers, the influence function considers only a small proportion. In addition, 
maximum bias measures the maximum bias of estimator as a function of the proportion of outliers. 
Among these measurements, the breakdown point is easier to use. Tatum (1997) defined 

* /p mnBP =  as the breakdown bound (BP*) of the control charts. In this definition p is the largest 
proportion of observations allowed to be outliers and still leaving the estimate bounded, m is the 
number of subgroups and n is the size of the sample. Maronna et al. (2006) defined a roughly 
similar definition for the breakdown point. 
 
It has been proven that the breakdown point of dispersion estimator using equation (3) is 
approximately 50%, Maronna et al. (2006). Thus, when the subgroup size is equal to 5, presence of 
3 or more outlier observations in the subgroup can cause the estimate of subgroup dispersion to fall 
beyond any given bound. On the other hand, the breakdown point of location estimator obtained 
from equation (2) is approximately at 50%. As an example if the number of subgroups is equal to 
30, the location estimator of dispersion vectorΔ remains bounded when the number of subgroups 
with inflated dispersion estimates is 14 or less. Thus, the breakdown point of the proposed method 
for estimating process dispersion depends on the sample size (n) and the number of subgroups (m). 
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In the worst case it is shown that the breakdown bound for the proposed method is approximately 
0.25 (BP* = ( / 2) ( / 2) 0.25m n mn× = ). 
The breakdown points for the other dispersion estimators are provided in Table 3. 
 

Table 3 breakdown points for different dispersion estimators methods* 
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*[.] Stands for integer part. 
 
For the sake of more clarity the breakdown point for the estimators are demonstrated in Figure 1 for 
m=30 and different values of n.  
 

 
Figure 1 breakdown point of the estimators as a function of sample size, n. 

 
From Figure 1, one can easily conclude that the proposed estimator has the highest breakdown point 
than the other estimators for n except for the estimator define by the bisquare estimation 
method, B. 
 
4. EFFICIENCY OF ESTIMATORS  
 
In this section the proposed estimator of the process dispersion is compared with the estimators 
introduced in section 2. The MSE, used as a criterion to compare the efficiencies of the estimators is 
defined as 
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where θ  is the parameter, θ is the estimator and k is the number of simulation runs for 
estimatingθ . The smaller the value of MSE of the estimator, the more precisely it estimates the 
parameter, Tatum (1997). 
 
MATLAB software was used to generate 1000 simulation runs of subgroup sizes m=30 with sample 
sizes n=5 from which q subgroups are taken from a normal distribution with mean a and standard 
deviation sd and 30-q subgroups are from a standard normal distribution. The q subgroups are the 
outlying subgroups. This process was repeated for a=-10 to 10 and for sd=1 to 10 with increment 1 
for a and sd. The process dispersion estimate was computed for each of estimators defined by 
estimation methods in section 2. The MSE resulted from the 1000 simulation runs for q=1, 3, 5 for 
the simulation methods under investigation are plotted against a and sd in a three dimensional plot. 
Figure 2 shows the MSE of the estimators, for q =1. From the plot it is clear that when sd increases 
the MSE for estimates obtained from Sbar, Rbar and IQRbar methods of estimations increase 
rapidly. Therefore, these three methods are less efficient even with only one outlying subgroup. It is 
obvious that the other methods are less sensitive to changes in a and sd. 
 

 
Figure 2 the MSE of the estimators with one outlying subgroup 

 
For q=3, the computed MSEs from the Sbar, Rbar and IQRbar increase more rapidly as sd 
increases. Figure 3 shows that the method B estimator is more sensitive to changes in a. The 
sensitivity of the method B estimator is clarified in Figure 4. 
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Figure 3 the MSE of the estimators with three outlying subgroups 
 

 
 

Figure 4 the MSE of the estimators with three outlying subgroups 
 
Results for q=5 are shown in Figure 5. This Figure shows that the methods Sbar, Rbar and IQRbar 
introduce less efficient estimators. Examination of Figure 6 reveals that the method B estimator is 
more sensitive to changes in a for small and moderate values of sds. The estimators from methods 
IQRbar and TIQRbar are more sensitive than proposed method for moderate and large values of 
sds. 
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Figure 5 the MSE of the estimators with five outlying subgroups 

 

 
Figure 6 the MSE of the estimators with five outlying subgroups 

 
5. CONCLUSIONS 
 
For the proposed estimation method the bisquare function was used twice to reduce the effects of 
both types of contaminations, specifically the local contamination. The breakdown point of the 
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proposed estimator is high among some estimators either classical or robust. So it is a more robust 
estimator compare to these estimators. The MSE as a measure of efficiency of an estimator is 
shown to be small for proposed estimator in compare to the MSE of the other estimators when local 
contamination exists. The sensitivity of the introduced estimator with respect to the changes in 
mean and standard deviation of the outlying subgroups, a and sd, respectively is roughly lower than 
the other estimators. So construction of any control chart based on this estimator could result in a 
more precise control limits in practical situations. The analyzer can rely on this control chart to 
control a process more comfortably. This may be verified by comparing the power of the test for 
this control chart and the others. 
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APPENDICES 
 
Appendix A 

This section is due to Shahriari et al. (2009). The algorithm to compute M-estimate of scale is 
demonstrated in this appendix.  
 
Firstly, good start point should be calculated as initial estimation of location and dispersion. Sample 
median and normalized median absolute deviation (MADN) can be used in this case. MADN is 
calculated by 
 

 

 (| - ( ) |)
0.6745

Med x Med x
MADN =  (A-1) 

 
then weight function is defined as 
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2( ) /            0
( )

(0)                0
x x if x

W x
if x

ρ

ρ

≠
=

′′ =

⎧
⎨
⎩

 (A-3) 

 
where ( )xρ  is ρ -function. Then ˆnewσ  can be estimated as 
 

 

2

1

1ˆ ˆ
n

new old i
i

wr
n

σ σ
δ =

= ∑  (A-4) 

 

where 
ˆ

ˆ
i

i
old

xr μ
σ
−

= . Moreover, μ̂  is constant and σ̂  is updated each iteration to estimate M-scale. 

Also, both μ̂  and σ̂  are updated to calculate simultaneous M-estimation. 
 
Stop condition is when 1ˆ ˆ| / 1 |k kσ σ ε+ − < .” 
 
Appendix B  

The algorithm to compute M-estimate of location is demonstrated in this appendix. 
Firstly, good start point should be calculated as initial estimation of location and dispersion. Sample 
median and normalized median absolute deviation (MADN) can be used in this case. MADN is 
calculated by 
 

 

( ( ) )
0.6745

Median X Median X
MADN

−
=  (B-1) 

 
then weight function for the ith observation at kth iteration is defined as 
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where ( )xψ  is ψ -function. Then let 1ˆkμ +   
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Note that 0σ̂  is fixed and ˆkμ  is updated each iteration to estimate M-estimate of location.  

Stop condition is when 1 0ˆ ˆ ˆk kμ μ εσ+ − <  , where ε is an arbitrary tolerance parameter.  
 
Appendix C 

In the first step it was assumed some multiplier of the estimator is unbiased for parameter σ i.e. 
 

 σθ =)ˆ( nkE
 

 
where σ is the process dispersion and nk  is a constant which depends on n. Then m subgroups of 
size n were generated from normal distribution with mean μ and standard deviation σ. Based on 
these data, an estimate of σ was computed called îθ  . This procedure was repeated for 10000 times. 

At the end of this step using
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In the next step the null hypothesis 0
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n

H E
k
σθ =  was tasted against 1
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H E
k
σθ ≠  where nk  was 

estimated in the previous step. For testing the hypothesis m subgroups of size n were generated 
from normal distribution with mean μ and standard deviation σ. By using these data, an estimate of 
σ was computed ( ˆ

jθ ). This procedure was repeated 1000 times. The random sample of size 1000, 
containing the values of  ˆ

jθ  was used to test the hypothesis. The null hypothesis was failed to reject 
at the significance level of 5%. 


