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ABSTRACT 

 
Economic lot size scheduling problem (ELSP) for a multi-product single machine system is a 
classical problem. This paper considers ELSP with budgetary constraint as an important aspect of 
such systems. In the real world situations the available funds for investment in inventory is limited. 
By adopting the common cycle time approach to ELSP, we obtain the optimal common cycle which 
minimizes the total inventory ordering and holding costs for the case of nonzero setup times. One 
aspect of the scheduling is to decide what should be the sequence of production runs and how the 
idle times shall be distributed in the common cycle time. For such a sequencing problem, we 
consider two cases: a) the common cycle time is given, and b) the common cycle time is a decision 
variable. In the literature, scheduling rules are introduced for both cases, which assume that the total 
idle time is located at the end of each cycle. This paper relaxes this assumption and provides: i) a 
rule to optimize the production sequence and the length of idle times before (or after) producing 
each item, for both cases (a) and (b), and ii) the optimal common cycle for case (b). The presented 
rule is interestingly general, simple and easy-to-apply. 

 

Keywords: ELSP, Sequencing, Inventory Control. 

 
1. INTRODUCTION 
 
Realizing the importance of the effects of a decision made by one organizational unit on another unit, 
managers and enterprise system developers prefer decision support models that are capable of 
integrating a variety of inter- and intra-departmental relationships.  This paper examines two such 
problems.  These two problems involve financial and operational issues in common-cycle production of 
a group of products on a single machine. Specifically, allowing non-zero setup times, this paper 
considers a situation in which common-cycle includes idle time, and develops a method for determining 
the amount and the time of idle times between the production runs such that the total investment in 
inventory is minimized. Also, this paper considers the problem of determining the cycle-time that 
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minimizes total inventory cost while keeping total investment in inventory under a specified budgetary 
level. 
 
Economic lot scheduling problem is a challenging operational problem that managers frequently face. 
This problem has attracted the attention of many researchers.  The objective is to economically schedule 
lots (i.e. production runs) of one or more products on a single machine, to satisfy demand for each 
product immediately while minimizing the average holding and set up cost per period. Elmaghraby 
(1978) presents a survey of approaches to this problem. This problem is NP-hard (Hsu, 1983), and there 
are no algorithms available to find the optimum solution. Boctor (1982), Carreno (1990), Cook et al. 
(1980), Dobson (1987), Fujita (1978), Goyal (1973 and 1984), Graves (1979), Gunter and Swanson 
(1986), Haessler (1979), Jones and Inmann (1989), Park and Yun (1984), and Zipkin (1988) have 
developed heuristics for solving this problem and some of its variants. Hanssmann (1962) reports on a 
common-cycle approach to this problem that results in the same production cycle for all of the products. 
One batch of one or more units of each product is produced only once in each cycle. This approach is 
computationally less cumbersome than other procedures and guarantees a feasible solution. 
 
This paper deals with two financial and operational issues in common-cycle production.  An important 
financial consideration is the maximum investment in inventory.  Solutions that minimize total 
inventory cost could be infeasible when the necessary funds are unavailable. Therefore, minimizing the 
total investment in inventory or limiting its magnitude is an important managerial consideration.  
Parsons (1966) and Haji and Mansouri (1995) have included the total investment in inventory in 
common-cycle problem. Parsons (1966) makes the unrealistic assumption that the total investment in 
inventory is equal to the sum of the lot sizes of all of the products. Haji and Mansouri (1995) assume 
that a cycle starts with the setup and production of the first product followed by the setup and 
production of the other products with no idle time until the last product in the group is produced. Upon 
completion of the production of the last product the machine goes into an idle stage until the time when 
it must be set to produce the first product of the next cycle. 
 
This study examines the common-cycle approach by considering the total investment in inventory, and 
allowing the occurrence of idle times between production of any two consecutive products within a 
cycle. These idle times may provide more frequent rest periods for operators and machinery which in 
turn result in higher levels of operational flexibility. They could also be necessary for machine 
maintenance within a common-cycle. This paper considers the following two cases in both of which the 
setup times are allowed to be non zero: 
 
 Case 1. When a common cycle schedule is already determined. In this case, the paper presents a 

procedure for determining the amount and the timing of the idle times so that the 
maximum investment in inventory is minimized. 

 Case 2. When there is a budgetary constraint. In this case, the paper develops a procedure for 
determining the duration of the common-cycle so that the average setup and holding cost 
per unit time is minimized. 

 
Haji and Haji (2002) considered only case 1 and assumed that all the setup times are zero. In this paper 
we relax this restriction and consider a more general and practical case in which the setup times are 
allowed to be non-zero. 
 
Notation and Assumption 
 
The following notations are used throughout the paper: 
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N number of products 

Aj setup cost for production of product j, j = 1, 2,..., N 

Sj setup time for production of product j, j = 1, 2,..., N 

B maximum available budget 

dj monetary value of demand rate per unit time for product j, j = 1, 2, ..., N 

D monetary value of total demand per unit time for all of the N products 

h inventory holding cost per monetary unit per unit time 

I j  monetary value of inventory of product j just before the start of production of fist product in a 

cycle 

K average setup and inventory costs per unit time 

mk monetary value of total inventory just before the production of product k 

Mk monetary value of total inventory at the completion time of production of product k  

Pj monetary value of production rate per unit time for product j, j = 1, 2,..., N 

tj production run-time of product j, j = 1, 2, ..., N 

T duration of common-cycle time 

Xj duration of idle time occurring just before the production of product j,        j = 1, 2, ..., N 
 
We make the following assumptions: 
 

1. There is an infinite planning horizon. 

2. Only one product can be produced at any point in time. 

3. In each cycle, all of the N products are produced. 

4. Each product is produced once in each cycle. 

5. Setups take place prior to production of each product.  Setup times are constant and 
independent of production sequence. 

6. Demand rate for each product is constant and known. 

7. The production rate of each product is constant and known. 

8. In each cycle, the increase of monetary value of the aggregate inventory during production run 
of any product is at least equal to monetary value of the aggregate demand during the set up 
time of that product. 

9. No shortages are allowed. 
 
2. CASE 1 - DETERMINING THE DURATION AND TIMING OF IDLE TIMES 
 
In this section we allow the setup times to be non-zero and analyze the allocation of the total idle time 
in a common-cycle time among the production runs of N products. The objective is to determine the 
durations and times of idle times such that the total investment in inventory is minimized. 
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To achieve this purpose first we select a cycle time T which begins just at the start of the production 
run of a particular product. We denote this particular product by k1 and the product that will be 
produced next in the cycle by k2, and so on. Then we present the following remarks and a theorem.  
 
Remark 1: Since in each cycle time T the total investment in inventory decreases during idle times and 
increases during the production run of any product, it is clear that z, the maximum inventory 
investment, occurs at the end of production run of one of the N products, i.e., at an

jkM , j=1,…, N. 

Hence,  
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Remark 3: For feasibility of the problem the following constraints must be satisfied: 
 
  ,              1 2 .
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Theorem 1: For a feasible solution, suppose for some 
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Proof:  Denote the new values of idle times by NlX
lk ,,2,1   , …=′ . Clearly 

ll kk XX =′  for all 

2 and  1  , ++≠ jjll . From the statement of the theorem 0>w , and from feasibility of  
2+jkX ,i.e., 

22 ++
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jj kk SX , we can write 
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which shows that 
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jkX  is feasible. It remains to prove that 
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1

1

1

1

+

+

+

+
−

−=
−

=
j

j

j

jj

k
k

k
kk T

D
DP

X
D

MM
w  (7) 

 
We also note that the assumption number 8 implies that  
 
 

111
)(

+++
≥−

jjj kkk DSTDP  

 
or 
 

 
11

1

++

+ ≥
−

jj

j

kk
k ST

D
DP

 (8) 

 
Thus from (8) and part (b) of remark 2 we can write  
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Where β is a positive number. Therefore if we show that β≤w , then from (9) we can write  
 
 

111 +++
≥′=−

jjj kkk SXwX  (10) 
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1+
′

jkX  is feasible. 

 
To show that β≤w , substitute (9) in (7) to get 
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It is clear from (8) and (11) that β≤w  which proves (10). This completes the proof of the theorem. 
 



Budgetary Constraints and Idle Time Allocation in… 23 

2.1. Optimal Inventory Investment for a Given Cycle 
 
In this section we obtain the optimal sequence of production runs and optimal allocation of idle times 
which minimizes the total investment in inventory for a given cycle time T 
 
Inventory value at the end of a product 
 
Because no shortages are allowed, the inventory level for product k1 at the start of its production is zero, 
i.e. 

1
0KI = . Furthermore, the inventory level for product kj (j≥2), at the start of production run of product 

k1 is equal to its demand during 
jkF , the time interval from the start of production of k1 to the start of 

production of product kj, Figure(1). Thus, for any feasible idle times ,  1, 2,...,
jkX j N=  we can write 

 

jkF

jkI

1kX
2kX

jkX
NkX

1kX

jkI

1kt 2kt jkt Nkt 1kt

T
 

Figure 1 Monetary value of inventory of product j over time 
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The total inventory level at the start of production run of product k1 is: 
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Hence, from (12), (13) and the fact that 
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Furthermore, the total inventory at the end of production runs of product kj is (Figure2): 
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 t D) - P( + m = M 1111 kkkk ,                                         j=1 (15) 
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jk …=  depends not only on the )!1( −N  different production sequences 

but it also depends on the duration of the idle times
jkX , j=1,…N.  The objective in this case is to 

determine the production sequence and the duration of the idle times to minimize the maximum 
inventory investment. To achieve this purpose first we state the following theorem for the case in which 
the setup times are allowed to be non-zero and the cycle time T is known and is feasible. That is  
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Theorem 2: For any setup time values, satisfying assumption 8 and a given sequence, the optimal 
solution, z*, for any feasible production cycle T has the following property: 
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Proof: We prove the theorem by contradiction. Suppose for the given production sequence there exists 
an optimal solution z0 for which, all

jkM , are not equal. This implies that, in the optimal solution, there 

exist two consecutive products, denoted by i1 and i2, for which 
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where ij means the jth production run, in a cycle which starts at the beginning of production run of 
product i1.  
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First we need to show that the new values of idle times ,  1,...,

jiX j N′ =  are feasible. From theorem 1 one 
can easily show that these idle times are feasible. 
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Now by denoting the new values of total inventory at the end of production run of product ij  (j=1,…,N) 
by 

jiM ′ , we show that: 

 
 a) 

jjj iiii MwdMM <−=′
2

, )2(  ,  ,,3,1 ≠= jNj …  

 
and 
 
 b) 

12 ii MM ′<′ ,   2j =  
 
which implies that the new value of maximum aggregate inventory, denoted by 0z′ , is less than its 
pervious value, z0 in equation (19), contradicting the assumption that z0 was optimal. 
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To show that (a) is true, note that from (12), replacing k by i, for 2≠j , decreasing 
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will decrease the inventory of product i2 at the start of the production run of product i1 by an amount 
wdi2
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1i
m  by an amount 
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Figure 2 Monetary value of total inventory in a cycle. 
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Noting that, from (2), replacing k by i, we have  
 
 

22212
)( iiiii tDPDXMM −+−=  

 
which implies the sum of the last four terms on the right hand side of (28) is zero and we can write (28) 
as   
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which shows that (b) is also true and this completes the proof of theorem 2. 
 
Finally, for zero as well as non-zero setup times, we prove the following theorem 
 
Theorem 3: For any setup time values, satisfying the assumption 8, the optimal solution is sequence 
independent. 
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We prove the theorem by showing that the optimum value of 
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constant and independent of the production sequence. To do this, we manipulate (14) as shown bellow 
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Thus from (15), replacing k by i , and then substituting 
1i

m  from (31) in (15), we can write 
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Since quantity demanded for each product during a cycle is produced during its production run in that 
cycle it follows that 
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constant and independent of the production sequence. This completes the proof of theorem 3. 
 
3. CASE 2- THE OPTIMUM COMMON CYCLE WITH NON-ZERO SETUP TIME AND 
BUDGET CONSTRAINT 
 
In this section allowing non-zero production setup times, we derive a procedure for determining the 
duration of common-cycle such that the average setup and inventory holding cost per unit time is 
minimized and a given budgetary constraint is satisfied. The average setup and holding cost per unit 
time is (Johnson and Montgomery, 1974): 
 

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∑

∑
P
d - 1 d  h 

2
T + 

T

A  
 = K

j

j
j

N

1=j

j

N

1=j  (35) 

 
K should be minimized subject to 
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and 
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Constraint (36) limits the maximum of aggregate inventory to a given value B, and constraint (37) states 
that the total production and setup times in a cycle can not exceed the length of the cycle. Substituting 

*z in (36) by the right hand side of (34) we have: 
 

 

( )
2

2 2

2

2
N

jN
j j i

j =1 j

D BT   
d

D  d    D
p=

≤
⎡ ⎤

− − ∑⎢ ⎥
⎣ ⎦

∑
 (38) 

 
Also, Equation (33) implies tj = (dj / Pj)T , thus (37) can be written as: 
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Equations (38) and (39) provide the limits for the duration of the common-cycle. Therefore, designating 
the right hand sides of equations (38) and (39) by TM and Tm respectively, i.e., 
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Now we can write the problem as follows: 
 
 Min K 

 subject to: 

 MmT T  T≤ ≤  
 
K  is a convex function (Johnson and Montgomery, 1974). Differentiating K with respect to T and 
solving for T gives: 
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Clearly, if mM TT < , then there is no feasible solution for T . But if mM TT ≥ , first we obtain oT  from 

(42). Then due to convexity of K, we find the optimal cycle time, *T , to be 
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The procedure can be summarized as follows: 
 

1. Use Equation (40) to determine the maximum common-cycle, TM. 

2. Use Equation (41) to determine the minimum common-cycle, Tm. 

3. If   TM <Tm   the problem has no solution, otherwise go to step 4. 

4. Use Equation (42) to determine To. 

5. Use Equation (44) to determine the optimum common-cycle. 
 
4. CONCLUSION 
 
Distributing idle times between production runs of products provides some flexibility for performing 
certain tasks such as preventive maintenance. Also, it may provide operators more frequent rest times 
which in turn results in a lower number of accidents and improve the quality of products. In this study, 
by adopting the common cycle time approach to lot size scheduling problem for a multi-product single 
machine system with budgetary constraint, we considered two common-cycle scheduling problems 
where non-zero setup times are allowed. One important aspect of these common cycle scheduling is to 
decide what should be the sequence of production runs and how the idle times shall be distributed in the 
cycle time. 
 
For such a sequencing problem, we considered two cases: a) the common cycle time is given, and b) the 
common cycle time is a decision variable. In the literature, scheduling rules are introduced for both 
cases, which assume that the total idle time is located at the end of each cycle. This paper relaxed this 
assumption and presented a scheduling rule for both cases to optimize the production sequence and the 
length of idle times before (or after) producing each item. Furthermore, we provided a simple procedure 
which obtains the optimal common cycle for case (b) which minimizes the total inventory cost. We 
proved that for any setup time the optimal solutions in both cases (a) and (b) are sequence independent 
(assuming that in each cycle, the increase of monetary value of the inventory during production run of 
any product is at least equal to the monetary value of the aggregate demand during the set up time of 
that product). The presented scheduling rule is interestingly general, simple and easy-to-apply. 
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