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ABSTRACT 
 

In this research, we investigate a three-stage supply chain with one supplier, several 
manufacturers and multiple retailers where the supplier provides a common raw material to 
each manufacturer, who in turn uses a single stage production facility to convert it into final 
products that are delivered at fixed lot sizes to retailers. An integrated economic procurement, 
production, and delivery model is developed whose objective is to find the common production 
cycle length, production sequences of final products at manufacturers and delivery frequencies 
of final products to retailers minimizing the total costs of considered supply chain. We propose 
an analytical solution procedure and an efficient heuristic solution method. The proposed 
heuristic solution algorithm is able to find the optimal solutions for the small and medium 
problem instances and consequently it is very promising for solving the large-sized instances in 
a reasonable time. 
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1. INTRODUCTION  
 
A typical supply chain involves different suppliers (at possibly one or more tiers), 
assemblers/manufacturers, distribution centers, retailers and end customers. The goal of supply 
chain management is to optimize the entire system through coordination of the various processes 
(Simchi-Levi et al., 2000). Suppose a typical supply chain shown in Figure 1 where a manufacturer 
produces the products for a retailer. The main question of the retailer is that “How much products 
should she/he order each time to minimize the total costs?” To answer this question, the retailer 
considers its own cost elements. Since the cost elements of the manufacturer are not considered 
here, the answer usually is not acceptable from the manufacturer perspective. There is a similar 
scenario from the manufacturer point of view; the main question of the manufacturer is that “How 
much products should she/he produce in each production run to have minimum total cost?” and the 
optimal solution is usually unacceptable from the other parties. 
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Figure 1 A typical three-stage supply chain. 
 
The concept of integrated decision making in a supply chain was first introduced by Goyal (1977). 
After that time, several researches were conducted on the integrated decision-making in two-stage 
supply chains. Most of these researches dealt with a two stage supply chain consisting of a 
manufacturers’ level and a retailers’ level. For a complete review of integrated models in two-stage 
supply chain see Ben Daya et al. (2007). In contrary with two-stage supply chain, few researches 
have been carried out for the three stage supply chains. Muson and Rosenblatt (2001) have 
introduced the first three stage integrated supply chain. They considered a three-level chain 
(involving one supplier, one manufacturer, and one retailer) and explored the benefits of using 
quantity discounts on both ends of the supply chain to decrease the total costs through the chain. 
They showed that incorporating quantity discounts into both ends of the supply chain could 
significantly decrease the total costs of supply chain. Khouja (2003) considered a three-stage supply 
chain with multiple manufacturers and multiple retailers. In his paper a three mathematical model 
was presented considering three different coordination mechanisms. He showed that some of the 
coordination mechanisms could result in a significantly lower total cost than matching production 
and delivery along the chain. Another three-stage integrated supply chain was introduced by Lee 
(2005). In this supply chain structure, there is only one party at each level. The manufacturer orders 
raw materials from its supplier, converts them into the finished goods through its single-stage batch 
production process, and finally delivers the finished goods to the respective customer on the batch 
basis. Furthermore, an integrated inventory control model developed to find the joint economic lot 
sizes of manufacturer’s raw material ordering, production batch, and buyer ’s ordering minimizing 
the average total cost per unit time consisting of the raw materials ordering and holding, 
manufacturer’s setup and finished goods holding as well as the buyer’s ordering and inventory 
holding costs. Through some numerical examples, the author showed that considering all of the 
inventory costs in an integrated supply chain results in less mean total cost than considering all 
inventory costs separately in different parts of the chain. To the best of the authors’ knowledge, the 
last three-stage integrated supply chain mathematical model was presented by Kim et al. (2006). 
They developed an analytical model to integrate and synchronize the procurement, production and 
delivery activities in a supply chain consisting of a single raw material supplier, a single 
manufacturer and multiple retailers. The objective is to find the production sequence of multiple 
items, the common production cycle length, and the delivery frequencies and quantities that 
minimizes the average total costs. In addition, an efficient heuristic algorithm is presented to solve 
the proposed problem. Through some numerical tests, they show that the proposed heuristic gives 
quite satisfactory solutions. 
 
This study extends the previous research works presented by Khouja (2003), Lee (2005), and Kim 
et al. (2006). In this research, we investigate a three-stage supply chain with one supplier, several 
manufacturers, and retailers where the supplier prepares raw material from outside of the chain and 
converts it into one processed raw material. Each manufacturer orders the processed raw material 
from supplier and converts it to some final products through its single stage capacitated production 
facility. The final products are produced in batches at a finite rate. Each manufacturer produces 
several kinds of products and periodically delivers them at a fixed lot sizes to the retailers. The 
demand rates are constant. Each retailer is connected to just one manufacturer, receives just one 
kind of final products from corresponding manufacturer and continuously delivers it to the outside 
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customers. In this paper, a joint economic procurement, production and delivery model is developed 
considering all of cost elements incurred in the different levels of the supply chain. In addition, an 
efficient solution procedure based on hybrid algorithm proposed by Clausen and Ju (2006) is 
proposed to solve the problem. 
 
It is noteworthy that the considered problem is actually a variant of well-known Economic Lot and 
Delivery Scheduling Problem (ELDSP) which has been considerably studied in the literature (e.g., 
see Clausen and Ju (2006), Hahm and Yano (1992, 1995a, 1995b), Jensen and Khouja (2004)). 
 
The remainder of this paper is organized as follows. The problem definition and notations used for 
model formulation are provided in the next Section. The proposed mathematical model is discussed 
in Section 3. Sections 4 is devoted to analytical solution and Section 5 discusses the proposed 
heuristic solution procedure. The numerical results are presented in Section 6. Finally, Section 7 is 
devoted to conclusion remarks. 
 
2. PROBLEM DEFINITION  
 
We consider a three-stage supply chain involving a single-supplier, multiple manufacturers, and 
mltiple retailers. Each retailer faces with a deterministic and continuous fixed-rate demand for just 
one final product from outside of the chain (similar to EOQ model). In order to fulfill the customer  

 
 

Figure 2 The considered supply chain structure. 
 
demands, each retailer orders the respective final product to the specified manufacturer, receives the 
product in lots and continuously delivers it to the outside customers. Each manufacturer purchases 
the processed materials from a supplier, which in turn, through its single stage capacitated 
production facility, converts the processed materials into the several final products, and delivers 
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them to respective retailers periodically (at the beginning of each production cycle). At each 
manufacturer, the consumption rate of processed material for each product is the proportion of the 
production rate to conversion factor of corresponding item. In this supply chain, a single supplier 
prepares required processed material for the manufacturers. In fact, the supplier orders input raw 
material from outside of the chain and converts it to the common processed material that is used by 
the manufacturers through its single stage production facility. The input raw material’s consumption 
rate is the proportion of the production rate of output material to corresponding conversion factor. 
Figure 2 depicts the supply chain configuration. 
 
It is noticeable that the topology of this chain is fixed over time and each retailer has been assigned 
to a specified manufacturer, in advance. 
 
As illustrated in Figure 2, ten cost elements incurred in this supply chain. From upstream to 
downstream, there are supplier’s ordering, setup, input raw material and processed material holding 
costs, manufacturers’ ordering, setup, processed material and final product holding costs and finally 
retailers’ final product ordering and setup costs. Our objective is to determine the economic 
production lot sizes at the supplier and manufacturers as well as the final products’ delivery 
schedule minimizing the total costs of the supply chain subject to some constraints inspired from 
the problem nature. 
 
The following assumptions are made to formulate the problem mathematically: 
 
• External demands for final products at retailers are continuous with a given constant rate 
• Each retailer fulfills demand for a single final product 
• All inventories are imperishable 
• All of the parameters are independent of production and delivery lot sizes 
• The production facility at the supplier and each manufacturer is a capacitated single stage 

system 
• All of the final products have the same production cycle length (i.e., one lot of each final 

product is produced in each rotation cycle considering a fixed products’ sequence vector) 
• A common cycle time is considered at the supplier and manufacturers 
• Production batch size of final products are a multiplier of corresponding delivery lot sizes 
• Synchronized activities is allowed (i.e., production and delivery of a final product can be 

carried out simultaneously) 
• All of the lead times are constant 
• Backorders are not allowed through the chain 
• A similar processed material is used for producing different products at the manufacturers 
• Delivery quantities of final products are equal-sized 
• The required processed material for producing a single batch of each product is delivered to 

each manufacturer at the beginning of cycle time 
• The required input material for one cycle is delivered to supplier at the beginning of the cycle 

time 
• Planning horizon is infinite 
 
The following notations are used for the model formulation: 
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Supplier level parameters: 

Production set up cost at the supplier S : 

Input raw material ordering cost of supplier A : 

Input raw material holding cost per unit per unit time at the supplier h : 

Output (processed) material holding cost per unit per unit time at the supplier h′ : 

Supplier conversion factor of input raw material to output material sf : 

Production set up cost of the supplier S : 

Number of manufacturers v : 
 
Manufacturers level parameters: 
 

Manufacturer's index ( i th manufacturer)             vi ,,1=∀  iM : 

Number of iM 's retailers (Number of iM 's products) in : 

Product's index (product j  of manufacturer i )   

injvi ,,1&,,1 =∀=∀  
ij : 

Input material ordering cost of iM  iA : 

Input material holding cost of iM  per unit per unit time  iH ′ : 

Production rate of product ij  ijP : 

iM 's holding cost per unit per unit time for product ij  ( )2
ijh : 

iM 's setup time for producing ij  ijs : 

iM 's setup cost for product ij  ijS : 

iM 's conversion factor of input raw materials to final product ij  ijf : 

Total costs of manufacturers per unit time TCM : 
 
Retailers level parameters: 
 

Retailer ij  ijR : 

ijR 's holding cost per unit per unit time for product ij  ( )3
ijh : 

Demand rate of product ij  faced by the Retailer ij  ijD : 

Unit ordering cost of product ij   ijA : 

Total cost of Retailer ijR  ijTCR : 

Total cost of Retailers per unit time TCR : 
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Note that due to the value-added activities down through the supply chain, the following 
inequalities hold regarding the unit inventory holding costs: 
 

( ) ( )3 2 1, , 1, ,i
ij ij i

ij ij ij s

H h hh h i v j n
f f f f

′ ′
≥ ≥ > ≥ ∀ = ∀ =… …  (1) 

 
The objective of the problem is to find optimum value of common cycle time, production sequences 
of final products at each manufacturer and delivery lot sizes to the retailers with respect to some 
relevant cost elements in different levels. Therefore, decision variables for the problem are as 
follows: 
 

Common cycle length T : 

Production sequence vector of final products on iM  iZ : 

Production quantity of product ij  ijQ : 

Delivery frequency of product ij  per production cycle ijm : 

Delivery quantity of product ij   ijq : 

Index for item at k th position in the production sequence vector iZ  [ ] ik : 

 
It is noted that because of applying integer-ratio policy, the production batch sizes, delivery lot sizes 
and delivery frequencies have the relation of ijijij qmQ .= . Moreover, for convenience, it has 

supposed that: ( )1 2, , , 1, ,
ii i i inm m m m i v= ∀ =… … , { }1, , vZ Z Z= … , and { }1, , vm m m= … . 

 
3. PROBLEM FORMULATION 
 
In this section, a new mathematical model is presented for the problem. A total of ten relevant costs 
are incorporated in our model which are classified into the three categories: 1) Retailer’s level costs, 
2) manufacturer’s level costs and 3) supplier’s level costs. Our objective is to develop a model to 
minimize the sum of these cost elements. 
 
3.1. Total cost function at retailers’ level 
 
Figure 3 shows the inventory evolution curve for the finished item ij  at the retailer ijR . Therefore, 
the total cost function at the retailers’ level can be written as: 
 

(3)

1 1 1 1

1
2

i in nv v
ij ij

ij ij
i j i jij

h D
TCR T m A

m T= = = =

= +∑∑ ∑∑  (2) 

 
where the first and second statements are related to the holding costs of final products and ordering 
cost, respectively. 
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Figure 3 Inventory level of product ij  at retailer ijR  

 
3.2. Total cost function at manufacturers’ level 
 
There are three major cost elements at the manufacturers’ level as follows: 
 
3.2.1. Manufacturers’ ordering and setup costs 
 
The average raw material ordering and setup costs per year for all of the manufacturers can be 

easily written by: 
1 1 1 1 1

1 1 1i in nv v v

i ij i ij
i i j i j

A S A S
T T T= = = = =

⎛ ⎞
+ = +⎜ ⎟

⎝ ⎠
∑ ∑∑ ∑ ∑  

 

 
 

Figure 4 Inventory level of product ij 
 
3.2.2. Manufacturers holding cost of the final products 
 
Calculating the inventory holding costs at the manufacturers are somewhat complicated. Figure 4 
represents the inventory evolution curve of final product ij  at the manufacturer iM  along with 
respective system-wide inventory level (considering both Manufacturer and retailer). Using a 
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similar method mentioned in (Ben Daya et al., 2007), doing some calculations and rearranging the 
equations results the following equation as the final products inventory holding cost: 
 

2
(2)

1 1

1
2 2

inv
ij ij ij ij

ij
i j ij ij ij ij

D D D D
T h

m P P m= =

⎛ ⎞⎛ ⎞
⋅ + − −⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
∑∑   (3) 

 
3.2.3. Manufacturers holding cost of the processed (input) material 
 
As mentioned earlier, consumption rate and consequently average inventory level of processed 
material at each manufacturer depends on production sequence of the final products. Figure 5 shows 
the sample inventory level of processed material for a given sequence iZ  at manufacturer iM . In 

this figure, [ ] iktp  and [ ] is k  denote production and setup times of the product at k  th position of 

sequence iZ , respectively. Hence, for a given production sequence iZ  for iM , the average 
inventory holding cost of processed material at iM  can be given by 
 

[ ]
[ ]

[ ]
[ ] [ ]

[ ]
[ ]

2 1

1 1 1 12

i i i i in n n n n
i i iij

i i i
j j k j j k jij ij i i i

D j D k D kD
H T H s j

f P P j f k f k

−

= = = + = =

⎧ ⎫⎛ ⎞ ⎛ ⎞⎪ ⎪⎜ ⎟ ⎜ ⎟′ ′+ ⋅ + ⋅⎨ ⎬⎜ ⎟ ⎜ ⎟⋅⎪ ⎪⎝ ⎠ ⎝ ⎠⎩ ⎭
∑ ∑ ∑ ∑ ∑  (4) 

 
In the above equation, the first and second terms correspond with the holding costs during the 
production periods and the setup periods, respectively. 
 
Finally, the average total cost for the manufacturers can be written as follows: 
 

[ ]
[ ]

[ ]
[ ] [ ]

[ ]
[ ]

2 1

1 1 1 1 1 1 1

2
(2)

1

.
2

1
2 2

i i i i in n n n nv v v
i i ii ij

i i i
i j i j k j i j k jij ij i i i

n
ij ij ij ij

ij
j ij ij ij ij

D j D k D kH D
TCM T H H s j

f P P j f k f k

D D D D
T h

m P P m

−

= = = = = + = = =

=

⎧ ⎫ ⎡ ⎤⎛ ⎞ ⎛ ⎞′⎪ ⎪ ⎢ ⎥⎜ ⎟ ⎜ ⎟′ ′= ⋅ + ⋅ ⋅ + ⋅ ⋅⎨ ⎬⎜ ⎟ ⎜ ⎟⋅ ⎢ ⎥⎪ ⎪⎝ ⎠ ⎝ ⎠⎩ ⎭ ⎣ ⎦
⎛ ⎞⎛ ⎞

+ ⋅ + − ⋅ −⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⋅ ⎝ ⎠⎝ ⎠

∑∑ ∑∑ ∑ ∑∑ ∑

1 1 1

1i inv v

i ij
i i j

A S
T= = =

⎛ ⎞
+ +⎜ ⎟

⎝ ⎠
∑∑ ∑ ∑

 (5) 

 
Proof of the above relation is given in Appendix A. 
 
3.3. Total cost function at supplier’s level 
 
At the supplier, the input raw material is procured and converted to the processed material 
(manufacturers common input material) with a conversion factor of sf . Figure 6 shows the 
corresponding inventory levels of input raw materials and processed materials. Accordingly, the 
cost elements of the supplier (i.e., input raw material’s ordering and holding costs, Setup costs and 
processed material holding costs) can be calculated by following expressions, respectively: 
 

A
T
1

; ∑∑∑∑
= == =
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⋅
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v
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n
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ij

s

v
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n
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ij

s

ii

f
D

f
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f
TD

f
h

1 11 1 2
.

2
1

;  S
T
1
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⋅′
=

⋅
⋅′

v

i

n

j ij

ij
v

i

n

j ij

ij
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f
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Figure 5 iM ’s inventory level for input material 

 
 

 
 

Figure 6 Inventory trajectory at the supplier level 
 
Therefore, the total cost factor at the supplier level is 
 

( )
1 1

1
2

inv
ij
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3.4. Model constraints 
 
There is no constraint on the production sequences, but delivery factors must be positive and integer 
values, mathematically  ( )i.e., ; 1, , ; 1, ,ij im i v j n+∈ ∀ = ∀ =… …Z . 

 
Another constraint of this model is related to the cycle time. That is, for each manufacturer the sum 
of production and setup times for all of the products per cycle time must be smaller than or equal to 
the cycle time, which can be written mathematically as follows: 
 

1

1, ,1 1

1

; 1, ,
1

i

i i

i

n

ijn n
j

ij ij ni vj j ij

j ij

s
s tp T i v T Max

D
P

=

== =

=

⎧ ⎫
⎪ ⎪
⎪ ⎪+ ≤ ∀ = ⇒ ≥ ⎨ ⎬

⎛ ⎞⎪ ⎪−⎜ ⎟⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

∑
∑ ∑

∑
…

…  (7) 

 
3.5. Model Structure 
 
Considering all of the cost functions and the constraints gives the final mathematical model. After 
some calculations and rearrangements, the mathematical model of the problem can be written as 
follows: 
 

( )
1 1 1 1 1 1

1
min1, ,

1

1, ,

Subject to:

; ; ; 1, , ; 1, ,
1

wher

i i

i

i

n nv v v v
ij

ij i ij ij i
i j i i j iij

n

ij
j

ij ini v
ij

j ij

Min TC T m Z T m A
m T

s
T Max T T R m Z i v j n

D
P

α
β δ λ γ

= = = = = =

= + +

=

=

⎛ ⎞⎛ ⎞ ⎛ ⎞
= + + + + +⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠⎝ ⎠

⎧ ⎫
⎪ ⎪
⎪ ⎪≥ ≡ ∈ ∈ ∀ = ∀ =⎨ ⎬

⎛ ⎞⎪ ⎪−⎜ ⎟⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭
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∑

∑
…

… …

( )

[ ]
[ ]
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2
(3) (2) (2)

2
(2) (2)

1 1 1

1

1 1
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2
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2

;

i

i i
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−
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[ ]i iH s jγ ′=
[ ]
[ ]

{ } { }
1

1 1

;

, , ; , , .

i in n
i

i
j k j i

v v

D k
i

f k

m m m Z Z Z

= =

∀

= =

∑ ∑

… …

 

 
It is noted that ijα , ijβ , and λ  are sequence independent and iδ  and iγ  are sequence-dependent 
parameters. 
 
4. ANALYTICAL SOLUTION METHOD 
 
To solve the problem, an analytical method has been proposed which is similar to that of Kim et al. 
(2006). The objective is to find the optimal value of cycle time (T ), delivery frequencies (m) and 
optimal production sequences at each manufacturer ( Z ). As it is shown in this section, due to the 
recursive relation between the optimal production sequences and optimal cycle time, it is not 
applicable to use analytical solution’s results for finding optimal solution. However, based on this 
section’s results, an efficient heuristic algorithm will be developed in the next section.  
 
The analytical solution procedure consists of two parts. In the first part, for a given sequences say Z 
the optimal value of cycle time and delivery frequencies is obtained, and in the next part the optimal 
production sequences is presented. 
Since ( ),TC T m Z  is a convex function with respect to continuous cycle time variable, for a 

particular set of m and Z , the optimal value of T is obtained through the first derivative 
of ( ),TC T m Z  with respect to T and setting it equal to 0. Thus, 
 

( ) ( ) 1 1*

1 1 1

,
0 ,

i

i

nv

ij ij
i j

nv v
ij

ij i
i j iij

m ATC T m Z
T m Z

T
m

λ

α
β δ

= =

= = =

+
∂

= ⇒ =
∂ ⎛ ⎞

+ +⎜ ⎟⎜ ⎟
⎝ ⎠

∑∑

∑∑ ∑
 (8) 

 
Since ( ),TC T m Z  is a convex function and there is a constraint on minimum value of cycle 

time, so the optimal value of cycle time is obtained by ( ){ }min, ,optT Max T m Z T∗= . 

 
For each of these possible values of T, the corresponding optimal value of delivery frequencies can 
be calculated as follows. Suppose ( ),optT T m Z∗= , by substituting the value of ( )* ,T m Z  from 
Eq. (8) to TC function we have: 
 

( )( )*

1 1 1 1 1 1
, , , 2

i in nv v v v
ij

ij ij ij i i
i j i j i iij

TC T m Z m Z m A
m
α

λ β δ γ
= = = = = =

⎧ ⎫⎛ ⎞⎧ ⎫⎪ ⎪= + + + +⎜ ⎟⎨ ⎬⎨ ⎬⎜ ⎟⎩ ⎭⎪ ⎪⎝ ⎠⎩ ⎭
∑∑ ∑∑ ∑ ∑  (9) 
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In Eq. (9), 
1

v

i
i

γ
=
∑  is independent of ; ,ijm i j∀ , so in determining the delivery frequencies we just 

consider the first statement of the Eq. (9) . For a given production sequences say Z we have: 
 

( )
1 1 1 1 1

i in nv v v
ij

ij ij ij i
i j i j iij

f m m A
m
α

λ β δ
= = = = =

⎧ ⎫⎛ ⎞⎧ ⎫⎪ ⎪= + + +⎜ ⎟⎨ ⎬⎨ ⎬⎜ ⎟⎩ ⎭⎪ ⎪⎝ ⎠⎩ ⎭
∑∑ ∑∑ ∑  (10) 

 
At First, we relax the ; ,ijm i j+∈ ∀Z  and assume that ; ,ijm R i j+∈ ∀ . Fortunately ( )f m  is a 

strictly convex with respect to mij values. Solving
( ) 0

ij

f m
m

∂
=

∂
 gives the optimal values of delivery 

frequencies as follows: 
 

( )
2

1 1 1 1 1
0 ,

i in nv v v
ij ij

ij ij i ij ij
i j i i jij ij ij

f m
A m A i j

m m m
α α

β δ λ
= = = = =

⎛ ⎞⎛ ⎞ ⎧ ⎫∂
= ⇒ + + = + ∀⎜ ⎟⎜ ⎟ ⎨ ⎬⎜ ⎟⎜ ⎟∂ ⎩ ⎭⎝ ⎠⎝ ⎠

∑∑ ∑ ∑∑  (11) 

 

For solving the above equation, suppose that 
1 1 1

1 1

i

i

nv v
ij

ij i
i j iij

nv

ij ij
i j

m

m A

α
β δ

θ
λ

= = =

= =

⎛ ⎞
+ +⎜ ⎟⎜ ⎟

⎝ ⎠=
+

∑∑ ∑

∑∑
 by substituting the 

value of θ  in Eq. (11) the following result is obtained: 
 

2
1 1 1

1 1 1

1, ; ,
i

i

nv v
ij ij

ij ij i ij nv v
i j iij

ij ij i
i j i

A i j m i j
m

A

α α λ
θ θ β δ

λ
β δ

∗

= = =

= = =

⋅⎛ ⎞
= ∀ ⇒ = + ⇒ = ∀⎜ ⎟

⎛ ⎞⎝ ⎠ +⎜ ⎟
⎝ ⎠

∑∑ ∑
∑∑ ∑

 (12) 

 
Finally by substituting Eq. (12) to Eq. (8), the value of ( )*T Z  is obtained by the equation: 
 

( ) 1 1 1

1 1 1

i

i

nv v

i ij
i i j

nv v

ij i
i j i

A S A S
T Z

β δ

= = =∗

= = =

+ + +
=

+

∑ ∑∑

∑∑ ∑
 (13) 

 

( ) ; ,ij
ij

ij

m T Z i j
A
α∗⇒ = ∀  (14) 

 
On the other hand, if minoptT T=  then assuming ; ,ijm R i j+∈ ∀ , the optimal value of delivery 
frequencies, similar to previous case, can be obtained as follows: 
 



Integrated procurement, production and delivery scheduling… 201 

( )min
min

, ,
0 ; ,ij

ij
ij ij

TC T m Z
m T i j

m A
α∂

= ⇒ = ∀
∂

 (15) 

 
As mentioned previously, 
 

( ){ }min,optT Max T Z T∗=  (16) 

 
Therefore, it can be concluded that for a given value of cycle time say T , the delivery frequencies 
can be obtained using the following equation: 
 

( ) ; ,ij
ij

ij

m T T i j
A
α

= ∀  (17) 

 
Now, we can turn to ; ,ijm i j+∈ ∀Z  constraints. If all of the obtained values for delivery 
frequencies from Eq. (16) will be integer, the resulting values are optimal. Otherwise, we consider 

two possible candidate ⎣ ⎦ijm  and ijm⎡ ⎤⎢ ⎥  for non-integer ijm  values. Considering at most 12

v

i
i

n
=

∑
 

number of sets as the candidate sets for the optimal values of delivery frequencies, the optimal set 
can be distinguished by calculating and comparing total cost functions of these delivery frequencies. 
After obtaining the best values of delivery frequencies, ( )* ,T m Z  can be calculated using Eq. (8) 

and substituting the final integer values of ; ,ijm i j∀ . 
 
The last decision variables of the problem are production sequences. The only sequence-dependent 

part of the objective function is 
1 1

v v

i i
i i

T δ γ
= =

+∑ ∑ . In order to minimize TC , we must minimize 

( )
1 1 1

v v v

i i i i
i i i

T Tδ γ δ γ
= = =

+ = +∑ ∑ ∑ . It is clear that in this expression, the production sequences of 

manufacturers are independent of each other, and the production sequence that is optimal for each 
manufacturer (independent of other manufacturers) will be optimal for the whole problem. 
According to theorem 2.4 of Baker (1974), each manufacturer of the problem like iM  is equivalent 

to a single-machine weighted completion time problem with ij
ij ij

ij

D
t s T

P
= +  and 

ij ij
ij

ij ij

Q D T
w

f f
⋅

= = . Therefore, the WSPT (Weighted Shortest Processing Time) rule gives an 

optimal solution. Thus, for a given cycle time sayT , an optimal production sequence of 
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manufacturer iM  can be obtained by arranging the items in non-decreasing order of 

ij
ij

ij

ij

ij

D
s T

P
D

T
f

+

⋅
. It 

is obvious that the cycle time term can be eliminated from the nominator. Therefore, the optimal 
sequence at manufacturer iM  is as follows: 
 

[ ]
[ ]

[ ] [ ]
[ ]

[ ]
[ ]

[ ] [ ]
[ ]

[ ]
[ ]

[ ] [ ]
[ ]

1 2
1 2

; 1, ,
1 2

1 2
1 2

ii i i

ii i i

ii i i
ii i i

ii i i

D D D n
f f f n

i v
D D D n

s T s T s n T
P P P n

≥ ≥ ≥ ∀ =
+ + +

…  (18) 

 
5. HEURISTIC PROCEDURE 
 
As obtained in previous section and depicted in Figure 7, there is a recursive relation between 
optimal value of cycle time ( )( )T Z∗  and optimal production sequences and it makes hard to find 

the optimal solution of the problem using analytical solution method. So, in this section, an efficient 
heuristic solution method is presented to find a good feasible solution (ideally optimal one). 
 
As mentioned earlier, this problem is a generalized form of the so-called ELDSP problem. 
Therefore, a new heuristic solution method has been developed inspired from algorithms suggested 
for ELDSP problem. Hahm and Yano (1995) presented mathematical model of ELDSP problem and 
introduced a heuristic solution method for the problem called H&Y. Jensen and Khouja (2003) 
devised a polynomial time algorithm called J&K, which solves the ELDSP problem to optimality. 
Finally, Clausen & Ju (2006) combined two previously suggested algorithms and constructed a new 
hybrid algorithm. The hybrid algorithm uses H&Y algorithm twice as the preprocessor of the J&K 
algorithm to decrease the computational time of the J&K algorithm then uses the J&K algorithm to 
solve the problem up to optimality. 

 

 
 

Figure 7 Recursive relationship between optimal value of cycle time and production sequences 

TC

T

1Z

2Z

3Z

4Z
5Z

6Z 7Z

8Z



Integrated procurement, production and delivery scheduling… 203 

We construct a new heuristic using the hybrid algorithm as its core for finding the value of cycle 
time and production sequences. In addition, we use a method similar to that of Kim et al. (2006) for 
finding the value of delivery frequencies. 
 
The proposed algorithm consists of two main phases. In phase one, using hybrid algorithm the 
optimal production sequences are determined and then, in phase two the final value of the cycle 
time and delivery frequencies are calculated. At the rest of this section, a complete description of 
the algorithm along with corresponding pseudo code are given. 
 
5.1. Phase one of the algorithm 
 
Step 1: calculates the lower and upper bounds of the optimal cycle time value. The minT  could be 

obtained using Eq. (7). Moreover, maxT  can be found by considering 
1

0
v

i
i

δ
=

=∑  in Eq. (13); 

therefore: 
 

min max1, , 1 1 1 1 1 1 1
1

i i i in n n nv v v
ij

ij i ij iji v j j i i j i jij

D
T Max s and T A S A S

P
β

= = = = = = = =

⎧ ⎫⎛ ⎞ ⎛ ⎞⎪ ⎪= − = + + +⎜ ⎟⎨ ⎬ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎪ ⎪⎝ ⎠⎩ ⎭
∑ ∑ ∑ ∑∑ ∑∑…

 (19) 

 
If min maxT T≥  Step 2 sets mintempT T=  and goes to Step 6. If min maxT T< , the algorithm enters Step 3 

and iterates the H&Y algorithm twice using maxT  and minT  and finally returns ( ) ( )( ), , ,l ll lT Z m TC  

and ( ) ( )( ), , ,u uu uT Z m TC  as two local optimum solutions in Step 4. Step 5 explores the interval 

[ ],l uT T  in order to find the best value of cycle time. If l uT T=  algorithm goes to Step 6. Otherwise, 

else the interval [ ],l uT T  is divided into a number of sub-intervals where the optimal sequences of 
all of the manufacturers within each are unchanged. An example of this case is shown in Figure 8. 
In this figure, there are two manufacturers 1M  and 2M . The top part of the figure represents the 

[ ],l uT T  break points for 1M  where the production sequence of 1M  is unchanged in each sub-

intervals. Similarly, the middle part is for 2M . Combination of these subintervals for two 
manufacturers is shown in bottom part of Figure 8 in which the production sequences of both of the 
manufacturers are unchanged in each of the determined sub-intervals. 
 
In order to find the end points of these sub-interval, the following equation is solved for each 
manufacturers: 
 

[ ]
[ ]

[ ] [ ]
[ ]

[ ]
[ ]

[ ] [ ]
[ ]

, 1, ,

i i

i i
i

i i
i i

i i

D j D k
f j f k

j k n j k
D j D k

s j T s k T
P j P k

= ∀ = ≠
+ +

…  (20) 
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Figure 8 Combination of different sub-intervals. 
 
Solving the above equations for iM  gives the values 

11 2, , ,
ii i iqT T T
−

… . The values within[ ],l uT T  

are the potential sub-intervals’ end points. In each manufacturer, there are at most ( )1 2i in n −  

different values for T. Considering all of the intervals, at most ( )
1

1 1 2
v

i i
i

n n
=

+ −∑  different 

subintervals can exist. In Step 5, algorithm finds the best value of cycle time in each sub-interval. 
The best-found value of cycle time and corresponding delivery frequencies among all of the sub-
intervals is used in Section 2 in order to find the final values of these decision variables. 
 
5.2. Phase two of the algorithm 
 
If all the values of delivery frequencies are integer, the algorithm terminates. Otherwise, it fixes all 
of the integer ( )ij temp

m  and determines two nearest integer values for non-integer delivery 

frequencies. These values are the alternative values for non-integer delivery frequencies. In Step 7, 
all permutations of delivery frequencies using ( )ij temp

m  for integer-value delivery frequencies as 

well as 
ijm⎢ ⎥⎣ ⎦  and ijm⎡ ⎤⎢ ⎥  for each non-integer value ( )ij temp

m  are considered and by using Eq. (8) the 

relevant value of cycle time is calculated. Finally, the delivery frequencies and cycle time relevant 
to the least objective function are chosen as the final values for these decision variables. The 
complete pseudo code of the algorithm has been provided below for more clarification. In the 
pseudo code, finalT , finalZ  and finalm  are the final values of the decision variables and the 

tempT , tempZ , tempm  and tempTC represent the temporary values of these decision variables. 
 
Phase one 
 
Step 1: Calculate minT  and maxT (Eq. 18) 

11T

( )0
1Z ( )1 1

1
qZ −( )1

1Z

12T
11 1qT − uTlT

lT uT
21T 22T

( )0
2Z ( )1

2Z

22 1qT −

lT uT
1T 1qT −4T3T2T

( )0Z ( )1Z ( )2Z ( )3Z ( )1qZ −

( )1M

( )2M
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Step 2: If min maxT T≥  then set mintempT T=  and go to Step 6  
 
Step 3: minlT T= , maxuT T=  

0stop =  

( )0 {While stop do=  

For a given uT , find ( )uZ Z T=  (using Eq. 18) and ( )T Z∗  (using Eq. 13) 

If ( ) ( ) minuT Z T T Z T∗ ∗≠ ∧ ≥  then ( )uT T Z∗=  

Else if ( ) ( ) minuT Z T T Z T∗ ∗≠ ∧ <  then mintempT T=  and go to Step 6  

Else 1stop =  
}  

0stop =  

( )0 {While stop do=  

For a given lT , find ( )lZ Z T=  (using Eq. 18) and ( )T Z∗  (using Eq. 13) 

If ( ) ( ) minlT Z T T Z T∗ ∗≠ ∧ ≥  then ( )lT T Z∗=  

Else if ( ) ( ) minlT Z T T Z T∗ ∗≠ ∧ <  then minlT T= , 1stop =  

Else 1stop =  
}  
 
Step 4: Return ( ) ( )( ), , ,l l l lT Z T m T TC  and ( ) ( )( ), , ,u u u uT Z T m T TC  as two local optimum 

solutions 
 
Step 5: if ( )l uT T=  then temp lT T=  and go to Step 6 
Else 

( )min ,temp l uTC TC TC=  Return the corresponding , ,T m Z  as , ,temp temp tempT Z m  

In each manufacturer such as iM , for each pair of products j  and ,k  j k≠  solve 

[ ]
[ ]

[ ] [ ]
[ ]

[ ]
[ ]

[ ] [ ]
[ ]

, 1, ,

i i

i i
i

i i
i i

i i

D j D k
f j f k

j k n j k
D j D k

s j T s k T
P j P k

= ∀ = ≠
+ +

…  and find the resulting values for 

T  Store the values within [ ],l uT T  into [ ]1 2, , , , , , .l i uW T T T T T= … …  

Sort W  in increasing order. ( )w size W=  

For ( )1; ; 1 {i i w i i= < = +  

For ( )1
1 ,
2w i iT W W += +  find 

( )wZ Z T=  (using Eq. 18) and ( )T Z∗  (using Eq. 13) 
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If ( ) [ ] ( ) ( ) ( )( )( )1, , ,i i tempT Z W W TC T Z Z T m T TC∗ ∗ ∗ ∗
+∈ ∧ <  then 

( ) ( ) ( ) ( ), , , , ,temp temp temp temp temp temp temp temp tempT T Z Z Z T m m T TC TC T Z m∗= = = =  

Else if ( ) [ ]1,i iT Z W W∗
+∉  then  

Select ( ) ( )( ) ( ) ( )( ){ }1 1 1, , , , , ,i i i i i i tempMin TC W Z W m W TC W Z W m W TC+ + +
 as tempTC  and the 

corresponding ( ), ,T Z m  as ( ), ,temp temp tempT Z m  

}  
 
Step 6: Return ( )final tempZ Z T=  (using Eq. 18) as the final production sequences. Put tempT  and 

( )temp tempm m T=  (using Eq. 17) as the best found values of cycle time and delivery frequencies in 

Section One. 
 
Phase two 
 
Step 7: if all of the ( )ij temp

m  values are integer, 

Go to Step 8  
Else 

tempTC = ∞  

For all integer values of ( )ij temp
m , set ( )*

ij ij temp
m m=  

Set 
( )number of non-integer 

2 ij temp
m

k =  and 0t =  
For ( )0; ; 1 {t t k t t= ≤ = +  

Generate a new permutation of delivery frequencies ( )m∗  using ( )ij final
m  for integer-value 

( )ij temp
m , and ( )ij temp

m⎢ ⎥
⎢ ⎥⎣ ⎦

 & ( )ij temp
m⎡ ⎤

⎢ ⎥⎢ ⎥
 for each non-integer value ( )ij temp

m  

Calculate ( ), finalT m Z∗  using Eq. 8 

If ( ), ,final tempTC T Z m TC∗ <  then 

tempT T= , tempm m∗= , and ( ), ,temp temp final tempTC TC T Z m=  

}  
 
Step 8: final tempT T= , final tempm m= . Return ( ), ,final final finalT Z m   

and ( ), ,final final final finalTC TC T Z m∗=  as the final solution of the problem. 

 
6. NUMERICAL EXPERIMENTS 
 
To verify the efficiency of the proposed algorithms in terms of the solution quality and the required 
computational time, some numerical experiments have been generated. It is required to find the 
optimal solution of each problem instance in order to evaluate the ability of the heuristic algorithm 
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in approaching the optimal solution. Consequently, an explicit enumeration algorithm has also been 
developed to find the optimal solution of each problem instance. This algorithm generates all of the 
possible production sequences among the manufacturers in order to find the optimal solution. The 
pseudo code of the explicit enumeration algorithm is given in Appendix B. The proposed explicit 
enumeration method as well as the analytical and heuristic algorithms were coded in Borland 
Delphi 7.0 language and run on a personal computer AMD 2200 M.Hz with 256 MB of RAM.  
 
We have tested the heuristic algorithm on different supply chain configurations using different set 
of parameter combinations. Required parameters are randomly generated using uniform 
distributions. As mentioned previously, the core of our algorithm is ELDSP and it is predictable that 
in most of the parameter combinations min maxT T≥ . In these cases, the optimal sequences are 
uniquely determined by minT  and algorithm stops at the very beginning before iterating. In order to 
gain insight to the efficiency of the algorithm, the generated problem instances should satisfy 

min maxT T<  to allow the algorithm enters into the iterative parts. It should be noted that similar to 
ELDSP, as the number of the retailers increase, minT  and maxT  values increase. However, the 
increase rate of minT  is expected to be much greater than the rate of maxT  if the ranges from which 
the parameters are drawn are kept constant. Consequently, this increases the occurrence of the 

min maxT T≥  situation. To resolve this problem, the parameters’ range are selected in such a way that 

ijs  (and consequently minT ) decreases as the number of the retailers increases. Similarly, A , S , 

iA , and ijS  (and consequently maxT ) increase as the number of the components increase. This 

ceases the frequent occurrence of the situations in which min maxT T≥ . Further, parameters’ ranges 

are selected in such a way that 
1

1;
in

ij

j ij

D
i

P=

< ∀∑ , for the relevance of the proposed model. In 

addition, as mentioned earlier, because of the value added activities down through the supply chain, 

the relations ;i
s

hH h i
f

′ ′> ≥ ∀  and ( ) ( )3 2 ; ,i
ij ij

ij

Hh h i j
f

′
≥ ≥ ∀  must hold among the unit inventory 

holding costs. The following uniform distributions have been used for the instances generation: 
 

( )~ 100 ,200S U J J , ( )~ 50 ,100A U J J , ( )~ 0.1,0.15h U , ( )~ 0.16,0.2h U′ , ( )~ 0.95,1sf U , 

( )~ 300 ,400i i iA U n n , ( )~ 0.2,0.25iH U′ , ( )~ 100, 200ijP U , ( ) ( )2 ~ 0.27,0.3ijh U , ( )~ 0,0.25ij is U n , 

( )~ 500 ,1000ij i iS U n n , ( )~ 0.95,1ijf U , ( ) ( )3 ~ 0.3,0.35ijh U , ( )~ 10, 20ijD U , ( )~ 50,100ijA U  
 

Note that 
1

v

i
i

J n
=

= ∑  denotes the total number of retailers in the chain. In addition, ( ),U a b  denotes 

the uniform random variable between a and b. 
 
By using above parameter sets, different kinds of chain configurations in terms of the number of the 
manufacturers and number of the retailers are investigated. The simplest chain structure 
encompasses a single manufacturer and a single retailer. Table 1 represents the result of investigated 
experiments. In all of the investigated problem instances, the heuristic algorithm end up at the 
optimal solution. This result is somehow predictable, because the proposed algorithm is based on 
the hybrid algorithm proposed in Clausen and Ju (2006) which explores all of the feasible cycle 
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time values between [ ],l uT T  and consequently finds the optimal cycle time value. Sequencing and 
delivery frequency decision variables depend on the cycle time. As the algorithm finds the optimal 
cycle time value, the sequence vector as well as delivery frequencies are expected to be optimal. 
 
It is noticeable that, as the number of retailers in each configuration increases, the required 
computation time for finding the optimal solution significantly increases. As it is shown in table 
one, in the case of two manufacturers, by increasing one retailer to each manufacturer, the 
computational time of the explicit enumeration method increased 22 times (from 5.688 to 137.04 
seconds). Further, the computational time of the proposed algorithm increased nearly 18 times. In 
addition, in the case of four manufacturers, by increasing only one retailer to the retailers of just one 
manufacturer, the computational time of the explicit enumeration method increased four times. 
Also, the computational time of the proposed algorithm increased about three times. This 
observation is due to the tremendous increase in the number of possible sequence vectors and 
different delivery frequencies combinations. 
 

Table 1 Computational results 
 

No. of 
manufacturers 

Manufacturer 
index 

No. of 
retailers 

No. of 
instances 

Cumulative computational time (seconds) 

Heuristic 
algorithm 

Explicit Enumeration 
algorithm 

1 1 1 1000 negligible 0.016 
1 1 6 1000 3.224 6.327 

2 1 
2 

3 
4 1000 2.861 5.688 

2 1 
2 

4 
5 1000 53.606 137.04 

3 
1 
2 
3 

3 
2 
3 

1000 4.673 10.907 

3 
1 
2 
3 

3 
3 
3 

1000 13.052 51.642 

3 
1 
2 
3 

4 
3 
3 

1000 60.3 256.045 

4 

1 
2 
3 
4 

2 
3 
3 
2 

1000 36.805 128.062 

4 

1 
2 
3 
4 

2 
3 
3 
3 

1000 118.2 512.531 

5 

1 
2 
3 
4 
5 

1 
2 
2 
3 
3 

1000 45.972 334.908 

5 

1 
2 
3 
4 
5 

2 
2 
2 
3 
3 

1000 263.920 1162.141 

 



Integrated procurement, production and delivery scheduling… 209 

Totally, the proposed solution algorithm seems to be very promising in finding the optimal solution 
for at least the small and moderate problem instances. 
 
7. CONCLUSION REMARKS 
 
This paper analyzes a supply chain with multiple manufacturers and multiple retailers, to determine 
a joint procurement–production–delivery policy. Each manufacturer procures common raw 
material, produces multiple items on a single production facility based on the common rotation 
cycle policy, and delivers them to the corresponding retailers. The goal is to derive production 
sequences along with the common cycle length for the manufacturers, and delivery lot sizes for the 
multiple retailers minimizing the average total cost. The proposed model can readily be applied to 
many practical manufacturing systems such as chemical and petrochemical industries. Numerical 
experiments show that in small to moderate instances of problems, the proposed algorithm find the 
optimal solution.  
 
Further research is needed to analyze more generalized case of multiple items and multiple retailers, 
where any retailer could order any number of the items. Also, negotiation and/or coordination 
mechanisms may be worthy of future study through investigating the negotiation mechanism in 
which anticipated losses caused by accepting the joint procurement–production–delivery policy are 
compensated for the parties involved in the supply chain. 
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Appendix A 
 
Manufacturer’s holding cost of input material Suppose a given manufacturer iM . The following 
additional notations are required to facilitate the calculation of input material’s holding cost: 
 

Input material’s average inventory level of iM  during the set up times for a given 

sequence iZ  
( )i np

I Z : 

Input material’s average inventory level of iM  during the production times for a given 

sequence iZ  
( )i p

I Z : 

iM 's average inventory level for input material for a given sequence iZ  ( )iI Z : 
 
According to Figure 5, average Inventory level of input material during the production and setup 
periods can be calculated as follows: 
 

( ) [ ] [ ] [ ]
[ ]

[ ] [ ]
[ ]

[ ] [ ] [ ]
[ ]

[ ] [ ]
[ ]

[ ] [ ] [ ]
[ ]

[ ] [ ]
[ ]

[ ] [ ]
[ ]

[ ] [ ] [ ]

1 2

2 3

1 1 1
2

1 2
2

1 11 1
2 1

1
2

i i

i i

n n
i i i i

i p i
k ji i

n n
i i i i

i
k ji i

i i i i i ii i i i i i
i i

i i ii i i

i ii i
i i

m k q k m j q j
I Z tp

T f k f j

m k q k m j q j
tp

f k f j

m n q n m n q n m n q n
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Considering all of the manufacturers results the following equation as the total holding cost of input 
material: 
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Appendix B 
 
The pseudo code of the explicit algorithm is as follows: 
 

 

For ( ( )
1

0; ; ! ; 1
v

temp i
i

i TC i n i i
=

= = +∞ < = +∏ ) {  

Generate a new set of sequences ( )Z  

Calculate T  using Eq. 16 , *m  using Eq. 17, and ( )*, ,TC TC T m Z=  

If tempTC TC<  then 

If all of the *
ijm  values are integer then tempTC TC= , tempT T=  

Else 
Fix all of the integer-value *

ijm  

Set 
*
ijnumber of non-integer m2k =   

For ( 0 ; ; 1t t k t t= < = + ) {  

Generate a new permutation of delivery frequency factors ( )m∗  using ijm∗  for 

integer-value ijm , and *
ijm⎢ ⎥⎣ ⎦  & *

ijm⎡ ⎤⎢ ⎥  for each non-integer value *
ijm  

Calculate ( ),T T m Z∗=  using Eq. 8 and ( ), ,TC TC T m Z∗=  

If tempTC TC<  then tempT T=  and tempTC TC=  

}  
}  
Return ( )*, ,tempT m Z , and tempTC  as the optimal solution of the problem. 
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