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ABSTRACT 
 

Managing operations of the aircraft approach process and analyzing runway landing capacity, 
utilization and related risks require detailed insight into the stochastic characteristics of the 
process. These characteristics can be represented by probability distributions. The focus of this 
study is analyzing landings on a runway operating independent of other runways making it as a 
single runway. We provide statistical analysis of the final approach and runway occupancy time 
at Detroit airport at peak traffic periods on one of its major landing runways. Many weeks of 
aircraft track record data collected by a multilateration surveillance system is analyzed. We 
explain some characteristics and short comings of the database, and extract samples of the 
random variables of interest (i.e. aircraft time and distance separation, runway occupancy time, 
simultaneous runway occupancy, and aircraft speed). We estimate probability distributions of 
these variables under both instrument and visual flight rules. Although the focus here is on one 
runway at a large airport, probability distributions of these random variables for the landings on 
similar single or independent runways (with similar physical design, operating systems and 
landing guidance instruments) shall be alike.  

 

Keywords: Runway landing, Final approach, Aircraft separation, Landing systems, 
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1. INTRODUCTION 
 
Runways are the main bottlenecks in the air transportation system during busy periods, and 
optimizing their operations (landing and departure) is critical. In the landing aspect, the utilization 
and safe throughput depends on the separation between any lead and trailing aircraft while 
approaching the runway. Separation is necessary to control two risks: simultaneous runway 
occupancy and hazardous encounter of trailing aircraft with the wake vortices from its leading 
aircraft; for some discussion about physics of wake vortex and its quantitative hazard evaluation see 
Shortle and Jeddi (2007), for example. Separation of an aircraft pair is a random variable due to the 
nature of the process inputs and components. Thus, analysis of the landing capacity, utilization and 
risks require detailed insight into the stochastic characteristics of the process, and we utilize 
statistical methods for this purpose.  
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In the final phase of the approach process the aircraft typically follows a path from the Initial 
Approach Fix (IAF) to the Final Approach Fix (FAF) and continues to touch down on the runway, a 
few hundred feet from the runway threshold. The path is called the glide slope or glide path with 
about 3o slope from the ground. Figure 1 shows the glide path to runway 21L (reads 21 left) at 
Detroit Metropolitan Wayne county airport (DTW) using Instrument Flight Rule (IFR) or 
Instrument Landing System (ILS). Some authors use Instrument Meteorological Condition IMC 
equivalent to IFR and ILS and imply that ILS is only used when the condition is IMC. However, 
ILS system may also be utilized in a good weather condition referred to as visual meteorological 
condition VMC, and some databases report the periods during which the ILS was in use. For these 
reasons we indicate what data/info is related to ILS use rather than indicating the weather condition. 
In Figure 1, IAF and FAF are 19.9 nm and 5.9 nm from the landing threshold at 7,000 ft and 2,600 
ft altitudes, respectively. For the official Instrument Approach Procedures on runway 21L see FAA 
(2009a). Note that the 2009 approach plate is slightly different than 2002 and 2003 versions.  

 

 
 

Figure 1 A Typical final approach process under ILS; Runway 21L at DTW (FAA 2009a) 
 
The focus is on the following random variables in this study: 
 
IAT Inter Arrival Time of consecutive aircraft to the Final Approach Fix (Figure 1) 
 
LTI Landing Time Interval between successive aircraft at the runway threshold 
 
IAD Inter Arrival Distance between two successive aircraft at the moment that the lead aircraft 

crosses the runway threshold 
 
ROT Runway Occupancy Time; the length of time required for an arriving aircraft to proceed from 

the runway threshold to a point clear of the runway 
 
SRO Simultaneous Runway Occupancy by two landing aircraft 
 
To obtain samples of these random variables, varied databases and methods have been used. A 
literature survey on previous statistical studies is given in the preliminary report of our research at 
Jeddi et al. (2006) presented at International Conference for Research on Air Transportation. Here 
we just provide a summary of that survey in Table 1.  
 
In recent years, multilateration systems have been installed in some airports, including Detroit 
Metropolitan Wayne County airport (DTW) which provide reasonably accurate time-position 
estimates of all transponder-equipped aircraft operating in the airport vicinity in all weather 
conditions. We utilize these data to obtain samples of the random variables under study.  
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The Center for Air Transportation Systems Research (CATSR) at George Mason University has 
obtained one year of multilateration surveillance system data of DTW via Volpe National 
Transportation Systems Center. The original multilateration data have been de-identified by Sensis 
Corporation, and the filtered data are used in this study. However, as discussed later, there are still 
some outliers, noise, and missing data present in the database. As shown in Table 1, this paper 
analyzes multilateration data at Detroit airport (DTW) in section 2, and provides estimations for 
probability distributions of IAT, LTI, IAD, ROT, SRO, and average approach speed in section 3. We 
reported some preliminary results of analyzing one week data under ILS, collectively on all 
runways, at Jeddi et al. (2006). Some of these results are further discussed in this paper whenever 
useful for completeness.  
 

Table 1 A summary of related statistical studies 
 

  Sampling database or method Sampled variable 

Author Airport Stop 
watch 

Radar 
track PDARS Multi-

lateration 

IAT 
at 
FAF 

LTI IAD ROT SRO 

Vandavenne, 
Lipert, MIT  1992 DFW √     √    

Ballin, et al. 
NASA, 1996 DFW  √    √ √   

Andrews, 
Robinson, MIT, 
2001 

DFW  √    √ √   

Haynie, CATSR, 
2002 

LGA, 
ATL √     √  √ √ 

Levy, Sensis, 
2004 MEM    √  √ 

VMC 
√ 
VMC 

√ 
VMC  

Rakas and Yin, 
Berkeley, 2005 LAX   √   √    

Xie, CATSR, 
2005 LGA √     √  √ √ 

This paper DTW    √ √ √ √ √ √ 
 
2. DATA ANALYSIS 
 
Multilateration data shall be processed to extract time and position recordings including aircraft 
times at the FAF, time over the runway thresholds, runway exit times, and the position of the 
following aircraft when the leader is over the runway threshold. We investigate aircraft data at 
DTW on December 2002, February 2 to 8, 2003, June 2003, and August 2003 (in Greenwich Mean 
Time) to provide probability distributions for the random variables of interest. The data of 
December 2002, June 2003, and August 2003 on runway 21L were pre-processed by V. Kumar at 
CATSR-GMU which makes the data ready to be directly feed into MATLAB algorithm for 
information recordings and data extraction. Some data queries of December 2002, June 2003, and 
August 2003 on runway 21L were made by V. Kumar at CATSR-GMU which we fed into our 
MATLAB algorithm for information recordings and data extraction.  
 
Figure 2 is a simplified airport diagram of DTW (AirNav.com 2009) with the X-Y coordinate 
system of the multilateration data projected on top of it. For the official airport diagram see FAA 
(2009b). 
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2.1. Database Structure and Data Preparation 
 
For a detailed discussion on database structure, its shortcomings and our data preparation 
procedure, we refer the reader to our initial report at ICRAT conference, Jeddi et al. (2006).   
 
In addition to preventing simultaneous runway occupancy, the main reason for aircraft separation is 
to control the chance that the following aircraft may encounter the hazardous wake vortex of its 
lead. Wake vortices are the result of lift and depend on the weight of the generating aircraft among 
other parameters, Nolan (2003). Aircraft are categorized based on their maximum take-off weight. 
Federal Aviation Administration (FAA) considers four categories as the following three weight 
ranges, in addition to Boeing 757, Small ≤ 41,000 lbs, 41,000 lbs < Large ≤ 255,000 lbs, and  
Heavy ≥ 255,000 lbs.  

 

 
 

Figure 2 A simplified Detroit airport diagram with X-Y coordinates (AirNav.com 2009) 
 
Figure 3 is the ground projection (bird’s eye view) of the track plot of some aircraft landings on 
runway 21L (indicated at the left side of the figure) in a rotated coordinate system in which runway 
is aligned with the X-axis. The figure is expanded in the Y-axis for further clarity. Based on visual 
investigation, the noise of (X,Y) positions is assumed to be in an acceptable range. The FAF is at X 
≈ 12,500m, 19.9 nm from the runway threshold (see Figure 1 and FAA 2009a).  
 

 
 

Figure 3 Some landings on runway 21L (scale of the Y-axis is magnified relative to the X-axis) 
 
From the plotted tracks in Figure 3, it is seen that some landings follow an approach course parallel 
to the Y-axis toward the FAF. Then they cut the corner once they are about 0.5 nm from the FAF 
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and turn toward the runway. This study does not consider these landings and rather focuses on 
landings that are in the 21L direction while crossing the FAF. Almost all the collected information 
is conditioned on these landings in this study.  
 
Two additional information need to be verified and combined with the track data, i.e. wake vortex 
weight classes of any aircraft, and the utilized landing system (IFR or VFR) in 15 min time periods. 
We have obtained the wake-vortex weight class of 96% of the landings under study, of which 67% 
are provided by Sensis Corporation and the rest are obtained by matching and search of tables of the 
FAA aircraft registration database. The utilized landing systems/rules are reported in the ASPM 
(Aviation System Performance Metrics) database in local time. Considering the time field of the 
data, we add a new field to indicate ILS/IFR and VFR landing systems.  
 
2.2. Sample Extraction  
 
Following the data preparation, samples of random variables are collected. Recorded data of a given 
aircraft might include many landings, departures, or fly-overs, but these operations are not 
differentiated in the database. In Jeddi et al. (2006), we introduced a procedure to distinguish 
landings from other operations, and to calculate samples of LTI, IAD, and ROT. The same 
procedure is employed in this paper.  
 
In brief, the procedure separates different operations of any aircraft and recognizes landings on 
runway 21L. Then, it records the time and location of aircraft when it is first observed outside of the 
runway rectangle after landing, i.e. taxi-in time and location. If the aircraft track disappears over the 
runway, the exit from the runway is not recorded. The procedure sorts landings in an ascending 
manner, based on their threshold times, to recognize follow-lead aircraft. The location of any follow 
aircraft is recorded at the moment its lead crosses the runway threshold. The procedure calculates 
ROT, and average ground speed for any aircraft, and IAT, LTI, and IAD for any pair of lead-follow 
aircraft using the observations in previous steps. The observations are classified based on the 
landing system, wake-vortex weight class of the follow-lead aircraft, arrival rate, etc. We provide 
estimations for critical random variables in the aircraft approach process and landing.  
 
3. LANDING STATISTICS  
 
3.1. Landing Frequency  
 
We define a peak period (quarter-hour) for a given runway to be the ones with at least seven 
landings on that runway. For the analyzed data, we have observed 14,302 landings on runway 21L 
in the months under study. The total 4,647 landings in peak periods are distributed among runways 
and aircraft types as shown in Table 2. Only 3.9% of wake-vortex weight classes of peak period 
landings could not be recognized. For some days in these four months, we observe no landings on 
runway 21L; this might be because aircraft land on other runways or the data are not collected.  
 

Table 2 Total of 4,647 landing samples on runway 21L in peak periods 
 

Aircraft type Dec 2002 Feb 2003 June 2003 Aug 2003 Total Total % 
Not Available 7 8 33 133 181 3.9 
Small 88 70 120 342 620 13.4 
Large 367 318 720 2,148 3,553 76.5 
B757 30 33 50 168 281 6.0 
Heavy 2 0 1 9 12 0.3 
Total  494 429 924 2,800 4,647 100 
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To validate that almost all landings in 15-minute periods are captured, we compared one week data 
of all runways of February 2-8, 2003 with the recorded landings on all runways in the ASPM 
database for this specific week of operations.  
 
Figure 4 shows arrival rates per quarter hour for runway 21L. The horizontal axis is in local time. 
Observations start at 7:00 pm Feb 1, 2003. Shaded periods indicate ILS periods for the airport. To 
double check the completeness of observations in the multilateration database and to validate our 
data preparation and sample extraction procedure, we compare the number of landings reported in 
the ASPM database with the results from our study. Overall for the week of Feb 2-8, 2003, ASPM 
reports 160 more landings than ours. This corresponds to a small proportion of 3.6% 
(=100*160/4473) of ASPM records. Average and standard deviation of “Observed minus ASPM” 
rates are 0.24 and 1.7 arrivals per quarter-hour, respectively. This difference can be the result of 
missing mode-s fields, unrecorded landings, cautious in our algorithms in which tracks with 
questionable data are discarded, or issues related to ASPS recordings, which we are not aware of. 
We assume a similar pattern for the rest of the data. 

 
 

>7` 

--*--  Arrival rate                I M C periods 

 
 

Figure 4 Arrival rates to runway 21L during Feb. 2-8, 2003, Jeddi et al. (2006) 
 

For some system analysis, it is important to know the proportion of different follow-lead aircraft 
pairs. Table 3 shows this proportion for the data at hand in peak periods under ILS out of 852 
samples. Note that these are the aircraft going through the FAF. Table 3 is also called the transition 
matrix. 63.3% of the pairs are large-large aircraft, and about 80% of landing aircraft are large ones.  
 

Table 3 Follow-lead aircraft transition matrix in peak periods under ILS 
 

Lead aircraft Follow aircraft 
Small Large B757 Heavy Total 

Small 2.0 11.4 0.5 0.2 14.1 
Large 11.5 63.3 5.0 0.1 79.9 
B757 1.1 4.1 0.4 0.0 5.6 
Heavy 0.1 0.2 0.0 0.0 0.3 
Total 14.8 79.0 5.9 0.3 100 
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3.2. Distributions of IAT, LTI, and IAD 
 
In risk and capacity analysis, the pattern of the approach process in peak periods is of interest. For 
this reason, we focus on periods during which there are seven or more landings per quarter hour, i.e. 
peak periods.  
 
Table 4 shows the default standard for the approach in-trail threshold separation minima under IFR 
put forth by the FAA. We are interested to know what the probability distributions of IAT, LTI and 
IAD are for class of follow-lead aircraft with the 3 nm and 4 nm separation spacing minima 
indicated in Table 4, i.e. pairs S-S, L-S, B757-S, H-S, L-L, B757-L, and H-L for 3 nm, and S-L, L-
B757, B757-B757, and H-B757, where S stands for small, L for large, and H for heavy aircraft. In 
specific situations, 3 nm spacing standard may be reduced to 2.5 nm based on FAA (1993a and 
1993b); however, differentiating these situations is not the subject of this study.  
 

Table 4 IFR approach in-trail threshold separation minima (nm) 
 

Lead aircraft Follow 
aircraft Small Large B757 Heavy 
Small 3 4 5 6 
Large 3 3 4 5 
B757 3 3 4 5 
Heavy 3 3 4 4 

 
We have collected a significant number of samples from the variables of interest under ILS/IFR and 
VFR. Independence of samples is necessary to fit probability distributions. This independence is 
examined by lag analysis and test of hypothesis. A one-lag scatter plot is shown in Figure 5 for LTI 
3 nm, i.e. LTI3. The plot does not demonstrate a specific pattern of dependency between 
consecutive samples. 

 

 
 

Figure 5 One-lag scatter plot of peak-ILS period LTI for 3 nm pairs; no specific pattern is observed 
 

Table 5 shows one and two lag autocorrelation coefficients and p-values for the two lag test of 
hypothesis for variables of interest under ILS. For more information on statistical concepts 
discussed in this paper, see Bowker and Liberman (1972), for example.  
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Table 5 Autocorrelations and p-values for the variables under ILS 
 

Variable IAT3 IAT4 LTI3 LTI4 IAD3 IAD4 
One-lag autocorr. 0.124 0.162 0.121 0.16 0.133 0.043 
Two-lag autocorr. 0.04 0.001 0.041 0.016 0.103 -0.028 
p-value for two-lag 0.24 0.987 0.255 0.843 0.005 0.730 

 
The one-lag autocorrelations are small and do not imply dependency although in some cases they 
exceed 0.1. The two-lag autocorrelations are much smaller. We perform hypothesis tests on two-lag 
autocorrelations to examine data independence. Based on p-values we cannot reject sample 
independence for none of the variables in 99% confidence level except for IAD3. Three-lag auto-
correlation coefficient for IAD3 samples is 0.015 and the corresponding p-value is 0.68, i.e. cannot 
reject sample independence hypothesis in three-lag analysis. A weak one-lag and two-lag linear 
dependencies among the samples do not imply interdependency among all data. 
 
The number of samples, minimum and maximum values, mean and standard deviation of the 
samples for each variable for both 3 nm and 4 nm pairs under ILS are given in Table 6. We use 
ExpertFit, Law (2000), and MATLAB packages for distribution fitting. The method of Maximum 
Likelihood Estimation (MLE) is used for these fittings. A few samples with LTI3 or IAT3 greater 
than 300 s are truncated as large separations are not safety concerns, and may reduce the fitting 
accuracy as the sample domain increases. Interestingly, for all of the variables, the shifted log-
logistic distribution provides the best fit. Figure 6 provides histogram and two best fitted pdf for 
LTI3 under ILS.  
 

Table 6 Estimated landing distributions under ILS on runway 21L in peak periods 
 

Sample values Fitted values 
ILS/IFR Variable 

Size [min,max] Mean Std  Distribution Shift Scale Shape Mean Std  
IAT3 at FAF (s) 772 [53,218] 105 30.5 Log-Logistic 50 48.45 3.46 106 35.7 
LTI3             (s) 770 [48,295] 104 30.6 Log-Normal 40 4.06 0.45 104 30.4 
     Log-Logistic 45 52.30 3.60 105 36 
IAD3*         (nm) 756 [1.9,10.0] 3.6 1.1 Log-Logistic 1.8 1.54 3.25 3.6 1.3 

IAT4 at FAF (s) 162 [65,250] 121 33.5 Log-Logistic 60 53.84 3.25 123 44.8 

LTI4             (s) 162 [70,243] 124 33.2 Log-Normal 65 3.99 0.31 125.1 35 
     Log-Logistic 65 52.2 3.48 125 38.1 

IAD4         (nm) 152 [2.4,9.5] 4.1 1.1 Log-Logistic 1.3 2.61 5.26 4.1 1.0 
IAT5 at FAF (s) 6 [120,134 ] 128 6.2 Not fitted      
LTI5             (s) 6 [ 120,147] 131 9.0 Not fitted      

IAD5          (nm) 6 [3.9,5.1] 4.6 0.4 Not fitted    
  

IAT6 at FAF (s) 2 [148,167 ] 158 13.4 Not fitted      
LTI6             (s) 2 [ 158,162] 160 2.8 Not fitted      

IAD6          (nm) 2 [5.6,6.1] 5.9 0.4 Not fitted    
  

* Samples demonstrate some linear dependency in one and two lag.  
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As given in Table 6, the probability distribution of LTI3 can be well estimated by a log-normal 
distribution with parameters (40; 4.06, 0.45) when a minimum of 40 seconds is enforced. The log-
logistic(45; 52.30, 3,3.6) provides a slightly better fit relative to the log-normal distribution. The fit 
is accepted by a Kolmogorov-Smirnov test (KS-test) for significance levels of 0.05 or smaller. Note 
that log-logistic distribution has a heavier tail than log-normal distribution. For example, 
P(LTI3>240) is 0.003 and 0.004 when it is respectively fitted by log-normal and log-logistic 
distributions. The heavier tail of log-logistic distribution causes a higher standard deviation as seen 
in Table 6, but it is not a concern as it only related to the tail of the distribution.  
 
One-lag autocorrelation coefficients of samples for the variables under VFR are given in Table 1. 
Except for IAD3 and IAD4, the values are very small and demonstrate sample independence. Based 
on p-values, we cannot reject sample independence for none of the variables in 99% confidence 
level except for IAD3. Two-lag autocorrelation coefficient for IAD3 samples is 0.089 and the 
corresponding p-value is 0.0003, i.e. rejected the hypothesis of two-lag sample independence. 
Three-lag auto-correlation coefficient for IAD3 samples is 0.044 and the corresponding p-value is 
0.09, i.e. cannot reject sample independence in three-lag analysis. A weak one-lag and two-lag 
linear dependencies among samples of IAD do not imply interdependency among all data. We 
observe more sample independence under VFR than under IFR.  
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Figure 6 Histogram and estimated distribution of peak period LTI3 under ILS; Log-logistics is a better fit 
 

Table 7 One-lag autocorrelation coefficients and p-values under VFR 
 

Variable IAT3 IAT4 LTI3 LTI4 IAD3 IAD4 

One-lag autocorr. 0.001 0.008 0.009 0.013 0.133 0.14 

p-value 0.962 0.887 0.724 0.813 0.000 0.017 
 
Table 8 is the summary of the collected samples under VFR and corresponding estimated 
probability distributions for the random variables of 3, 4, and 5 nm separation minima pairs from 
Table 4.  There are two points of 28 s and 33 s for IAT3 at FAF where their LTI3 at the threshold are 
77 s and 89 s, respectively, which are much larger (and more reasonable) than their IAT; we 
consider these two points as outliers and drop them from the data.  
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Table 8 Estimated landing distributions under VFR on runway 21L 
 

Sample values Fitted values VFR variable 
Size [min,max] Mean Std Distribution Shift Scale Shape Mean Std 

IAT3 at FAF (s) 1618 [40,236] 102 32 Log-Logistic 39 55.84 3.78 102 35.4 
LTI3             (s) 1623 [39,233] 102 32 Log-Normal 38 4.04 0.47 102 31.6 
     Log-Logistic 38 56.26 3.85 101 34.7 
IAD3*         (nm) 1539 [1.5,9.2] 3.5 1.0 Log-Logistic 1.3 1.74 3.82 3.5 1.1 
IAT4 at FAF (s) 331 [48,231] 116 30 Log-Logistic 45 66.40 4.13 118 36.7 
LTI4             (s) 336 [56,238] 121 31 Log-Normal 50 4.16 0.47 122 35.6 
     Log-Logistic 50 65.44 4.00 123 38 

IAD4         (nm) 306 [1.6,7.0] 4.1 0.9 Log-Logistic 1.7 2.23 4.24 4.1 1.2 
IAT5** at FAF (s) 27 [76,223] 133 39 Log-Normal 75 3.67 1.13 149 120 
LTI5**             (s) 27 [81,227] 138 36 Log-Normal 75 3.90 0.82 144 68 

IAD5**         (nm) 24 [2.7,6.8] 4.7 1.2 Log-Normal 2.5 0.58 0.76 4.9 2.1 
IAT6 at FAF (s) 3 [132,228] 176 48.4 Not fitted      
LTI6             (s) 3 [142,277] 203 68.3 Not fitted      

IAD6          (nm) 2 [5.45,5.5] 5.5 0.03 Not fitted      
* Samples demonstrate some linear dependency in one and two lag. 
** Fitted distributions are not reliable because of the small sample size  
 
From Table 8, note that the mean of LTI5 is 17 s more than mean of LTI4, and mean of LTI4 is 19 s 
more than mean of LTI3. Means of IAD4 and IAD3 differs only by 0.5 nm, and means of IAD5 and 
IAD4 differs by 0.6 nm. Standard deviations are almost identical between corresponding 3 nm and 4 
nm pairs, but it is slightly higher for 5 nm pairs in average.  
 
Figure 7 shows histogram of IAT5 (shifted to the left by 75 s) and two fitted distributions of log-
normal and log-logistic. Because of very limited samples on the wide domain, no fitting can be 
suitably representative of the population distribution. Standard errors for scale and shape parameters 
for the estimated log-normal distribution are 0.18 and 0.13, i.e. 5% and 16% of the estimated 
values, respectively. The standard deviation of IAT5 is 120 s based on the estimated distribution 
where as the sample variance is 39 s.  
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Figure 7 Two fitted distributions on the IAT5 histogram 
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3.3. Distribution of ROT under ILS 
 
For theoretical estimation of the simultaneous runway occupancy risk, we need to estimate the 
probability distribution of the ROT. As we see from the airport diagram, 21L has 4 exits (taxi-
ways), two of which are prior to the half-way of the runway and two others are after that. This 
suggests that some fraction of the aircraft exit early and some exit later. This is also supported by 
the histogram of ROT samples of small and large aircraft, representing landings of leading aircraft 
of 3 nm pairs in Table 4. We condition the data on early exits ( X ≥ -400 m) and late exits (X < -400 
m) based on the taxi-way locations. The total sample size of ROT under ILS is 1,098. The one-lag 
and two-lag correlation coefficients among these samples are 0.044 and 0.075, respectively, which 
support that the samples are almost independent.  
 
For the mix of small and large aircraft, which form the 3 nm pairs, having 1,029 samples under ILS, 
we observe that 62% of the landings exit the runway in early taxi-ways, and 38% exit from the later 
taxi-ways. We dropped samples of ROT < 20 s, so the data range is [24, 98]. Aircraft weight classes 
of thirty one of the samples, in the range of 24 s and 33 s, could not be recognized. However, 
because of their small values, we assume they are either small or large aircraft (i.e. they could not 
be B757 or heavy aircraft).  
 
The beta distribution might be preferred for ROT because, as in real situations for ROT, it has lower 
and upper bounds. For both the early and late exits, the normal distribution is rejected in the 0.10 
significance level.  
 
We estimated distributions of early ROT and late ROT by beta distributions as shown in Figure 8, 
and Table 9. Collective pdf of ROT under ILS for the mix of small and large aircraft is given by 
0.62∗(pdf of early exits) + 0.38∗(pdf of late exits), or 
 
ROTS,L ~ 0.62 Beta ([20,90], 11.23, 26.33) + 0.38 Beta ([30,110], 13.60, 27.39).  (1) 
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Figure 8 Histogram and pdf of ROT for the mix of small and large aircraft 
 
Table 9 also shows the 95% confidence intervals on each parameter. The mean and variance of 
beta( [L, U]; α, β) are respectively given by  
 

( ) ( )
( ) ( )1

and 2
22

+++
∗−=

+
∗−+=

βαβα
αβσ

βα
αμ LULUL , (2) 
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where L and U are the lower and upper limits of the distribution domain. Using equation (2), mean 
and standard deviations of each estimated distribution is calculated in Table 9. The aggregated 
sample of early and late exits has the mean of 47 s and standard deviation of 9.3 s, almost identical 
with the mixed beta distribution.  
 

Table 9 Distribution parameters of ROT for the mix of small and large aircraft 
 
 Data 

range 
Sample 
size 

Domain % α 95% C.I. 
for α 

β 95% C.I. 
for β 

Dist. 
mean 

Dist. 
Std 

Early [24,63] 638 [20,90] 62 11.23 [10.3,12.1] 26.33 [24.2,28.5] 41 5.2 
Late [35,66] 391 [30,110] 38 13.60 [12.2,15.0] 27.39 [24.1,30.6] 58 5.8 
Total  1029  100     47.5  
 
For the mix of large, B757, and heavy aircraft, which form pairs of 4 nm and 5 nm separation 
minima in Table 4, we have 910 samples under ILS. The estimated distribution is slightly different 
from the previous case as expected more aircraft exit later. The estimated mix beta parameters and 
confidence intervals are given in Table 10.  
 

Table 10 Distribution parameters of ROT for the mix of large, B757, and heavy aircraft 
 
 Data 

range 
Sample 
size 

Domain % α 95% C.I. 
for α 

β 95% C.I. 
for β 

Dist. 
mean 

Dist. 
Std 

Early [38,63] 452 [25,90] 49.7 15.75 [13.8,17.7] 40.24 [36.0,44.4] 43.5 3.9 
Late [35,98] 458 [30,110] 50.3 8.31 [7.6,9.0] 14.72 [13.5,15.9] 60 7.8 
Total  910  100     51  
 
In short, we can write this distribution as  
 
ROTL,B757,H ~ 0.497 Beta([25,90], 15.75, 40.24) + 0.503 Beta([30,110], 8.31, 14.72).  (3) 
 
Distribution of ROT depends on the fleet mix as smaller aircraft exit earlier and larger ones later.  
 
3.4. Average ground speed under ILS  
 
Time and distance separation directly relate by speed. The ground speed through the final approach 
depends on the headwind; as the headwind is higher, aircraft needs less thrust to maintain the 
necessary lift. Table 11 is the summary of the observed samples of average ground speed for 
different types of aircraft from the FAF to the runway threshold when ILS in use.  
 

Table 11 Average aircraft speed (in knots) from the FAF to the runway threshold under ILS 
 

Aircraft 
type 

Size Domain Mean Std Fitted 
dist. 

shift scale 
(standard 
error) 

shape  
(standard 
error) 

Mean Std 

Small 155 [90, 156] 125.2 13.9 Logistic 70 55.6 (1.1) 7.9(0.5) 125.6 14.3 
Large 841 [80, 183] 132 14.4 Logistic 70 62.0 (0.5) 7.9 (0.2) 132.0 14.4 
B757 64 [91, 163] 127 12 Logistic 80 47.3 (1.5) 6.7 (0.7) 127.3 12.1 
Heavy 3 [121,160] 140 6.5 N/A      

 
As small standard errors of the estimated parameters show, logistic distribution provide a good fit 
for the speed data especially for the large aircraft. Distributions for the speed of large and small 



164 Jeddi, Donohue and Shortle 

aircraft only differ in the location parameters by 6.5 knots and maintain the shape. Figure 9 shows 
the histogram and fitted logistic(70; 62,7.9) distribution for the average speed of large aircraft under 
ILS.  
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Figure 9 Histogram and fitted logistic distribution for the average speed of large aircraft under ILS 
 
We shall note that the data demonstrate a linear dependency in one, two, and three lags as the 
autocorrelation coefficients are 0.63, 0.60, and 0.54, respectively. This, however, is not surprising 
since given the same headwind, same size aircraft land with a very similar ground speed. In other 
words, the observed ground speed variability is partly the result of the headwind variability. 
Autocorrelation coefficient of small aircraft samples in one, two, and three lags are 0.63, 0.42, and 
0.31, respectively. These values are 0.48, 0.26, and 0.10 for B757 aircraft respectively.  
 
3.5. Simultaneous Runway Occupancy  
 
An SRO occurs when a trailing aircraft arrives at the runway threshold before its lead is clear of the 
runway. This is a landing risk and a precursour for a runwy incurssion. We estimate the risk of SRO 
by the probability (or frequency) that the LTI between two consecutive aircraft is less than the ROT 
of the leading aircraft, i.e. the fraction of pairs for which {LTIk,k+1< ROTk}, k = 1, 2, …., where the 
leading and its trailing aircraft are respectively indexed by k and k+1.  
 
Figure 10 shows sample observation pairs (LTIk,k+1, ROTk) during the week of Feb 2-8, 2003, in 
peak periods. The majority of these landings are on runways 21L/03R and 22R/04L, Jeddi et al. 
(2006). We have limited LTI in the figure to 200 seconds for the purpose of clarity. In this figure, 
pairs of follow-lead aircraft are differentiated based on the utilized landing systems ILS/IFR and 
VFR. Three points above the 45 degree line (where LTIk,k+1 is less than ROTk) correspond to SROs, 
one of which occurred under ILS.  
 
Figure 10 also demonstrates the independence of LTIk,k+1 and ROTk for all k. The Kendall sample-
correlation statistic, which measures dependency in non-parametric statistics, is 0.085 which is 
very smal and supports independence of these random variables; for discussion on this parameter 
see Hollander and Wolf (1999). The sample correlation coefficient is 0.15 which supports that 
sample dependency is very weak or does not exist. We assume the independence. In the next two 
sections we provide an empirical and a theoretical point estimates for P{LTIk,k+1< ROTk}, k = 1, 2,..., 
in peak periods for pairs of aircraft with separation standard 3 nm and 4 nm indicated in Table 4.  
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P{SRO}: Empirical Estimation 
 
There are totally 14 points where LTI < ROT, i.e. above the 45 degree line. The sample frequency is 
0.0021 with respect to 6,832 peak period landings (the frequencies in Table 2 plus the landings that 
do not go through the FAF; see Figure 3). There were some landings for which we could not obtain 
the ROT due to disappearance of the aircraft track over the runway. This might be because the 
aircraft turned off the transponders or for other reasons. We assume that these landings would not 
cause SRO, i.e. would not be above the 45 degree line in the figure. On the other hand, some 
landings might have not been recorded by multilateration surveilence because of the errors in 
recording and off transponders. Thus, these are optimistic and lower bound estimations.  
 
We build a confidence interval using the observations. Occurance of  SRO is a rare event, so SRO 
can be estimated as a Poisson random variable. The Poisson random variable with parameter λ is a 
limit for the binomial(n,p) when n is large and p is small enough so that np is of moderate size, Ross 
(2007). Then the 95% C.I. for P{SRO} on this runway, under ILS, is [0.0011, 0.0034]. If we define 
an SRO to be a situation where the ROT is at least two seconds more than the landing time interval, 
then we have 6 SROs and the point estimation will be 0.0009 and the 95% C.I. will be 
[0.0003,0.0019]. These estimations are very close to our priliminary estimations using one week 
Feb 2-8, 2009 collective data on all runways reported at Jeddi et al. (2006), and Figure 10; that was 
1 out of 625 under ILS, which results in a point estimation of 0.0016 which is close to the overall 
estimation of 0.0021 in this study.  
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Figure 10 ROT of aircraft k versus LTI between aircraft k and k+1 during Feb 2-8, 2003, Jeddi et al. (2006) 
 
P{SRO}: Theoretical Estimation 
 
In this method the fitted probability distributions of LTI and ROT are utilized. It can provide an 
estimate of the overall performance of the system in its stable condition assuming the number of 
samples is large enough to provide a sufficient accuracy. An advantage of this method is that it 
covers the missing data assuming the available data captures the stable behavior of the system. As a 
result the estimated risk in this method might be more realistic given those assumptions. However, 
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noting Figure 7, we suspect that the estimated ROT distribution may provide over estimation of 
SRO for large ROT.  
 
Probability distributions for LTI3 and ROT are given in Table 6 and equation (1) for 3 nm pairs 
under ILS/IFR. Figure 11 shows these pdfs. The observed overlap of these probability distributions 
suggests that P{LTI<ROT} is a positive value. In estimating pdf of LTI, we have not considered LTI 
samples for which we could not obtain their corresponding ROT. Let gROT(·) represent the pdf of 
ROT, and FLTI(·) represent the cumulative distribution function (cdf) of LTI. Then,  
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Equation (4) cannot be evaluated analytically for the specific distributions at hand but we accurately 
estimate it using numerical integration; another method can be stochastic simulation which we have 
used to validate our numerical calculation. The result is 0.0034, as a point estimate for the pairs of 
interest in peak-ILS periods. (This probability will be 0.0037 if log-logistics is used instead of log-
normal for LTI3.) As a Heuristic estimation, assuming SRO a rare event with a Poisson distribution, 
and assuming that this is identical to the case of observing 23 SRO out of 6832 landing, then a 95% 
C.I. for P{SRO} is [0.0021, 0.0051]. Note that the confidence interval for the Poisson distribution is 
tighter as the number of SRO observations increases, e.g. 23 in 6,832 provide a tighter C.I. than its 
equivalent proportion of 3.4 in 1000. Here, we have normalized the theoretical estimation of C.I. for 
6,832 samples based on the empirical case. 
 
The theoretical estimate 0.0034 is about 1.5 times the empirical estimate 0.0021 for peak-ILS 
periods. The empirical estimates are optimistic because firstly we have missed about 3.5% of total 
landing data based on the ASPM and because we could not obtain ROT for some peak period ILS 
landings. These two effects may have added to P{LTI<ROT}, i.e. they may have had bigger LTI 
than ROT of their leading aircraft. Based on the fitted distributions and assuming the independence 
of LTI3 and ROT, the system performed so that the chance of SRO was in [0.0021, 0.0051] range of 
95% confidence interval with the mean 0.0034.  
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Figure 11 Overlap of ROT pdf and LTI3 pdf 



A Statistical Analysis of the Aircraft Landing Process 167 

This empirical observations and theoretical overall estimations of P{SRO} are important indicators. 
The risk magnitude of P{SRO} is meant to be very small; however, based on our empirical and 
theoretical estimations it is 0.0021 or 0.0034, respectively, which seems to be higher than a desired 
value in average.  
 
As for 4 nm pairs, having LTI4 from Table 6 and ROT from equation (4), the point estimation of 
P{LTI<ROT} is calculated as large as 0.0006. This value is expectedly far lower than the LTI3 case 
since LTI for the 4 nm pairs are higher than for 3 nm pairs, noting that the pdf of LTI4 starts at 65 s.  
 
4. CONCLUSION 
 
We analyzed the aircraft track data from multilateration surveillance system to estimate probability 
distributions of approach process taking into account noise, errors, and missing data. We obtained 
the wake vortex weight class for 98.6% of aircraft landing in peak periods. This information is 
added to the multilateration data along with the information on the utilized flight rules/systems in 
every quarter hour obtained from the ASPM database. We extracted samples of IAT at the final 
approach fix FAF, LTI, IAD, and ROT during peak traffic periods in which there were seven or 
more landings per quarter hour on a major landing runway. We focused on runway 21L operated as 
an independent single landing runway. This paper extended our initial report where some statistics 
of the aircraft approach on all runways collectively were presented, Jeddi et al. (2006). Samples 
were additionally conditioned on weight class of follow-lead aircraft and aggregated for the ones 
with a minimum separation standard of 3 nm and 4 nm, whereas the initial report was only about 3 
nm pairs under ILS.  
 
The underlying process and autocorrelation analysis of the samples do not show dependency among 
the samples of IAT, LTI, and ROT. Autocorrelation coefficient showed some linear dependency in 
one and two lags of IAD samples but the independence hypothesis could not be rejected in three-
lag.  
 
We estimated the pdf of IAT at the FAF, LTI, IAD, and ROT by some known probability 
distributions and compared their performance. Probability distribution of ROT is better 
approximated by a mix-beta distribution but not with a normal distribution. IAT, LTI and IAD of the 
follow-lead pairs under study were best fit by log-logistic distributions; however, the log-normal 
distribution is also a suitable fit for LTI3 and LTI4 under both ILS/IFR and VFR.  
 
We estimated average ground speed of aircraft through the final approach for different aircraft 
types. Samples demonstrate a linear dependency because the ground speed is naturally depends on 
the headwind and as a result consecutive aircraft would have similar speeds. Some part of the speed 
variability is related to the variability of the headwind in different periods. We also showed that 
logistic distribution is suitable to represent the uncertainty in the average aircraft speed from the 
FAF to the runway threshold. We provided fitted parameters of Logistic distribution for average 
ground speed of small, large and B757 aircraft.  
 
We observed that the LTI between the leading and following aircraft are not linearly dependent with 
ROT of its leading aircraft when all samples were analyzed collectively. The distribution of 
simultaneous runway occupancy SRO as a rare event can be estimated by Poisson distribution. The 
probability of SRO, P{LTI < ROT}, in peak periods are estimated empirically and theoretically by 
point and interval estimations, where theoretical method provides 0.0034 which is 2 times higher 
than the empirical estimation in average.  
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Providing methodologies to incorporate incomplete (LTI, ROT) data where ROT is missing can be 
of a research interest as it assists a better empirical estimation of SRO. Distribution of other random 
variables in the approach process, such as time between exits from the runway, and inter arrival 
times to the terminal radar approach control (TRACON) area can be research subjects.  
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