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ABSTRACT 
 

We introduce a new approach to distribution fitting, called Decision on Beliefs (DOB). The 
objective is to identify the probability distribution function (PDF) of a random variable X  with 
the greatest possible confidence. It is known that Xf  is a member of }.,,{= 1 mffS L  To 

reach this goal and select Xf  from this set, we utilize stochastic dynamic programming and 
formulate this problem as a special case of Optimal Stopping Problem. The decision is made on 
the basis of the outcome of a limited number of experiments. A real number, namely, belief is 
assigned to each candidate by considering the outcome of observations. At each stage and after 
a random observation, beliefs are updated by applying Bayesian formula and then either one 
element of S  is selected as the desired PDF or another observation is made. At each stage, a 
PDF from S  with the greatest belief is accepted as the desired PDF provided the belief is 
higher than a least acceptable designated level. We assume the total number of possible 
observations can not exceed N  and a cost is incurred for each observation. Dynamic and 
nonlinear programming are applied to calculate the least acceptable belief value for each stage. 
To reduce the search of the optimal solution, the concept of entropy is utilized.  

 

Keywords: Distribution fitting, Dynamic programming, Markovian decision process.  

 
1. INTRODUCTION 
 
Identifying a suitable probability distribution function (PDF) to fit the set of data obtained from 
experiments is the first step in majority of statistical analysis cases. This paper introduces a new 
approach to distribution fitting, called Decision on Beliefs (DOB) (Eshragh, 2001). 
 
There are different approaches for distribution fitting. However, Goodness of Fit (GOF) is the most 
popular one in the literature (Conover, 2001). A random sample is drawn from some population and 
examined some way in order to make sure the distribution fits the data reasonably. The objective of 
GOF is to test the null hypothesis,  i.e. to show the unknown PDF has a known and specified 
distribution function. In every GOF test, all distribution candidates must be checked one by one 
suitability, regardless of their effects on each other. Consequently, more than one distribution may 
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be accepted as the desired distribution. Therefore, not necessarily a unique PDF is selected. In 
contrast, we show DOB approach does not create this difficulty and only one candidate is accepted. 
Furthermore, DOB is especially a useful technique if the number of experiments for identifying the 
distribution function is limited due to its high cost or the nature of the experiments. 
 
It ought to be mentioned that we do not focus on the algorithmic potential of the results reported 
here. However, there is a great deal of debate about this topic in Saniee Monfared and Ranaeifar 
(2007). Our chief aim in this paper is suggesting a number of algorithmic approaches that could be 
the subject of continuing research. 
 
In the following section, the problem is defined and our general approach to distribution fitting is 
also presented. In Section 3, we define the concept of beliefs and how to update them stochastically 
after receiving a new observation. In Section 4, we restrict the search region by making some 
pairwise comparisons. Determining the least acceptable belief is investigated in Section 5 and the 
algorithm is described in Section 6. To illustrate the method, a numerical example is presented in 
details in Section 7. In Section 8 we make conclusion and suggest some future research topics and 
the proof of theorems are moved to the end of paper and appear in appendices. 
 
2. THE PROBLEM 
 
Consider a continuous random variable X  with PDF Xf  and CDF .XF  Although Xf  is unknown, 
we know it belongs to a candidate set }.,,{= 1 mffS L  We assume the distribution as well as the 
parameters of each member of S  is known. The objective is to identify ,Xf   i.e. select one element 
of this set as Xf  with the greatest confidence within limited number of observations.  
 
2.1. General Approach 
 
Selecting the desired PDF from the candidate set of },,{= 1 mffS L  is by making observations from 

,Xf  sequentially. After each observation, a real number called  "belief" is assigned to each member 
of }.,,{= 1 mffS L  Actually, the belief on each PDF, say ,if  is the probability that if  is the desired 
PDF, based on the information obtained from the observations up to now. After each observation, it 
is decided whether to select one candidate from },,{= 1 mffS L  as Xf  or continue and try another 
observation. Clearly, with each new observation the decision makers obtains more information and 
as a result the beliefs change accordingly. We also assume the total number of possible observations 
is limited to N  and a cost is incurred for each observation. 
 
The procedure stops and selects a PDF, say if , if it has the greatest belief among the candidates and 
its belief is not less than a predetermined value which indicates the least acceptable belief. The 
procedure also stops after N  observations. 
 
In the subsequent sections, to explain the above general approach we need to define the concept of 
beliefs and the way which they update. Furthermore, to determine the optimal least acceptable 
belief, the problem is formulated as a special case of  Optimal Stopping Problem. To do that, we 
apply Markovian decision process or in fact stochastic dynamic programming, see Ross (1983). 
The proposed method is easy to be implemented. However, the mathematical theorems to support 
this method are lengthy and to some extent complicated. Therefore, most of the proofs are presented 
in the appendices. 
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The only paper which is somehow related to this work is by Ahn and Kim (1998). They developed a 
method to maximize the utility obtained by observations to make the best decision regarding the 
action time, when observations are made sequentially. 
 
3. THE BELIEF 
 
Definition 1. Let the outcome of j th observation be denoted by .jx  Then, after k  observations, 
for ,,1,= Nk L  we call ),,(= 1 kk xxO L  as k th  observations vector. 
 
Definition 2. We introduce the concept of  belief on if  as the probability that if  is the desired 
PDF, on the basis of the information obtained from the outcome of the observations up to this point 
(Bernardo and Smith, 2001). In other words, if the k th observations vector is ,kO  then the belief 
on if  is defined as follows. 
 

}|{:=)( kiXki OffPrOB ≡  
 
Furthermore, the  vector of beliefs after k  observations is denoted by [ )(,),(1 kmk OBOB K ]  
 
Notation 
 
After k  observations, let gf  be the PDF with the greatest belief. In other words, 
 

},1,=),({=)( miOBMaxOB kikg L  (1) 
 
Similarly, the PDF with the second maximum belief is identified by ,sf  or in fact,  
 

}=,1,=),({=)( giandmiOBMaxOB kiks /L  (2) 
 
3.1. Updating the Beliefs 
 
After k  observations, let assume the decision is to continue. Let 1+kx  be the outcome of the next 
observation. Then, ),,,(=),(= 1111 +++ kkkkk xxxxOO L  indicates the thk 1)( +  observations vector. 
Obviously, the vector of beliefs also changes. To calculate  posterior beliefs miOB ki ,1,=),( 1 L+ , 
from the  prior beliefs ),( ki OB  Bayes formula is applied, as follows:  
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4. PAIRWISE SEARCH 
 
As mentioned before, if  is selected as the desired PDF if it has the greatest belief and this belief is 
also higher than a predetermined value. For determining this value of least acceptable belief, 
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theoretically we calculate this value for each pair of PDFs and then select the most conservative 
one. Although the number of PDF pairs is high, it is not necessary to consider all pairs. We show 
that after each observation actually only one pair is enough to consider. 
 
4.1. Search Space Reduction 
 
Let E  be the total decision making space, in which there are m  candidates for .Xf  Now, we 
define a subspace jiE ,  which contains only two candidates, if  and .jf  In this subspace and after 

k  observations, the belief on if  is represented by )( ki Ob . Clearly, in ,, jiE  
 

1=)()( kjki ObOb +  (4) 
 
On the other hand, the following relation between beliefs in subspace jiE ,  and space E  is readily 
seen: 
 

)()(
)(

=)(
kjki

ki
ki OBOB

OB
Ob

+
 (5) 

 
Lemma 1. In subspace ,,, giE ig ≠∀  the value of the belief on gf  is higher than 0.5 .  
 
Proof: gf  has the greatest belief from (1). In other words, ).()( kikg ObOb ≥  Then, 0.5,)( ≥kg Ob  
from (4). 
 
The first immediate result of this lemma is that the least acceptable belief can be set at least 0.5 .  
 
4.2. Reducing Pairwise Comparisons 
 

There are 1)/2(=
2

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
mm

m
 pairwise subspaces. However, since only gf  can be selected, then all 

subspaces except igE ,  are disregarded. Furthermore, we show that sgE ,  is the only subspace to 

consider. [ gf  and sf  are PDFs with the greatest and second greatest beliefs, respectively by (1) and 
(2). 
 
To reduce the search to only one pair, we utilize the concept of entropy. Thus, we define entropy, 
first. 
 
Definition 3. a: Let },1,=,{ nixi L  be the sample space of a discrete random variable X  and 

].=[= ii xXPrp  Then, by definition ][ 2 iplog−  is called the amount of surprise that one hears ix  
is the value of .X  
 
b: Entropy of X  is define as follows,  
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=)( ∑−  (6) 

 
In information theory, entropy is interpreted as the expected value of uncertainty exists as to the 
value of ,X  see Mackay (2005). 
 
Theorem 1. After k  observations, let .=,),(>)( gjiOBOB kjki /  Then, the expected value of 

uncertainty in decision making subspace igE ,  is higher than that of ., jgE  
 
Proof: See Appendix 1. 
 
Result 
 
From Theorem 1 it is implied that the expected value of highest uncertainty exists in decision 
making subspace .,sgE  Therefore, by considering only this subspace, the procedure is stopped in 
the most conservative case. 
 
5. DETERMINING THE LEAST ACCEPTABLE BELIEF 
 
Let L  be the least acceptable belief. The objective is to determine L  such that the expected value 
of correct selection probability be maximized. Obviously, the optimal value of least acceptable 
belief depends on the number of observations. 
 
5.1. Consistent Grid 
 
In the process of obtaining the optimal value for the least acceptable belief, we need to divide the 
total domain of belief function ),( xOb kg  into some non-overlapping intervals such that this 

function is either increasing or decreasing in each interval. It should be mentioned that ),( xOb kg  is 

the belief on gf  in subspace ,,sgE  after k th but before 1)( +k th observations, where x  is the 
outcome of a random variable which indicates the next observation. 
 
Consider the plane of ),( xOb kg  versus .x  We create a grid by drawing some horizontal and 
vertical lines and dividing the plane into some squares. 
 
By Lemma 1, the optimal belief is grater than 0.5.  Thus, the range of the belief function starts at 
0.5.  Let the horizontal lines be drawn at ,,,,, 210 βrrrr L  where 0.5.=0r  Then, the total range is 

covered by β  non-overlapping .,1,2,=],,[= 1 βLhrrR hhh −  On the other hand, we define ,hD  
the domain of this function which corresponds with hR  as follows.  
 

}),(:{= hkgh RxObxD ∈  (7) 
 
Clearly, hD  may consists of some non-overlapping intervals. 
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Definition 4. The grid created by drawing horizontal and vertical lines on the plane of ),( xOb kg  
versus x  is called  Consistent Grid, if it has the minimum number of lines and within each interval 

),( xOb kg  is either increasing or decreasing, but not both. (If ),( xOb kg  is less than 0.5,  then 

)],,([1 xOb kg−  must be either increasing or decreasing, instead.) Furthermore, each domain 

interval belongs to one hR  interval, only. In Appendix 2, we show how to create the consistent grid. 
 
Example 1 
 

Let us consider 2=g , 5=k , and 
38

8

52

23337868.21
=),( x

ex

xxOb
+

 (details are in the fifth stage 

of example 2). The extreme points of ),( 52 xOb  are 0  and 24  and the value of ),( 52 xOb  at these 
points are 0.92  and 0,  respectively. Since the value of this function at point 0  is less than 0.5,  it 
is replaced by (1-0) = 1. Therefore, 1=0.92,= 21 rr  and the total range is divided into two 
intervals, 0.92][0.5,=1R  and 1].[0.92,=2R  Figure 1 shows ),( 52 xOb  versus x  and its 
corresponding consistent grid.  
 
 

 
Figure 1. Consistent Grid of ),( 52 xOb  versus x  

 
Here, the value of ),( xOb kg  at two points, 47.79.8,  is equal to 0.5  and 

0.92.1=,60.7)(=,6.3)( −kgkg ObOb  If the vertical lines are drawn only at 0  and 24,  then the 
resulting grid is not consistent. To see that, consider interval 24].[0,  Within 9.8],[0,  the value of 

),( xOb kg  is less than 0.5  and ),(1 xOb kg−  is a decreasing function while within 

),(24],[9.8, xOb kg  is an increasing function. Furthermore, 9.8][0,  corresponds with two different 

.hR  The first interval, 26.3][0, R∈  while .[6.3,9.8] 1R∈  Thus, the vertical lines are drawn at 
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60.7}47.7,24,6.3,9.8,{0, . On the other hand, by (7), 
]}[47.7,60.747.7][24,24][9.8,9.8]{[6.3,=1 ∪∪∪D  and ]}.[60.7,6.3]{[0,=2 ∞∪D  

 
5.2. Stochastic Dynamic Programming Structure 
 
Stochastic dynamic programming is applied to determine the optimal policy. The decision variable 
is the value of L  (the least acceptable belief). Each observation is considered to be one  stage of 
dynamic programming. By stage ,k  we mean k  observations have been made, so far. As 
mentioned before, at most N  observations can be made. Thus, at most kN −  more observations 
are allowed at stage k . Let define the following notation in general subspace of ., jiE  
 

:)(, kU ji  the maximum expected value of correct selection probability at stage k  in subspace jiE , ;  
 
As proved in the previous section, after each observation we consider only subspace .,sgE  
Therefore, in this subspace we use the following simplified notation. 
 

:)(kV  the maximum expected value of correct selection probability at stage k  in subspace .,sgE  

In other words, )(=)( , kUkV sg . 
 

:):( LkV  the maximum expected value of probability of correct selection at stage k  in subspace 
,,sgE  if L  is the least acceptable belief. 

 
:):( hRkV  the maximum expected conditional probability of correct selection at stage k  in 

subspace ,,sgE  given that at next stage the least acceptable belief lies within ].,[= 1 hhh rrR −   
 
Then 
 

}),:({=):( hhhh RLLkVMaxRkV ∈  (8) 
 
and 
 

},1,=),:({=)( βLhRkVMaxkV h  (9) 
 

):( LkV  can be calculated by Theorem 2 and then )(kV  from (8) and (9).  
 
The Impact of Observation Cost 
 
As mentioned before, a cost is incurred for each observation. To incorporate this cost into the model 
we assume the real value of the expected probability of correct selection decreases with respect to 
the number of stages. By considering a discount factor, say 1,<<0 α  this is accomplished. More 
precisely, if at stage ,k  the optimal value the probability of correct selection is 1),( +kV  then 
under the same conditions, its value will be 1),( +kVα  at stage 1+k . 
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Theorem 2. At stage ,k  if L  is the least acceptable belief and α  is the discount factor, then,  
 

1).(]1),([1)]()([

]),([1)]()([=):(

++−≤+−+

≥+−

kVLXObPrkVOb

LXObPrkVObLkV

kgks

kgkg
αα

α
 (10) 

 
Proof: See Appendix 3.  
 
Corollary 1. For 1,≥k   
 

1),(=1):( +kVkV α  (11) 
 
and,  
 

1)()( +≥ kVkV α  (12) 
 
Proof: If 1=L  then the first two terms of the right side of (10) are equal to zero which results in 
(11). On the other hand, 1][0.5,),:()( ∈∀≥ LLkVkV  from (9) and (10) or in particular, 

1).:()( kVkV ≥  Then, (11) implies (12). 
 
Now we consider two special cases where *L  can be determined immediately.  
 
Theorem 3. In subspace sgE ,  and at stage ,k   
 
a) Case 1. If 1),()( +≤ kVOb kg α  then, 1.=*L  In other words, the procedure can not be stopped 
at this stage and )(kV  is updated by (11) .  
 
b) Case 2. If 1),()( +≥ kVOb ks α  then, 0.5.=*L  In other words, gf  is selected at this stage.  
 
Proof:  By definition of gf  and ,sf  ).(<)( kgks ObOb  Then, in case 1 the first two terms of (10) 
are non-positive and 1].[0.5,1),():( ∈∀+≤ LkVLkV α  On the other hand, from (12) it is 
implied that 1).(=)( +kVkV α  This means continue or in fact, 1.=*L  
 
Similarly, for case 2, it is implied that the first two terms of (10) are non-negative. On the other 
hand, each probability term of (10) is a nonincreasing function of .L  Thus, the maximum value of 

)(kV  is attained at 0.5=*L . 
 
If neither case 1 nor case 2 is satisfied, then, 
 

)(<1)(<)( kgks ObkVOb +α  
 
In this case, we create a consistent grid and optimize the probability of correct selection in each 
interval separately and then optimize globally.  
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5.3. Nonlinear Programming Model 
 
Calculating ):( LkV  from (10) practically leads to solving a nonlinear programming. In subspace 

,,sgE  let ta  and ta′  be the points in the domain, defined as follows.  
 

δ,1,2,=,=),( KtLaOb tkg  (13) 
 

δ ′−′ ,1,2,=,1=),( KtLaOb tkg  (14) 
 
If ,hRL∈  then clearly ., htt Daa ∈′  On the other hand as mentioned before, since hD  may consist 
of more than one interval, then for a unique ,hRL∈  there may be more than one ta  or ta′  within 

.hD  Therefore, (8) is equivalent to the following.  

 
}1=),(o,=),(),:({max=):( hkghkgh

hDa
h LaObrLaObLkVRkV −

∈
 (15) 

 
Therefore, (15) is also equivalent to a nonlinear programming. In this model, the objective function 
is (10), in which L  is substituted with ta  or ,ta′  as defined by (13) or (14). Furthermore, the 
constraints of this nonlinear programming are as follows:  
 

),(==),(=),( 21 δaObaObaOb kgkgkg L  
 

)',(==),(=),( 21 δ ′′′ aObaObaOb kgkgkg L  
 

1=),(),( 11 aObaOb kgkg ′+  
 

.,1,=,;,1,=, δδ ′∈′∈ LL tDatDa htht  
 
After determining all ,ta  and ta′  (the decision variables), the corresponding L  is calculated from 
(13) or (14).  
 
Note 
 
The term ]),([ LXObPr kg ≥  of the objective function of nonlinear programming model (10) can be 
calculated easily by considering the property of the consistent grid. As mentioned before, the plane 
of graph ),( xOb kg  versus x  is divided into some nonoverlapping intervals by drawing some 
vertical and horizontal lines. If this grid is consistent, then ),( xOb kg  is either increasing or 
decreasing, but not both at each interval. Based on this property, we calculate ]),([ LXObPr kg ≥  
over the individual intervals of the domain. Clearly, if that interval does not belong to ,hD  then this 
term is either 0  or 1,  depending on the value of .L  However, if this interval, say hhh Ddd ∈− ],[ 1  
then, 
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i) ),()(=]),([ tXhXkg aFdFLXObPr −≥  if ),( xOb kg  is an increasing function in that interval, 
where (.)XF  is the CDF of .X  
 
ii) ),()(=]),([ 1−−≥ hXtXkg dFaFLXObPr  if ),( xOb kg  is a decreasing function in that interval. 
The term ]1),([ LXObPr kg −≤  also can be calculated similarly.  
 
6. ALGORITHM 
 
In this section, we summarize the results of the previous sections and present it as an algorithm.  
 
Initial Step: Start with an initial vector of beliefs and a discount factor .α  Determine the decision 
maker's desired expected value of the probability of correct selection after final experiment, )(NV , 
and set 0:=k .  
 
Step 1. Set 1:= +kk  and generate a new observation. Update the vector of beliefs according to (3) 
and identify gf  and sf . Determine )( kg Ob  and )( ks Ob  by (5).  
 
Step 2. If 1)()( +≤ kVOb kg α , then go to Step 1, else If 1)()( +≥ kVOb ks α , then select gf  as the 
desired PDF and STOP.  
 
Step 3. Create a consistent grid, by the procedure of Appendix 2.  
 
Step 4. For each range interval ,,1,=, βLhRh  solve the nonlinear programming model of 
Subsection 5.3 and determine ):( hRkV  as well as the corresponding optimum least acceptable 
belief, *

hL .  
 
Step 5. Obtain )(kV  by (9). Consider )(=):( * kVRkV

h
 and set *

*
* =

h
LL . If *)( LOb kg ≥ , then 

select gf  as the desired PDF and STOP, else go to Step 1.  
 
7. NUMERICAL EXAMPLE 
 
Example 2 
 
We apply decision on belief (DOB) technique to determine the life time distribution function of an 
expensive electronic component. Due to the high price of this component as well as the high cost of 
experiment, only 10 tests are allowed ( 10)=N . Furthermore, it is desired the distribution function 
will be identified with the probability of at least 0.95 after 10 experiments, 0.95=(10).. Vei . We 
also assume 0.98=α . 
It seems the best distribution function fitting the life time of this component is Gamma with the 
density function of βλλ λβ /11))((=)( x

X exxf −−−− Γ . Furthermore, the existing information indicates 
its expected life time is 24 months. Four members of this family of random variables are considered 
to be the most possible candidate to fit the distribution function with parameters λ  and β  as 
follows. 
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⎪
⎪
⎩

⎪
⎪
⎨

⎧

(3,8):
(4,6):
(12,2):
(1,24):

4

3

2

1

Gammaf
Gammaf
Gammaf
Gammaf

 

 
At the beginning, all four PDFs have equal chance of being selected. Thus,  
 

0.25.=)(=)(=)(=)( 04030201 OBOBOBOB  
 
Lets generate the random observations from 2f . 
 
First Stage: 1.=k  
 
The outcome of the first observation is 35.553.=1x  The vector of belief is updated by (3) as 
follows. 
 

0.275.=)(0.292,=)(0.253,=)(0.179,=)( 14131211 OBOBOBOB  
 
Thus, 4=3,= sg . Then, in subspace 3,4E  and from (5) we have, 0.515=)( 13 Ob  and 

0.485=)( 14 Ob . Since in subspace 0.776=(2))(, 134 VObE g α≤ , then from case (1) of Theorem 

3, 1.=*L  Continue and make another observation. 
 
Second Stage: 2.=k  
 
The outcome of this observation is 24.298.=2x  Then, after calculation of the belief vector by (3), 

3=2,= sg  and in subspace 0.397=)(0.603,=)(, 23222,3 ObObE . Again, from case (1) of 

Theorem 3, 0.893,=(3))( 2 VObg α≤  it results in 1.=*L  Continue and make another 
observation. 
 
Third Stage: 3.=k  
 
The outcome of this observation is 26.464.=3x  Then, 3=2,= sg  and 

0.280.=)(0.720,=)( 3332 ObOb  Again, from case (1) of Theorem 3, 1.=*L   
 
Fourth Stage: 4.=k  
 
The outcome of this observation is 19.491.=4x  Then, 3=2,= sg  and in subspace 

0.207.=)(0.793,=)(, 43422,3 ObObE  Again, from case (1) of Theorem 3, 1.=*L  
 
Fifth Stage: 5.=k   
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The outcome of this observation is 20.996.=4x  Then, 3=2,= sg  and in subspace 
0.137=)(0.863,=)(, 53522,3 ObObE  and 0.816=(6)Vα . In this stage we have,  

 
)(<(6)<)( 5253 ObVOb α  

 
Thus, we have to solve the nonlinear programming model and determine the optimal value for the 
least acceptable belief.  
 

The extreme points of 

38

8
52

23337868.21

=),(
x

ex

xxOb

+

 are 0  and 24,  from (16) of Appendix 2.  

 
The only boundary point is 0  (See example 1). Thus, 24}{4,=EP  and 60.7}{6.3,=PE ′ .  
 
We solve the nonlinear programming model for each range interval of 1R  and ,2R  separately.  
For ,1R  let 1a  and 2a  be defined as (13) and (14). Thus,  
 

LaObaOb =),(=),( 252152  
 
and,  
 

LaObaOb −′′ 1=),(=),( 252152  
 
where 60.7][47.7,9.8],[6.3,[24,47.7],24],[9.8, 2121 ∈′∈′∈∈ aaaa  and,  
 

)()(=]),([ 12 aFaFLxObPr kg −≥  
 

)]((60.7)[(6.3)])([=]1),([ 22 aFFFaFLxObPr kg ′−+−−≤  
 
Then, by substituting the terms of (10), the nonlinear programming model is as follows:  
 

)]()(0.463[)]()(0.064[)]()(0.041[= 122213231222 aFaFaFaFaFaFMax ′−−−+− ′  
 

1.371)]()(0.93[ 1323 +−′− ′aFaF  
 
Subject to:  

),(=),( 252152 aObaOb  
 

),(=),( 252152 aObaOb ′′  
 

1=),(),( 152152 aObaOb ′+  
 

60.7][47.7,9.8],[6.3,[24,47.7],24],[9.8, 2121 ∈′∈′∈∈ aaaa  
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While, 2F  and 3F  are corresponding CDF of 2f  and 3f , respectively. Solving this model results 
in,  
 

0.855=):(50.807,=),(= 1
*
152

*
1 RVaObL  

 
Similarly, the optimal solution for 2R  is found as follows:  
 

0.816.=):(51,= 2
*
2 RVL  

 
Hence, 0.855=16}{0.855,0.8=(5) maxV  and consequently 0.807== *

1
* LL . Since 

*
52 )( LOb ≥ , the procedure stops and selects 2f  as the desired PDF.  

 
Now, suppose that we are going to perform the two celebrated Goodness-of-Fit methods, K-S and 
Chi-Square, on this problem. Since the Chi-Square method needs at least 50 samples (Conover, 
2001), so it is not possible to run it for such small sample of size 5. However, by running the K-S 
test, all the four candidates are accepted with all p-values of greater than 0.25.  
 
8. CONCLUSION 
 
In this paper, we introduced a new approach for distribution fitting, called  Decision on Beliefs. This 
method selects one PDF among a set of candidates to fit the distribution of a random variable X  
when the number of observations is limited. The basis of this approach is to select the PDF with the 
highest probability of fitting. However, this probability, called  belief, is required to be not less than 
some predetermined value of ,L  where L  depends on the number of observations made. In case 
the PDF with the greatest belief is less than this value, then another observation is made and the 
vector of beliefs is updated by Bayesian formula. On the other hand, L  is determined by stochastic 
dynamic programming approach in order to maximize the probability of correct selection. 
Furthermore, the concept of entropy is also used to reduce the number of necessary comparisons. 
 
There are a vide range numerical examples in Saniee Monfared and Ranaeifar (2007) to evaluate 
the performance of this new algorithm and compare it with some other celebrated algorithms. DOB 
has also experienced solving some other statistical problems as Response Surface methodology 
(Eshragh and Akhavan Niaki, 2003) and Quality Control (Fallahnezhad et al., 2006). In all the 
cases, adapted DOB algorithms outperform all the best common ones in many aspects such as 
accuracy of optimal solution, running time and so on. 
 
The chief privilege of DOB is its learning procedure which is revised at each iteration based on 
collected data and prior beliefs. On the other hand, contrary to the most common algorithms, DOB 
extracts the disguised information at each generated data and applies them to converge to optimal 
solution rapidly. It is presumed that this state of the art algorithm can be applied and extended in 
other areas of statistical analysis, combinatorial optimization problems, and optimization of non-
convex programming. 
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APPENDIX 
 
Appendix 1: Proof of Theorem 1  
 
By considering the beliefs of )( kg Ob  and )( ki Ob  in subspace ,,igE  the value of entropy in this 

subspace ,,igE  given the observations vector of ,kO  is as follows.  
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The derivative of the entropy results in:  
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Since ,),(>)( giOBOB kikg ≠∀  then this derivative is positive and consequently )( ,igEH  is an 

increasing function of ).( ki OB  On the other hand, )(>)( kjki OBOB  implies that 

)(>)( ,, jgig EHEH  or in fact the expected amount of uncertainty in decision making subspace 

igE ,  is higher than that of ., jgE  Considering the fact that in both subspaces the decision strategy is 

the same, it is implied that the expected probability of correct selection for gf  in jgE ,  is higher 

than for .,igE  
 
Appendix 2: Creating Consistent Grid  
 
In subspace ,,sgE  we create a grid through the following procedure, which is consistent by 
Definition 4.  
 
Step 1. Identify EP  the set of extreme points of ),( xOb kg  as well as the boundary points. The 
extreme points are identified by solving the following equation.  
 

).(')(=)()(' xfxfxfxf gsgs  (16) 
 
(This equation results from setting the derivative of ),( xOb kg  with respect to x  equal to zero.)  
 
Step 2. Calculate the value of EPxxOb eekg ∈),,( . If any of these values is less than 0.5, replace it 

with ),(1 ekg xOb− . Let βrrr ,,, 21 L  be the resulting numbers, after sorting them in ascending 
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order. Now by drawing the horizontal lines at these points, the total range of 1][0.5,  is divided into 
β  intervals of ],[= 1 hhh rrR − , β,1,2,= Lh .  
 
Step 3. Let PE ′  be the set of points defined as follows:  
 

}),,(1=),(:{= EPxxObxObxPE eekgkg ∈−′  
 
(In fact, the value of ),( xOb kg  at the points of PE ′  are the reflect of βrrr ,,, 21 L  with respect to 
0.5 ). 
 
The vertical lines are drawn at all points of EP  and PE ′ , as well as at the points at which 

0.5=),( xOb kg . Then, for each range interval of hR  identify hD , as defined by (7).  
 
Appendix 3: Proof of Theorem 2  
 
At first, we prove this theorem for the general case of subspace jiE , , and then it is easy to replace i  
and j  with g  and s , respectively. Now, by applying the total probability law we have:  
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where events ji SSCS ,,  and jiNS ,  are defined as follows:  
 

:CS  correct selection; 
:iS  if  be selected after the next observation; 
:jS  jf  be selected after the next observation; 

:, jiNS  neither if  nor jf  be selected in the next stage. 
 
To prove Theorem 2, we derive the terms of (17) and substitute them. 
 

),,|( XOSCSPr ki  is the probability of correct selection if after the next observation if  is 
assumed to be the desired PDF. This is by definition the belief on if  and is denoted ),( XOb ki . It 
is easy to check that )(=)],([ kiki ObXObE  
 

)>),((=})>),({&)},(>),(({=),|( LXObPrLXObXObXObPrXOSPr kikikjkiki  
 
The latter equality is because of the result mentioned after Lemma 1, which asserts the least 
acceptable belief is equal to or greater than 0.5. 
 

),|( XOSPr kj  parallels ),|( XOSPr ki . 
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1),(=)|( ,, +kUNSCSPr jiji α  by definition of jiNS ,  and discount factor. 
 

),()(1=)( , jiji SPrSPrNSPr −−  because ,, ji SS  and jiNS ,  are exhaustive and mutually 
exclusive events. 
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