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ABSTRACT

We introduce a new approach to distribution fitting, called Decision on Beliefs (DOB). The
objective is to identify the probability distribution function (PDF) of arandom variable X with
the greatest possible confidence. It is known that f, isamember of S ={f,---, f_}. To

reach this goal and select f, from this set, we utilize stochastic dynamic programming and
formulate this problem as a specia case of Optimal Stopping Problem. The decision is made on
the basis of the outcome of a limited number of experiments. A real number, namely, belief is
assigned to each candidate by considering the outcome of observations. At each stage and after
a random observation, beliefs are updated by applying Bayesian formula and then either one
element of S is selected as the desired PDF or another observation is made. At each stage, a
PDF from S with the greatest belief is accepted as the desired PDF provided the belief is
higher than a least acceptable designated level. We assume the total number of possible
observations can not exceed N and a cost is incurred for each observation. Dynamic and
nonlinear programming are applied to calculate the least acceptable belief value for each stage.
To reduce the search of the optimal solution, the concept of entropy is utilized.

Keywords: Distribution fitting, Dynamic programming, Markovian decision process.

1. INTRODUCTION

Identifying a suitable probability distribution function (PDF) to fit the set of data obtained from
experiments is the first step in majority of statistical analysis cases. This paper introduces a new
approach to distribution fitting, called Decision on Beliefs (DOB) (Eshragh, 2001).

There are different approaches for distribution fitting. However, Goodness of Fit (GOF) is the most
popular onein the literature (Conover, 2001). A random sample is drawn from some population and
examined some way in order to make sure the distribution fits the data reasonably. The objective of
GOF is to test the null hypothesis, i.e. to show the unknown PDF has a known and specified
distribution function. In every GOF test, all distribution candidates must be checked one by one
suitability, regardless of their effects on each other. Consequently, more than one distribution may

: Corresponding Author



A New Approach to Distribution Fitting: Decision on Beliefs 57

be accepted as the desired distribution. Therefore, not necessarily a unique PDF is selected. In
contrast, we show DOB approach does not create this difficulty and only one candidate is accepted.
Furthermore, DOB is especially a useful technique if the number of experiments for identifying the
distribution function is limited due to its high cost or the nature of the experiments.

It ought to be mentioned that we do not focus on the algorithmic potential of the results reported
here. However, there is a great deal of debate about this topic in Saniee Monfared and Ranaeifar
(2007). Our chief aim in this paper is suggesting a number of algorithmic approaches that could be
the subject of continuing research.

In the following section, the problem is defined and our general approach to distribution fitting is
also presented. In Section 3, we define the concept of beliefs and how to update them stochastically
after receiving a new observation. In Section 4, we restrict the search region by making some
pairwise comparisons. Determining the least acceptable belief is investigated in Section 5 and the
algorithm is described in Section 6. To illustrate the method, a numerical example is presented in
details in Section 7. In Section 8 we make conclusion and suggest some future research topics and
the proof of theorems are moved to the end of paper and appear in appendices.

2. THE PROBLEM

Consider a continuous random variable X with PDF f, and CDF Fy . Although fy isunknown,
we know it belongs to a candidate set S ={fq,- -, f,}. We assume the distribution as well as the

parameters of each member of S isknown. The objectiveisto identify f,, i.e. select one element
of thisset as fy with the greatest confidence within limited number of observations.

2.1. General Approach

Selecting the desired PDF from the candidate set of S ={fq,---, f,} is by making observations from
fx , sequentially. After each observation, areal number called "belief" is assigned to each member
of S={fy,--, fm}. Actualy, the belief on each PDF, say f;, isthe probability that f, isthe desired
PDF, based on the information obtained from the observations up to now. After each observation, it
is decided whether to select one candidate from S ={fy,---, f,} as f, or continue and try another
observation. Clearly, with each new observation the decision makers obtains more information and

as aresult the beliefs change accordingly. We also assume the total number of possible observations
islimitedto N and acost isincurred for each observation.

The procedure stops and selectsa PDF, say f,, if it has the greatest belief among the candidates and

its belief is not less than a predetermined value which indicates the least acceptable belief. The
procedure aso stops after N observations.

In the subsequent sections, to explain the above genera approach we need to define the concept of
beliefs and the way which they update. Furthermore, to determine the optimal least acceptable
belief, the problem is formulated as a special case of Optimal Stopping Problem. To do that, we
apply Markovian decision process or in fact stochastic dynamic programming, see Ross (1983).

The proposed method is easy to be implemented. However, the mathematical theorems to support
this method are lengthy and to some extent complicated. Therefore, most of the proofs are presented
in the appendices.
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The only paper which is somehow related to this work is by Ahn and Kim (1998). They developed a
method to maximize the utility obtained by observations to make the best decision regarding the
action time, when observations are made sequentially.

3. THE BELIEF

Definition 1. Let the outcome of | th observation be denoted by x i Then, after k observations,
for k =1,---,N, wecal O =(xq,-+,xk) as k th observations vector.

Definition 2. We introduce the concept of belief on f, as the probability that f, is the desired

PDF, on the basis of the information obtained from the outcome of the observations up to this point
(Bernardo and Smith, 2001). In other words, if the k th observations vector is O,, then the belief

on f, isdefined asfollows.

Bi (Ok):=Pr{fx = fj |Ox}
Furthermore, the vector of beliefs after k observationsis denoted by [ By (Ok),...,Bm (Ok) ]
Notation

After k observations, let fg be the PDF with the greatest belief. In other words,
Bg(Ok):Max{Bi(Ok),i:1,~--,m} (0]
Similarly, the PDF with the second maximum belief isidentified by fs, or in fact,

Bs(Ok) = Max{B;(Ok),i=1,---,mand i # g} ()]
3.1. Updating the Beliefs

After k observations, let assume the decision is to continue. Let X,,; be the outcome of the next
observation. Then, Oy q = (Ok, Xk4+1) = (X1,, Xk, Xk41) Indicates the (k +1)th observations vector.
Obviousdly, the vector of beliefs also changes. To calculate posterior beliefs Bj(Oy 1), i=1,---,m,
fromthe prior beliefs Bj(Oy), Bayesformulais applied, as follows:

Bi (O ) fi (Xk+1)
m

D B0k (xks1)
=1

Bj (Ok41) = Pr{fx = fj [Ok41} = (3

4. PAIRWISE SEARCH

As mentioned before, f; is selected as the desired PDF if it has the greatest belief and this belief is
also higher than a predetermined value. For determining this value of least acceptable belief,
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theoretically we calculate this value for each pair of PDFs and then select the most conservative
one. Although the number of PDF pairs is high, it is not necessary to consider al pairs. We show
that after each observation actually only one pair is enough to consider.

4.1. Search Space Reduction

Let E be the total decision making space, in which there are m candidates for fX. Now, we
define a subspace E; ; which contains only two candidates, f, and fj. In this subspace and after

k observations, the belief on f; isrepresented by b, (O,) . Clearly, in E, ;,

bi (Ok) +bj(Ok) =1 (4)
On the other hand, the following relation between beliefs in subspace E; ; and space E is readily
seen:

01 (O = LK)

=kl ®)
Bi(Ok) +Bj(Ok)

Lemma 1. In subspace E_ ., Vi # g, the value of the belief on fg is higher than 0.5.

g’

Proof: f, hasthe greatest belief from (1). In other words, b, (O,) > b, (O, ). Then, b, (O,) > 0.5,
from (4).

The first immediate result of thislemmais that the least acceptable belief can be set at least 0.5.

4.2. Reducing Pairwise Comparisons

There are (n;j =m(m-1)/2 pairwise subspaces. However, since only fg can be selected, then all

subspaces except E; are disregarded. Furthermore, we show that E, . is the only subspace to
consider. [ fg and f, are PDFswith the greatest and second greatest beliefs, respectively by (1) and
2.

To reduce the search to only one pair, we utilize the concept of entropy. Thus, we define entropy,
first.

Definition 3. a: Let {x,, i =1,---,n} be the sample space of a discrete random variable X and
p; = Pr[X = x;]. Then, by definition [-log, p,] is called the amount of surprise that one hears X;
isthevalueof X.

b: Entropy of X isdefine asfollows,
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n
H(X) ==Y pilog2p; ()
i=1

In information theory, entropy is interpreted as the expected value of uncertainty exists as to the

value of X, see Mackay (2005).

Theorem 1. After k observations, let Bi(Ok) >Bj(Ox), i, j#g. Then, the expected value of

uncertainty in decision making subspace E_; is higher than that of E_ ;.

Proof: See Appendix 1.
Result

From Theorem 1 it is implied that the expected value of highest uncertainty exists in decision
making subspace E .. Therefore, by considering only this subspace, the procedure is stopped in

the most conservative case.
5. DETERMINING THE LEAST ACCEPTABLE BELIEF

Let L be the least acceptable belief. The objective isto determine L such that the expected value
of correct selection probability be maximized. Obvioudy, the optimal value of least acceptable
belief depends on the number of observations.

5.1. Consistent Grid
In the process of obtaining the optimal value for the least acceptable belief, we need to divide the
total domain of belief function b, (O,,x) into some non-overlapping intervals such that this

function is either increasing or decreasing in each interval. It should be mentioned that b, (O, , x) is

the belief on f; in subspace E, , after k th but before (k +1) th observations, where X is the
outcome of arandom variable which indicates the next observation.

Consider the plane of b, (O,,X) versus x. We create a grid by drawing some horizontal and
vertical lines and dividing the plane into some squares.

By Lemma 1, the optimal belief is grater than 0.5. Thus, the range of the belief function starts at
0.5. Let the horizontal lines be drawn at I, 1, [PYEEEN PP where 1, = 0.5. Then, the total range is

covered by S non-overlapping R, =[r, ;, 1], h=12,---, 4. On the other hand, we define D, ,
the domain of this function which corresponds with R, asfollows.

Dp ={x:bg (Ok,X) € Rn} (7)

Clearly, D, may consists of some non-overlapping intervals.
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Definition 4. The grid created by drawing horizontal and vertical lines on the plane of b, (O,,X)
versus X iscaled Consistent Grid, if it has the minimum number of lines and within each interval
b, (O,,X) is either increasing or decreasing, but not both. (If b, (O,,x) is less than 0.5, then
[1-b, (O, X)], must be either increasing or decreasing, instead.) Furthermore, each domain

interval belongsto one R, interval, only. In Appendix 2, we show how to create the consistent grid.

Example 1

X8

Letusconsider g =2, k=5, and b,(O;,x) = — (details are in the fifth stage
x°® + 3337868.212¢3

of example 2). The extreme points of b,(O;,X) are 0 and 24 and the value of b, (O, X) at these

points are 0.92 and 0, respectively. Since the value of this function at point O islessthan 0.5, it

is replaced by (1-0) = 1. Therefore, 1, =0.92, 1, =1 and the total range is divided into two

intervals, R, =[0.5,0.92] and R, =[0.92,1]. Figure 1 shows b,(O;,X) versus X and its

corresponding consistent grid.

b2(05,x]

0.8

0.8

0.4

0.2

: ' : : : X
10 20 30 40 50 il 70

Figure 1. Consistent Grid of b, (O, X) versus X

Here, the value of bg(Ox,x) a two points, 98477 is eqa to 05 and
bg (Ok,6.3) =bg (O ,60.7) =1-0.92. If the vertical lines are drawn only a O and 24, then the
resulting grid is not consistent. To see that, consider interva [0, 24]. Within [0, 9.8], the value of
bg(Ok,x) is less than 0.5 and 1-bgy(Oy,x) is a decreasing function while within
[9.8,24],bg (O, x) isan increasing function. Furthermore, [0,9.8] corresponds with two different

R,. The first interval, [0,6.3]e R, while [6.39.8] € Ry. Thus, the vertical lines are drawn at
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{0, 6.3,9.8, 24, 47.7,60.7} . On the other hand, by D,
Dy ={[6.3, 9.8] U[9.8, 24] U[24, 47.7] U[47.7,60.7]} and D, ={[0, 6.3] U[60.7, ]}.

5.2. Stochastic Dynamic Programming Structure

Stochastic dynamic programming is applied to determine the optimal policy. The decision variable
isthe value of L (the least acceptable belief). Each observation is considered to be one stage of
dynamic programming. By stage k, we mean Kk observations have been made, so far. As

mentioned before, at most N observations can be made. Thus, at most N —k more observations
are allowed at stage k . Let define the following notation in general subspace of E -

U, ;(k): the maximum expected value of correct selection probability at stage k in subspace E; ;;

As proved in the previous section, after each observation we consider only subspace E, ..
Therefore, in this subspace we use the following simplified notation.

V (k) : the maximum expected value of correct selection probability at stage k in subspace E_ ;.
In other words, V (k) =U  ((k) .

V(k:L): the maximum expected value of probability of correct selection at stage k in subspace
E, ., if L istheleast acceptable belief.

g.s?

V(k:R,): the maximum expected conditional probability of correct selection at stage k in

subspace E_ ¢, given that at next stage the |east acceptable belief lieswithin R, =[r, ,, 1, ].

Then

Vk:R,)=Max{V(k:L,), L, eR} (8)
and

V(k)=Max{V(k:R,), h=1,---, 5} 9)

V (k: L) canbe caculated by Theorem 2 and then V (k) from (8) and (9).

The Impact of Observation Cost

As mentioned before, a cost isincurred for each observation. To incorporate this cost into the model
we assume the real value of the expected probability of correct selection decreases with respect to
the number of stages. By considering a discount factor, say 0 < a <1, thisis accomplished. More

precisely, if at stage k, the optimal value the probability of correct selection is V (k +1), then
under the same conditions, its value will be oV (k +1), at stage k +1.
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Theorem 2. At stage k, if L is the least acceptable belief and « is the discount factor, then,

V(k:L) =[bg (Ok) —aV (k +1]Pr[bg (Ok , X) > L]

+[bs (Ok) —aV (k +1)]Pr[bg (Ok , X) <1~ L]+aV (k +1). (10)
Proof: See Appendix 3.
Corollary 1. For k >1,
V(k:1)=aV(k+1), (11)
and,
V(K) = aV (k+1) (12)

Proof: If L =1 then the first two terms of the right side of (10) are equal to zero which results in
(12). On the other hand, V(k)>V (k:L), VL e[0.5,1] from (9) and (10) or in particular,
V (k) >V (k:1). Then, (11) implies (12).

Now we consider two special caseswhere L can be determined immediately.

Theorem 3. In subspace E ; and at stage K,

S

a) Case 1. If b, (O,) <aV (k+1), then, L" =1. In other words, the procedure can not be stopped
at thisstage and V (k) isupdated by (11) .

b) Case 2. If b, (O,) > aV (k +1), then, L' =0.5. In other words, f, isselected at this stage.

Proof: By definition of f, and f,, b (O,) <b,(O,). Then, in case 1 the first two terms of (10)
are non-positive and V(k:L)<aV(k+1),VL €[0.5,1]. On the other hand, from (12) it is
implied that V (k) = &V (kK +1). This means continue or in fact, L' =1.

Similarly, for case 2, it is implied that the first two terms of (10) are non-negative. On the other
hand, each probability term of (10) is a nonincreasing function of L. Thus, the maximum value of
V (k) isattained at L =0.5.

If neither case 1 nor case 2 is satisfied, then,

b,(O,) <aV(k+1) <b,(O,)

In this case, we create a consistent grid and optimize the probability of correct selection in each
interval separately and then optimize globally.
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5.3. Nonlinear Programming Model

Caculating V (k : L) from (10) practically leads to solving a nonlinear programming. In subspace

E, et & and & bethe pointsin the domain, defined as follows.
b, (O,a,) =L, t=12,...,0 (13)
b, (O,a) =1-L, t=12,...,0' (14)

If LeR,, thenclearly at,at’ € D,. On the other hand as mentioned before, since D, may consist
of more than one interval, then for aunique L € R,, there may be more than one a, or a; within
D, . Therefore, (8) is equivaent to the following.

V(k:R,)=max{V(k:L,), b,(O,,a)=L,orb,(0,,a)=1-L} (15)

aEDh

Therefore, (15) is also equivalent to a nonlinear programming. In this model, the objective function
is (10), in which L is substituted with a, or a/, as defined by (13) or (14). Furthermore, the

constraints of this nonlinear programming are as follows:

by (Oy» @) =by (O, a,) =---=b (O, a,)
bg(ok’a{):bg(ok’a"Z):'”:bg(ok’ab‘")

bg(ok’al)—'_bg(ok)aj'_):l
a[EDh, t:l,-..,é‘; at'EDh’ tzl,---,é"_

After determining al a,, and &/ (the decision variables), the corresponding L is calculated from
(13) or (14).

Note

The term Pr{bg (O, X)>L] of the objective function of nonlinear programming model (10) can be

calculated easily by considering the property of the consistent grid. As mentioned before, the plane
of graph by (Ok,x) versus X is divided into some nonoverlapping intervals by drawing some

vertical and horizontal lines. If this grid is consistent, then by (Ok,x) is either increasing or
decreasing, but not both at each interval. Based on this property, we calculate Pr[bg (O, X) > L]
over theindividua intervals of the domain. Clearly, if that interval does not belongto Dy, then this

termiseither O or 1, depending on the value of L. However, if thisinterval, say [dy_;,dn] € Dy,
then,
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i) Prlbg (Ok,X)>L]=Fx (d)—Fx (at), if bg(Ok,x) is an increasing function in that interval,
where Fy () isthe CDF of X.

ii) Pr{bg (Ok, X)>L]=Fyx (at) - Fx (dh-1), if by (O, x) isadecreasing function in that interval.
Theterm Prlbg (Oy, X)<1-L] also can be calculated similarly.

6. ALGORITHM
In this section, we summarize the results of the previous sections and present it as an algorithm.

Initial Step: Start with an initial vector of beliefs and a discount factor «. Determine the decision
maker's desired expected value of the probability of correct selection after final experiment, V (N),

andset k:=0.

Step 1. Set k:=k +1 and generate a new observation. Update the vector of beliefs according to (3)
and identify f, and f,. Determine by (Oy) and bs(Ok) by (5).

Step 2. If by (Ox)<aV(k+1), then go to Step 1, else If bs(Ok)>aV (k +1), then select fg as the
desired PDF and STOP.

Step 3. Create a consistent grid, by the procedure of Appendix 2.

Step 4. For each range interval Ry,h=1,---,3, solve the nonlinear programming model of
Subsection 5.3 and determine V (k:R;) as well as the corresponding optimum least acceptable

belief, L,.

Step 5. Obtain V(k) by (9). Consider V(k:R +)=V(k) and set L = Lh If b, (O,) =L, then
select f, asthedesired PDF and STOP, else go to Step 1.

7. NUMERICAL EXAMPLE
Example 2

We apply decision on belief (DOB) technique to determine the life time distribution function of an
expensive el ectronic component. Due to the high price of this component as well as the high cost of
experiment, only 10 tests are allowed (N =10) . Furthermore, it is desired the distribution function
will be identified with the probability of at least 0.95 after 10 experiments, i.e.V (10) = 0.95. We

aso assume « = 0.98.
It seems the best distribution function fitting the life time of this component is Gamma with the

density function of f, (x) = B *(I'(1)) *x* e . Furthermore, the existing information indicates
its expected life time is 24 months. Four members of this family of random variables are considered
to be the most possible candidate to fit the distribution function with parameters 4 and S as

follows.
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f1:  Gamma (1,24)
fo:  Gamma (12,2)
f3: Gamma (4,6)
fg: Gamma (3,8)

At the beginning, all four PDFs have equal chance of being selected. Thus,
B1(Oo) = B2(0p) = B3(0g) = B4(0g) = 0.25.

L ets generate the random observations from f, .

First Stage: k = 1.

The outcome of the first observation is x;, = 35.553. The vector of belief is updated by (3) as
follows.

B1(01) =0.179, B2(01) = 0.253, B3(01) = 0.292, B4(04) = 0.275.

Thus, g=3,s=4. Then, in subspace E;, and from (5) we have, b3(01)=0515 and
b (01) = 0.485. Since in subspace E,,, b, (O,) <aV (2) =0.776, then from case (1) of Theorem

3, L' =1. Continue and make another observation.
Second Stage: k = 2.

The outcome of this observation is x, = 24.298. Then, after calculation of the belief vector by (3),
g=2,s=3 and in subspace E,;, b,(0,)=0.603,b,(0,) =0.397. Again, from case (1) of

Theorem 3, b (0,)<aV(3)=0.893, it results in L' =1. Continue and make another
observation.

Third Stage: k = 3.

The outcome of this observation is X,=26.464. Then, ¢g=2,s=3 and
b, (0,) = 0.720, b,(0,) = 0.280. Again, from case (1) of Theorem 3, L =1.

Fourth Stage: k = 4.

The outcome of this observation is x, =19.491. Then, g=2,s=3 and in subspace
E,s. b,(0,) =0.793,b,(0,) = 0.207. Again, from case (1) of Theorem3, L' =1.

Fifth Stage: k =5.
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The outcome of this observation is X, =20.996. Then, g=2,5=3 and in subspace
E, ;. b,(0;) =0.863,b,(0;) = 0.137 and aV (6) = 0.816.. In this stage we have,

b;(O5) < &V (6) < b,(O;)

Thus, we have to solve the nonlinear programming model and determine the optimal value for the
least acceptable belief.

%8

The extreme points of b, (Og, x) =

- ae 0 and 24, from (16) of Appendix 2.
x8 + 3337868.212¢ 3

The only boundary pointis O (See example 1). Thus, EP ={4, 24} and EP’'={6.3, 60.7} .

We solve the nonlinear programming model for each rangeinterval of R, and R,, separately.
For R,, let a, and a, be defined as (13) and (14). Thus,

b,(O;,a,) =b,(Og,a,) =L

and,

b,(O;,a;) =b,(O;,a;) =1-L
where a, €[9.8, 24], a, €[24,47.7], a; €[6.3,9.8], a, €[47.7, 60.7] and,

Prb, (O,,x) > L] = F(a,)-F(a)
Prlb, (O,,x) <1-L] =[F(a,) - F(6.3)] +[F (60.7) - F (a})]
Then, by substituting the terms of (10), the nonlinear programming model is as follows:
Max = 0.041[F,(a,) — F,(a,)] + 0.064[ F,(a,) — F;(a,)] - 0.463[ F,(a,) — F,(a;)]
—-0.93[F;(a;) - F;(a,)] +1.371

Subject to:
b,(Os,2,) =b,(Os,a,)

b,(0s,8;) =b,(05,a5)
b,(0s,a,) +b,(05,8) =1

a, €[9.8,24],a, €[24,47.7],a, €[6.3,9.8], a, €[47.7,60.7]
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While, F, and F, are corresponding CDF of f, and f,, respectively. Solving this model results
in,

L, =h,(0,,a,) =0.807,V(5:R,) = 0.855
Similarly, the optimal solution for R, isfound asfollows:
L, =1,V(5:R,) =0.816.

Hence, V(5)=max{0.855,0.816} =0.855 and consequently L =1L, =0.807. Since
b,(O,) > L, the procedure stops and selects f, asthe desired PDF.

Now, suppose that we are going to perform the two celebrated Goodness-of-Fit methods, K-S and
Chi-Square, on this problem. Since the Chi-Square method needs at least 50 samples (Conover,
2001), so it is not possible to run it for such small sample of size 5. However, by running the K-S
test, al the four candidates are accepted with all p-values of greater than 0.25.

8. CONCLUSION

In this paper, we introduced a new approach for distribution fitting, called Decision on Beliefs. This
method selects one PDF among a set of candidates to fit the distribution of a random variable X

when the number of observations is limited. The basis of this approach is to select the PDF with the
highest probability of fitting. However, this probability, called belief, is required to be not less than
some predetermined value of L, where L depends on the number of observations made. In case

the PDF with the greatest belief is less than this value, then another observation is made and the
vector of beliefs is updated by Bayesian formula. On the other hand, L is determined by stochastic
dynamic programming approach in order to maximize the probability of correct selection.
Furthermore, the concept of entropy is also used to reduce the number of necessary comparisons.

There are a vide range numerical examples in Saniee Monfared and Ranaeifar (2007) to evauate
the performance of this new algorithm and compare it with some other celebrated algorithms. DOB
has also experienced solving some other statistical problems as Response Surface methodology
(Eshragh and Akhavan Niaki, 2003) and Quality Control (Fallahnezhad et al., 2006). In al the
cases, adapted DOB algorithms outperform al the best common ones in many aspects such as
accuracy of optimal solution, running time and so on.

The chief privilege of DOB is its learning procedure which is revised at each iteration based on
collected data and prior beliefs. On the other hand, contrary to the most common algorithms, DOB
extracts the disguised information at each generated data and applies them to converge to optimal
solution rapidly. It is presumed that this state of the art algorithm can be applied and extended in
other areas of statistical analysis, combinatorial optimization problems, and optimization of non-
convex programming.
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APPENDIX
Appendix 1: Proof of Theorem 1

By considering the beliefs of b, (O,) and b;(O,) in subspace E;, the vaue of entropy in this

subspace E;, given the observations vector of O,, isasfollows.

g9.i

H (Eg,i) = _bg (Ok)|092[bg (0] -b,(O,)log,[b, (O,)] =

— Bg(ok) ) [ Bg(ok) ]_ Bi(ok) 0 [ Bi(ok)
B,(0)+B,(0,) “2B,(0,)+B,(0,) B(O)+B,(0,) B, O,)+B,(0,)

]

The derivative of the entropy resultsin:

d[H(Eg,) _ B, (O)) log [Bg(ok)
d[Bi(0)] [B/(0)+B, () " B/(O,)

]

Since B, (O,) > B;(0,),Vi= g, then this derivative is positive and consequently H(E;;) isan
increasing function of B;(0,). On the other hand, B;(O,)>B,;(O,) implies that
H(E,;)>H(E, ;) orin fact the expected amount of uncertainty in decision making subspace
E,i
the same, it is implied that the expected probability of correct selection for fg in E;
thanfor E ;.

is higher than that of E ;. Considering the fact that in both subspaces the decision strategy is
j 1s higher
Appendix 2: Creating Consistent Grid

In subspace E
Definition 4.

g0 We create a grid through the following procedure, which is consistent by

Step 1. Identify EP the set of extreme points of b, (O,,x) as well as the boundary points. The
extreme points are identified by solving the following equation.

f' (x) f, () = £,(x) 4" (). (16)
(This equation results from setting the derivative of b (O, ,x) with respect to X equal to zero.)

Step 2. Calculate the value of b, (O,, X, ), X, € EP . If any of these valuesislessthan 0.5, replace it

with 1— bg (O, X%,). Let 1, Iy,++, I, be the resulting numbers, after sorting them in ascending
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order. Now by drawing the horizontal lines at these points, the total range of [0.5, 1] isdivided into
g intervalsof R, =[r, ,,r,], h=12--- 3.

Step 3. Let EP’ bethe set of points defined as follows:

EP"={x:b,(O,,x) =1-b,(O,,X,), X, € EP}

(In fact, the value of bg (O,,x) at the points of EP" are the reflect of T, Iy, -, T, with respect to
0.5).

The vertical lines are drawn at al points of EP and EP’, as well as at the points at which
b, (O,,x) =0.5. Then, for each range interval of R, identify D, , as defined by (7).

Appendix 3: Proof of Theorem 2

At first, we prove this theorem for the general case of subspace E. ., and then it is easy to replace i

i

and j with g and s, respectively. Now, by applying the total probability law we have:

Ui, j (k, L) = max{ E[Pr(CS | Ok, X)I} = max{ E[Pr(CS | Sj, Ok, X)Pr(S;)

(17)
+Pr(Cs |SJ Ok, X)PF(SJ')+F’I‘(CS | NSi,j)PI‘(NSi’j)]}.

whereevents CS, S, SJ. and NSi'j are defined as follows:

CS: correct selection;
S;: f, be selected after the next observation;
S.: f i be selected after the next observation;

]

NS;;: neither f nor f; be selected in the next stage.

To prove Theorem 2, we derive the terms of (17) and substitute them.

Pr(CS|S;,0,,X) is the probability of correct selection if after the next observation f, is
assumed to be the desired PDF. Thisis by definition the belief on f, and is denoted b, (O, , X). It
is easy to check that E[b, (O,, X)] =b,(0,)

Pr(S; |0y, X) =Pr({b,(O,, X) >bj(okix)}&{bi(okix) >L}) =Pr(b (O, X)>1L)

The latter equality is because of the result mentioned after Lemma 1, which asserts the least
acceptable belief is equal to or greater than 0.5.

Pr(S, |0, X) paralds Pr(S, |O,, X).
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Pr(CS|NS, ;) =aU; ;(k+1), by definition of NS, ; and discount factor.

Pr(NS; ;) =1-Pr(S;)-Pr(S;), because S;,S;, and NS;; ae exhaustive and mutualy
exclusive events.
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