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ABSTRACT 
 

Phytoplankton biomass within the Saginaw Bay ecosystem (Lake Huron, Michigan, USA) was 
characterized as a function of select physical/chemical indicators.  The complexity and 
variability of ecological systems typically make it difficult to model the influences of 
anthropogenic stressors and/or natural disturbances.  Here, Artificial Neural Networks (ANNs) 
were developed to model chlorophyll a concentrations, a measure for water-column 
phytoplankton biomass and a proxy for system-level health.  ANNs act like “black boxes” in 
the sense that relationships are encoded as weight vectors within the trained network and as 
such, cannot easily support the generation of scientific hypotheses unless these relationships can 
be explained in a comprehensible form.  Accordingly, the ‘knowledge’ and/or rule-based 
information embedded within ANNs needs to be extracted and expressed as a set of 
comprehensible ‘rules’.  Such extracted information would enhance the delineation and 
understanding of ecological complexity and aid in developing usable prediction tools.  
Comparisons of various computational approaches (including TREPAN, an algorithm for 
constructing decision trees from neural networks) used in extracting rule-based information 
from trained Saginaw Bay ANNs are discussed. 

 

Keywords: Ecological monitoring, artificial neural networks, chlorophyll prediction, knowledge 
extraction. 

 
1. INTRODUCTION 
 
A crucial shortcoming in modeling ecological systems via machine learning is their lack of insight 
into biological processes and/or relationships and autocorrelations between/among environmental 
(input) variables.  An exploration of machine learning techniques would capture predictive 
knowledge regarding such processes and relationships with the desired modeled (output) variable. 
This computational approach for ecosystem modeling is called Ecological Informatics, with 
artificial neural networks (ANNs) being one of the core computational approaches (Recknagel and 
Friedrich, 2003). ANNs are recognized as a powerful and general technique for machine learning 
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because of their non-linear modeling abilities and capability to learn, adapt and exhibit some very 
basic human-like intelligence. Successful ‘learning’ of variable associations and trends is the key 
attribute in the successful development of ANNs and their practical applications.  Many important 
knowledge-based network systems have been developed and successfully applied to diverse 
databases such as speech recognition, game playing, medical diagnosis, financial forecasting and 
industrial control (Mitchell, 1997). 
 
A further benefit of such computational models is the transformation of knowledge into the form of 
human-comprehensible rules that could aid in the simulation of the system. The extracted 
knowledge could then allow for the development of more sophisticated models of the system. Here, 
we discuss the use of ANNs as the machine learning tool of choice to study ecological systems and 
various techniques for extracting knowledge from trained networks. 
 
2. BACKGROUND 
 
In recent years, a number of studies in ecological modeling have emerged. Groups of studies use 
ANN to model time series such as: water quality and population dynamics in ecosystems (Schleiter 
et al., 1999), function approximation based on satellite imaging of near-surface oceans (Gross et al., 
1999) and classification of species of dinoflagellates in coastal waterways (Culverhouse et al., 
1996). In these instances, the ANN is used as a prediction tool based on the ‘black box’ concept, 
whereas no knowledge is extracted from the network. Articles that investigate knowledge extraction 
techniques typically include three basic approaches and/or conceptualizations: 1) Neural 
Interpretation Diagrams (NIDs), 2) Garson’s Algorithm, and 3) Sensitivity Analysis.  For example, 
the NID and Garson’s Algorithm were used in gaining predictive and explanatory insight into fish-
habitat relationships (Olden and Jackson, 2001), and for studying phytoplankton succession by 
interpreting the interacting contributions based on a number of biotic and abiotic factors to account 
for seasonal variations (Olden, 2000). Another approach typically used in extracting knowledge 
from ANN’s is Sensitivity Analysis in conjunction with Garson’s Algorithm (Recknagel et al., 
1997). An example of this approach is Lee et al.(2003), when they were used to model the 
occurrence of algal blooms in aquatic systems. 
 
The first attempt of extraction rules from a neural network was research conducted by Gallant 
(1988) on connectionist expert systems. Classification rules describing the network’s behavior were 
obtained by analyzing the role of attribute ordering in correctly classifying a problem. A variety of 
rule extraction methods have been developed since then for addressing the problem of 
comprehensibility in neural networks. Andrews et al. (1995) classifies rule extraction approaches 
into the following three categories, based on the view taken by the algorithms of the underlying 
network topology: decompositional (Fu, 1991; Towell and Shavlik, 1993), pedagogical (Craven and 
Shavlik, 1996a) and eclectic (Sestito and Dillon, 1992). 
 
This paper only explores the pedagogical technique. The pedagogical techniques extract rules that 
map network inputs to outputs directly, effectively treating the neural network as a black box. A 
common strategy employed by these approaches for rule generation is that a candidate rule 
antecedent is generated based on domain knowledge or analysis of ranges of input attributes and the 
network’s response is treated as the rule consequent.  In Saito and Nakano(1990), useful rules are 
selected from a candidate rule set that is generated by examining input activation values of the 
network which then activates a given output unit. Several pedagogical approaches have also been 
developed for extracting decision tree representations of the neural network. Craven and Shavlik 
(1996) extract decision trees from trained neural networks using a novel algorithm named 
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TREPAN. This algorithm employs a greedy gain ratio criterion for evaluating attribute splits. 
Binary and M-of-N decision trees can be derived by this method. 
 
One of the more pronounced drawbacks of neural networks is their lack of explanation capability. 
They act like ‘black boxes’ and do not provide any reasoning behind the conclusion of a learning 
system. However it is essential to understand the basis of decisions as this type of computer support 
systems are often used for decision critical applications.  These decisions are extremely useful when 
they are in human comprehensible form.  Representing the extracted knowledge in the form of ‘if-
then’ rules is most likely the best method of explaining the output of a neural network model. 
Decision trees can be easily represented in the form of ‘if-then’ rules and hence extracting decision 
trees are probably one of the best methods of interpreting a neural network. This idea is described in 
Figure 1. 
 

 
 

Figure 1. Extracting decision trees from neural networks 
 
Decision trees are fast, simple to implement and can compile the model’s learned hypothesis to a set 
of easily interpreted rules. More importantly, decision makers can utilize the derived trees because 
complex interacting factors are explained more effectively. 
 
3. DEVELOPMENT OF A NEURAL NETWORK MODEL 
 
There are three aspects related to development of a neural network model: 
 
Choice of the training, cross-validation (CV) and testing data sets and their sizes; 
 
Selection of suitable architecture, training algorithm and learning constants; 
 
Determination of the termination criteria. 
 
Considerable experimentation is necessary to achieve a good network model of the data. The 
software NeuroSolutions developed by NeuroDimensions Incorporated is used for development and 
testing of the neural network model (NeuroSolutions, 1995). 
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Saginaw Bay 
 
This dataset comprises of real world data collected during 1991-1996 from the Saginaw Bay 
ecosystem in Michigan. Various indicator variables include water temperature, Secchi depth – a 
measure of water clarity (Secchi), total suspended solids (TSS), total phosphorous (TP), soluble 
reactive phosphorus (SRP), nitrate (NO3), ammonia (NH4), silica (SiO2), particulate silica (PSiO2), 
chloride (CL), particulate organic carbon (POC), and dissolved organic carbon (DOC). These 
indicators are used to predict water-column chlorophyll a concentration (CHL), a measure for total 
phytoplankton biomass.  The Saginaw Bay data set is extremely complex with a large percentage of 
the output data concentrated in a relatively small region of space but, in a few instances, dispersed 
over a large range. These latter instances are comparable to rare event situations where very little 
data is available and modeling would be typically construed to be difficult. A sample of the 
Saginaw Bay dataset is shown in Table 1. 
 

Table 1. Saginaw Bay-sample dataset 
 

Sr.  
No. Temp Secchi TSS TP SRP NO3 NH4 SiO2 PSiO2 CL POC DOC CHL 

1 22.11 0.9 16 32.019 1.055 0.009 17.213 0.245 1.51 23.966 3.79 4.08 20.32 

2 7.8 6.5 0.76 16.215 0.588 0.329 14.543 1.713 0.241 5.9 0.37 1.719 1.58 

3 22.25 0.8 11.3 37.406 1.071 0.025 7.643 2.344 1.013 23.619 1.97 3.86 9.10769 

4 15.3 0.4 23.91 32.602 1.46 0.647 18.143 0.085 3.69 20.087 1.97 3.769 22.628 

5 8.77 2 4.32 13.648 0.92 1.17 13.6 1 1.36 26.3 0.95 4.12 7.45 

 
A Multilayer Perceptron (MLP) neural network that included 12 inputs with 8 processing elements 
in the first hidden layer, 4 in the second hidden layer and one continuous output was trained. The 
best model resulted with a training mean squared error (MSE) of 0.00270 and a testing result as 
shown in Table 2. Both hidden layers contain neurons that employ hyperbolic tangent functions to 
map activations from input to output layers. The neural network architecture for the Saginaw Bay 
model is shown in Figure 2. 
 

Table 2. Test results for the 12-8-4-1 MLP 
 

Performance CHL 

MSE 6.268538215 
MAE 1.495080971 
Min Abs Error 0.027110829 

Max Abs Error 13.64970128 
r 0.897142826 
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Figure 2. ANN Architecture of 12-8-4-1 MLP 
 
4. NETWORK INTERPRETATION DIAGRAM (NID) 
 
Approaches using node connection weights to interpret predictor variable contributions in neural 
networks have been used (Aoki and Komatsu, 1999; Chen and Ware, 1999) . A novel approach 
called the Neural Interpretation Diagram (NID) was proposed by Özesmi & Özesmi(1999). NID 
provides a visual tool to identify significant neurons or nodes by means of the connection weights. 
To construct a NID diagram, the nodes in various layers are arranged in a cascade as in Figure 2. 
The connections between various nodes are represented by lines, where the line thickness represents 
the relative magnitude of the connection weight. Thicker lines indicate greater connection strength 
andand thinner lines indicate a weaker connection. A distinction is also made regarding the sign of 
the connection weight in drawing the lines. A solid line indicates a positive or excitatory signal, 
while a negative or inhibitory connection is indicated by a dashed line. Thus, this diagram allows us 
to interpret visually both the strength and the sign of the connections. This can aid in identification 
of individual contributions on input nodes. Figure 3 illustrates the NID for the MLP 12-8-4-1 model 
and the relative influence of each input variable in predicting the output response. 
 
Interpretation of the NID diagram for networks with more than one hidden layer is complex, 
particularly for networks of large size because of interaction. Interaction between nodes can be 
identified in a NID diagram when there is more than one significant connection coming into a node. 
An examination of the neurons in hidden layer 1 provides some possible clues regarding the 
significance of predictor variables and their interactions. A visual inspection of the connections 
between the input and the first hidden layer reveals that there are significant connections to nodes 
HN1, HN2 and HN8. The predictor variables corresponding to these connections are Temp, TP, 
NO3, SiO2, PSiO2, CL and POC. Thus seven of the thirteen input variables can be interpreted as 
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significant based on the NID diagram. For possible interactions between these variables, the focus 
shifts to each significant node in the hidden layer. As an example, consider node HN1 which has 
significant connections from inputs TP and PSiO2. These two variables present a case of possible 
interaction. Following a similar approach, the following groups of variables have been identified as 
cases for potential interaction: {TP, PSiO2} based on HN1, {Temp, CL, and POC} based on HN2, 
{TP, SiO2, and CL} based on node HN8. 
 

 
 

Figure 3. Network Interpretation Diagram (NID) of the MLP 
 
The process can be repeated for the second hidden layer and the output layers. However, the 
interpretation becomes difficult as the outputs of hidden layers now represent a linear combination 
of inputs which is further modified by the use of transfer functions. It is preferable to use NID for 
simpler networks than for the one currently under consideration. 
 
5. GARSON’S ALGORITHM  
 
Garson (1991) proposed a method for partitioning the neural network connection weights in order to 
determine the relative importance of each input variable in the network. An example showing the 
application of Garson’s algorithm in a single hidden layer Feed Forward MLP with two Processing 
Elements (PEs) is shown in Figure 4. 
 
The basic steps in determining the relative weights of the inputs are as follows: 
 
Step 1: Construct matrix containing input to hidden and hidden to output neuron connection 

weights. 



44 Weckman, Millie, Ganduri, Rangwala, Young, Rinder and Fahnenstiel 

Step 2: Calculate the contribution of each input neuron to the output (CA1) via each hidden neuron 
as the product of the input-hidden connection (WA1) and the hidden-output connection 
(WOA).  

 

 
 

Figure 4. Network Diagram 
 

OAAA WWC ×= 11  (1) 
 
Step 3: Calculate the relative contribution of each input neuron to the outgoing signal for each 

hidden neuron (RA1) and the sum of all input neuron contributions (S1) 
 

( )32111 / AAAAA CCCCR ++=  (2) 
 

111 BA RRS +=  (3) 
 
Step 4: Calculate the relative importance (RI1) of each input variable. 
 

( )( )100/ 32111 ×++= SSSSRI  (4) 
 
For a more detailed step by step example of the calculations refer to Garson(1991). In this example, 
a smaller ANN was created for demonstration purposes, to identify the relative weights of six key 
factors taken from the Saginaw Bay database as identified by the researchers. The relative 
importance of the 6 major inputs are shown in Figure 5, where the most important attributes are 
DOC and TP. 
 
Garson’s method is a good method to determine the overall influence of each predictor variable but 
may not provide accurate information regarding the interactions of predictor variables among 
themselves. For example, a large negative connection weight between the input-hidden layers 
coupled with a large positive connection weight between the hidden-output layers would result in a 
relatively important variable significance. However, in some cases, a negative connection weight 
between the input-hidden and a positive connection weight between the hidden-output layers could  
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Figure 5. Pie Chart illustrating the relative importance of inputs 
 
counteract each other and result in a final output which is not significantly important. Furthermore, 
Garson’s algorithm uses the absolute values of the connection weights when calculating the variable 
contribution and would not always identify the countering effect of negative weights. 
 
6. SENSITIVITY ANALYSIS  
 
Sensitivity analysis is a method for extracting the cause and effect relationship between the inputs 
and outputs of the network. Traditional sensitivity analysis involves varying each input variable 
across its entire range while holding all other input variables constant, so that the individual 
contributions of each variable can be assessed.  The inputs to the network are shifted slightly 
(defined number of standard deviations, both +/-) and the corresponding change in the output is 
observed. Figure 6 illustrates how CHL (output) varies over a range of values for PSiO2 (input).   
 

0

1

2

3

4

5

6

0.094 0.217 0.340 0.463 0.586 0.709 0.832 0.955 1.078 1.201 1.324 1.447

Varied Input PSiO2

C
HL

 O
ut

pu
t

 
 

Figure 6. Sensitivity of input indicator PSiO2 versus output Chlorophyll 
 
Sensitivity analysis provides feedback as to which input variables are the most significant relative to 
other input variables. An example of the significance of the input variables is shown in Figure 7. 
Based on feedback, the decision becomes which inputs could be pruned by removing the 
insignificant variables. This approach would reduce the size of the network, which in turn would 
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help reduce the complexity of the network and the training times, but would also remove the impact 
and relationships that the input variable has to the output and other input variables. 
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Figure 7. Sensitivity for CHL based on a MLP model with 12 inputs 
 
In addition to the traditional sensitivity analysis, relationships between input variables (such as TP 
and Temp) can be explored by holding the output variable (CHL) constant, as shown in Figure 8. 
The relationships between the two input variables that correspond to the constant output can then be 
observed. 
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Figure 8. Relationship between TP and Temp at a constant Chlorophyll output 
 
These relationships can be determined for multiple levels of the output variable (CHL) and a family 
of curves can be created as shown in Figure 9. This type of analyses shows that similar physical 
relationships exist between TP and Temp at CHL values of 1.52 to 10.08. However, it can also be 
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observed that the physical relationships at a CHL level of 17.07 are not consistent with the lower 
values of CHC. These types of relationships can give scientists a better understanding of their 
ecological system. 
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Figure 9. Family of Relationship curves between TP and Temp at a variety of constant CHL 
 
A similar approach can be extended to investigate a family of surfaces based on knowledge 
obtained from training a neural network. An ANN model can easily be implemented into computer 
software by knowing the model’s weights, biases, and structure. The inputs to the model can be 
assigned values based on statistical quantities, user specific, or values from a sample. A 
combination of input variables can be varied over a range, and the response of the output, CHL, can 
be observed. Figure 10 shows the response surface of CHL when values are varied for inputs Temp 
and POC. 
 
It should be mentioned that this type of analysis has a distinct advantage of traditional sensitivity 
analysis, where values are locked to their mean values. In this type of knowledge extraction, the 
user assigns inputs to the desired value, which is important especially in a physical system such as 
this ecological system. It may not be physically possible to lock all of the input values to their 
mean. 
 
Though this technique is very useful to understanding the neural network models, it is not limited to 
only investigating the system’s response when input values are varied. Output values can also be 
varied over a specified range. Statistical optimization techniques can be utilized to generate 
additional surfaces by solving for input values that correspond to the desired output values. The 
goal of this optimizing strategy is to solve for an input value that minimizes the error of the desired 
value and the value obtained from the network. 
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Figure 10. Family of Relationship Surfaces between Temp, POC, and Chlorophyll 
 
It is also important that the solved value does not exceed the normalization limits of the neural 
network. If a solved value exceeds the normalization limit, it may not be a realistic value for the 
input. In this study, input parameters are normalized from negative to positive one. Therefore, the 
optimization condition is to minimize the error while not allowing input parameters to exceed the 
normalization limits. Figure 11 shows the effects of varying sensitive values (TP) and the output 
(CHL) and solving for another sensitive value (PSiO2). 
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Figure 11. Family of Relationship Surfaces between CHL, TP, and POC 
 
The surfaces generated can be used to better understand the physical phenomena being modeled. 
Maybe more importantly, the surfaces can also be used to eliminate the mentality of neural 
networks being a black box. If some of the relations being modeled by a neural network are known, 
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this type of analysis can be used to provide evidence that the network is modeling the system 
correctly. 
 
This type of modeling can also lead to developments in optimization. If, for example, the health of 
the aquatic life in the bay is in danger due to a particular attribute being high or low, a scientist may 
be able to observe the relationships of a controllable attribute and the one influencing aquatic life 
and control the effect to promote better condition for the aquatic life.  
 
7. KNOWLEDGE EXTRACTION UTILIZING TREPAN 
 
Although neural networks are known to be robust classifiers, they have found limited use in 
decision-critical applications such as in medical systems. Trained neural networks act like black 
boxes and are often difficult to interpret (Towell and Shavlik, 1993). The availability of a system 
that would provide an explanation of the input/output mappings of a neural network in the form of 
rules would thus be very useful. Rule extraction is one such system that tries to elucidate to the user, 
how the neural network arrived at its decision in the form of if-then rules. 
 
Two explicit approaches have been defined to date for transforming the knowledge and weights 
contained in a neural network into a set of symbolic rules-decompositional and pedagogical (Craven 
and Shavlik, 1995). In the decompositional approach, the focus is on extracting rules at an 
individual hidden and/or output level into a binary outcome. It involves the analysis of the weight 
vectors and biases associated with the processing elements in general. The Subset algorithm is an 
example of this category (Fu, 1991). The pedagogical approach treats neural networks like black 
boxes and aims to extract rules that map inputs directly to its outputs. The Validity Interval 
Analysis (VIA) proposed by Thrun (1995) and TREPAN (Craven, 1996) is an example of one such 
technique. Andrews et al (1995) propose a third category called eclectic which combines the 
elements of the two basic categories. The DEDEC algorithm is representative of this category 
(Tickle et al., 1996). In this paper, we will concentrate on the pedagogical approach using 
TREPAN. 
 
Decision Trees 
 
Decision trees classify data through recursive partitioning of the data set into mutually exclusive 
subsets which best explain the variation in the dependent variable under observation(Biggs et al., 
1991; Liepins et al., 1990). Decision trees classify instances (data points) by sorting them down the 
tree from the root node to some leaf node. This leaf node gives the classification of the instance. 
Each branch of the decision tree represents a possible scenario of decision and its outcome. 
Decision tree algorithms depict concept descriptions in the form of a tree structure. Each node of a 
decision tree specifies a test of some attribute and each branch that descends from the node 
corresponds to a possible value for this attribute. 
 
Decision trees have been proved useful in their applications to various real world problems. Leech 
(1986) applied a decision tree induction approach to a chemical nuclear power plant process. 
Michie (1989) used an induction algorithm to produce a decision tree for making decisions whether 
to grant credit to a loan applicant or not. Evans and Fisher (1994) applied decision tree induction to 
the problem of banding in Rotogravure printing. In the manufacturing and production industry, 
decision trees have been used in non-destructive testing of spot weld quality(Ercil, 1993), 
productivity enhancements(Kennedy, 1993), semiconductor manufacturing(Irani et al., 1993), 
material procurement method selection(Das and Bhambri, 1994), process optimization(Famili, 
1994), assembly line scheduling of printed circuit boards(Piramathu et al., 1994), to uncover flaws 
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in a Boeing manufacturing process(Riddle et al., 1994), separation of gas from oil(Guilfoyle, 1986), 
quality control (Guo and Dooley, 1994) and a hybrid system to extract rules for job shop scheduling 
(Ganduri, 2004). 
 
Other applications include the areas of Biomedical Engineering, Image Processing, Language 
Processing, Law, Medicine, Molecular Biology, Pharmacology, Physics, and Plant diseases 
(Murthy, 1998). Decision trees continue to be an active research area, the current focus being on 
improving methods for building, controlling and executing the decision tree algorithms to achieve 
maximum efficiency. 
 
TREPAN Algorithm 
 
The TREPAN algorithm developed by Craven (1996a, b) is a novel rule-extraction algorithm that 
mimics the behavior of a neural network. Given a trained Neural Network, TREPAN extracts 
decision trees that provide a close approximation to the function represented by the network. This 
work is concerned with its application to trained neural network models. It can be applied not only 
to neural networks but to a wide variety of learned models as well. TREPAN uses a concept of 
recursive partitioning similar to other decision tree induction algorithms. In contrast to the depth-
first growth used by other decision tree algorithms, TREPAN expands using the best first principle. 
That node which increases the fidelity of the tree when expanded is deemed the best. Fidelity 
measures the extent to which the extracted decision tree faithfully replicates the behavior of the 
neural network. 
 
In conventional decision tree construction algorithms, the amount of training data decreases as one 
traverses down the tree by selecting splitting tests. Thus there is not enough data at the bottom of 
the tree for deciding class memberships of the training data present at the leaf node. To increase the 
amount of data points at these nodes, TREPAN uses the trained neural network as an ‘Oracle’ to 
answer queries to hypothetical data points created from known distributions of input attributes, in 
addition to the training samples during the inductive learning process. This learning from larger 
samples can avoid the lack of examples for the splitting tests at lower levels of the tree, which is 
usually a problem with conventional decision tree learning algorithms. 
 
In the case of TREPAN analysis for regression problems, it is required that the range of the 
response variable is segmented into classes. This is done by dividing the output into discrete values 
based on population density. The class sizes for the level of chlorophyll for the Saginaw Bay dataset 
are shown in Table 3. 
 

Table 1. Chlorophyll level class labels 
 

CHL Class 
0-8.99 Cl1 
9-17.99 Cl2 
18-26.99 Cl3 
27-35.99 Cl4 
36 and above Cl5 

 
The confusion matrix for the TREPAN model (decision tree) having a classification accuracy of 
88.11% is shown in Table 4. A decision tree of size 15 (number of leaf nodes) was obtained and is 
depicted in Figure 12. 
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Table 4. Saginaw Bay Confusion Matrix (TREPAN) 
 

Saginaw Bay: Confusion Matrix (TREPAN) 
Actual/Desired Cl1 Cl2 Cl3 Cl4 Cl5 
Cl1 183 13 0 0 0 
Cl2 8 29 3 1 0 
Cl3 0 1 3 1 0 
Cl4 0 1 1 0 0 
Cl5 0 0 0 0 0 
Classification Accuracy (%) 95.81% 65.91% 42.86% 0.00% 0.00% 
Total Accuracy (%) 88.11% 
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Figure 12. Saginaw Bay: TREPAN Decision Tree 
 
8. CONCLUSIONS AND FUTURE RESEARCH 
 
This paper explored a number of knowledge extraction techniques for ANNs, from basic to 
complex algorithms and the quality of information gained from these techniques was discussed.  It 
has demonstrated how these techniques can be used to extract various levels of knowledge from 
various ANNs that were used to model a complex ecological system such as Saginaw Bay.  
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Chlorophyll a concentrations were accurately predicted by the ANN models, and as such, proved to 
be an acceptable methodology for assessing the generalized health of the system.  Techniques were 
explored that would allow the investigator to go beyond the limitations typically referred to as a 
“black box”. 
 
The current research explores different tools for extracting knowledge from a trained neural 
network model for ecological modeling. The Neural Interpretation Diagram (NID) provides a visual 
tool for identifying the relative significance and interactions between different inputs. While this 
can be a useful technique for smaller networks, interpretation is difficult for larger, multi-layered 
neural network models as those utilized in this research. Garson's method and sensitivity analysis 
are two different techniques used to assess the relative contribution of each predictor variable to the 
output variable. While both techniques suffer from some drawbacks particularly when a high degree 
of interaction between predictor variables can be expected, there are two key benefits. They could 
be used in the model-building stage to reduce the complexity of the model by elimating variables 
which either does not significantly impact the output variable or whose impact could be assessed by 
an input variable already in the model. A second benefit is in the model-validation stage when 
existing domain knowledge could be used to evaluate the variables deemed significant by these 
methods. It is important to consider domain knowledge as a good predictive model implies 
association between the input variables and the output variable, but not necessarily causation. If the 
purpose of the research is to reveal the underlying mechanistic model, it is important to include all 
inputs which are considered relevant. Of the two approaches, sensitivity analysis provides more 
useful information particularly when used to generate response surfaces of the output variables with 
several inputs. 
 
A more comprehensible approach to knowledge extraction was also illustrated by the use of a 
TREPAN algorithm for extracting decision trees from neural networks. An equivalent decision tree 
representation of the neural network was constructed using this method. The induced decision tree 
had good classification accuracy on the testing data set. This approach provides the best means of 
interpreting the neural network because it combines the power of the highly incomprehensible 
neural network black box and simple to understand decision trees. This considerably increases the 
confidence in using the neural network as a predictive tool. By extracting knowledge into a 
comprehensible form, further relationships between input and output variables can be explored and 
can be used to support the generation rule based systems.  These extracted comprehensible rules aid 
in developing a more usable prediction tool and enhance the understanding of the bay’s actual 
ecological system. 
 
Future research in this area will take the next step in the development of a knowledge based model.  
In addition, knowledge will be derived from the first principles on the “true” process behavior of an 
ecological system and combine them to form the initial mechanistic model as shown in Figure 13. 
The mechanistic model will represent the complex ecological process through a set of equations that 
express both existing knowledge and what can be derived from the extracted ANN knowledge. It is 
anticipated that the initial development of the mechanistic model may not forecast ecological 
behavior with sufficient accuracy. The complexity and variability of ecological systems make it 
difficult to model its effects.  This is typically due to the fact that the validity of the results is 
closely linked to the amount of data available and the experience and knowledge that accompany 
the analysis.  In addition, the complexity of the physical/chemical indicators makes it difficult to 
generalize their behavior or to develop a mechanistic model.  
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Figure 13. Overview of Initial Development of Mechanistic Model 
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