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ABSTRACT 
 

The Bertrand paradox question is: “Consider a unit-radius circle for which the length of a side 
of an inscribed equilateral triangle equals 3 .  Determine the probability that the length of a 

‘random’ chord of a unit-radius circle has length greater than 3 .”  Bertrand derived three 
different ‘correct’ answers, the correctness depending on interpretation of the word, random.  
Here we employ geometric and probability arguments to extend Bertrand’s analysis in two 
ways:  (1) for his three classic examples, we derive the probability distributions of the chord 
lengths; and (2) we also derive the distribution of chord lengths for five new plausible 
interpretations of randomness.  This includes connecting (and extending) two random points 
within the circle to form a random chord, perhaps being a most natural interpretation of 
random. 

 

Keywords: Bertrand paradox, geometrical probability, randomness, mathematical modeling. 

 

1. INTRODUCTION 
 
Over 120 years ago Joseph Louis Bertrand (1888) studied an applied probability problem and 
published his findings as a ‘paradox’.  Bertrand’s paradox is instructional in that it offers three 
different ‘answers’ to a probability question, each answer ‘correct’ for a given interpretation of the 
word ‘random’.  The Bertrand question is as follows:  Consider a unit-radius circle for which the 
length of a side of an inscribed equilateral triangle equals 3 . Determine the probability that the 
length of a ‘random’ chord of the unit-radius circle has length greater than 3 . The three ‘correct 
answers’ are 1/3, 1/4 and 1/2, each representing respectively a different but plausible interpretation 
of the word random. 
 
As shown by many authors including Kendall and Moran (1963), Larson and Odoni (1981) and 
Aristoff et al (2009), Bertrand’s Paradox is useful pedagogically because it can be presented to 
students and practitioners alike to demonstrate the extreme care that must be taken when 

                                                 
* Corresponding Author 



2 Chiu and Larson 

 

interpreting randomness.  Bertrand’s Paradox has been the subject of much discussion, debate and 
new insights over the years, as shown by Holbrook (2000), Jaynes (1973), Marinoff (1994), 
Rosenberg (2004), Streit (1978) and Tissler (1984). In addition to deriving the distributions of 
random chord length for the original Bertrand scenarios, Chiu (2008) also addresses the importance 
of specifying/identifying the source(s) of randomness in several examples so that modelers can 
agree on what to disagree. 
 
In this paper we extend Bertrand’s Paradox to several other realizations, including perhaps the most 
natural interpretation of a random chord, one that Bertrand chose not in include in his classic 1888 
paper.  In addition to deriving the probabilities that the associated random chord will exceed 3  in 
length, we derive the probability distribution for the length of each type of random chord over a 
circle of radius r. As a review, here are the three classic Bertrand “random chords”.  
 
Bertrand 1.  Chord’s two end points are random on the circumference of the circle. 
 
Consider two points uniformly and independently distributed over the circumference of the circle.  
Connecting these two points defines a random chord.  Without loss of generality (wlg) we can 
position ourselves at one (say, point A) of the two points and consider the second as uniformly 
distributed over the circumference.  By referring to Figure 1, we see that the chord will exceed 3  
in length only when the second point is in one third of the circumference, that is, over arc (B, C).  
Thus the desired probability P1 is 1/3. 
 

 
 

Figure 1 
 
Bertrand 2. The mid-point of the chord is random inside the circle. 
 
Select a random point (x, y) whose location is selected from a uniform distribution over the entire 
circle.  This point (x, y) becomes the center of the random chord.  If this random point (denoted as a 
hollow dot) is inside a (smaller) concentric circle of radius 1/2, its associated chord length will be 
longer than 3  in length – with the probability being the ratio of the area of the inner circle (of 
radius 1/2) to that of the unit circle, which equals P2 =1/4.   
 
Bertrand 3. The radial distance of the chord mid-point is random in (0, 1). 
 
The mid-point of a chord uniquely determines its length, being dependent on its distance from the 
circle’s center – or the radial distance of the chord mid-point.  We may therefore assume that a 
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random chord has its radial distance being uniformly distributed in (0, 1).  Again referring to Figure 
1, since one half of the radius lies inside the pictured inscribed equilateral triangle, the desired 
probability is P3 =1/2. 
 
Interestingly, the classic Bertrand paradox does not consider perhaps the most natural interpretation 
of the word random as one of its three candidate solutions: Two points are located randomly and 
independently in the interior of the circle.  An extended straight-line connection of the two random 
points determines a random chord.    
 
Landscape Charts to Illustrate Various Sources of Randomness 
 
We extend Bertrand’s classic consideration of randomness to eight scenarios, including his original 
three.  The CDF (cumulative distribution function) or PDF (probability density function) of the 
random chord length will be derived for each case, from which the Bertrand probability P can be 
readily evaluated.  We will express our results in terms of the circle radius r instead of simply a 
circle with unit radius. 
 
To provide a graphical impression, we create landscape charts to graphically illustrate the random 
chord selection process, whether randomness occurs on the circle circumference or inside of the 
circle.  In these charts we shall use (1) hollow dots to denote the random location of a point; (2) a 
dashed line to represent the random chord generated; and (3) solid line(s) or dot(s) to represent a 
fixed geometric object.  We also implicitly assume the rotational symmetry inherent in a circle.   
 
Circumference Randomness: angular randomness: The Many Faces of Bertrand 1 
 
The original Bertrand formulation is to choose two independent and uniformly distributed points 
over the circle circumference to define a random chord, which is equivalent to defining a random 
chord from a random arc with its arc length being uniformly distributed in (0, 2πr) (Bertrand 1a, 
Figure 2).  Since a circle’s central angle is linearly related to its associated arc length, generating a 
random central angle θ uniformly distributed in (0, π) will produce the same arc length, and thus 
chord length, uncertainty (Bertrand 1b, Figure 2).  Similarly, generating a random inscribed angle 
φ uniformly in (0, π/2) relative to a reference radius will result in the same arc length randomness, 
and thus chord randomness (Bertrand 1c, Figure 2).  Finally, Bertrand 1d creates a random chord by 
generating a random tangential angle γ, uniform in (0, π/2).  The Bertrand 1 randomness can be 
characterized as being generated from angular randomness. 
 
Case 8 is the Evan’s Robot (see its originating story in a subsequent section).  Starting from its 
home base on the circumference, a robot travels clockwise around the circle at a constant angular 
speed ω until the first occurrence of a robotic Poisson failure with failure rate λ.  The straight-line 
distance between the failure location and its home base defines the length of a random chord.  It 
turns out that the chord length randomness approaches that of (and converges to) Bertrand 1 when 
the failure rate is (very) small relative to its angular speed, a not too surprising result considering 
the Poisson randomness of robot failure. 
 
Bertrand 2: Chord Center Uniformly Distributed Inside the Circle 
 
Bertrand 2 chooses a random point uniformly distributed in the interior of a circle to become the 
center of a random chord. 
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Figure 2. Eight scenarios 
 
Bertrand 3: Chord Center Uniformly Distributed over a Reference Radius   
 
Bertrand 3 chooses a random point on a reference radius, uniformly distributed in (0, r), which 
becomes the center of the random chord.   
 
Cases 4, 5, and 6: Mixed Randomness 
 
These three cases, seemingly different at first glance, result in the same distribution of random 
chord length.  Case 4 starts with the selection of a random area A, uniform in (0, πr2), defining a 
random chord that separates the circle into two regions of areas A and πr2- A. 
 
Case 5 starts by choosing a random point uniformly distributed over the interior of a circle.  Spin a 
random angle, uniform in (0, π/2), pivoted at this random point (and relative to the reference radius 
defined by this random point), thereby creating a random chord. 
 
Case 6 picks a reference point on the circle circumference and connects it to a randomly chosen point 
inside the circle to create a random chord.  
 
Cases 5 and 6 generate randomness in two sources: angular and area.  It is not entirely surprising that 
they result in the same chord length randomness.  It is, however, more thought challenging that they 
imply the same chord length randomness as that of case 4. 
 
Case 7: Double Area Randomness 
 
This is perhaps the most natural way to define a random chord: choose two random points 
independently inside a circle to define a random chord.  This is a four-dimensional problem to 
choose the coordinates of two points over an area.  The resultant solution is the most complex 
involving a combination of (double) angular randomness and (double) area randomness. 
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Analysis 
 
We shall use the following notations in our exposition and analysis: 
• Circle center O, with radius r 

 
• A straight line is defined by its two end points as AB.  For example, OA represents a radius if 

A is on the circle circumference.  Conversely, A is on the circle circumference if OA is a 
radius. 

 
• An angle ∠(ABC) is the angle at point B formed by the two lines AB and BC.  For example, 

∠(AOC) is the central angle, when OA and OC are two radii. 
 
• Arc(AB) represents the arc of a circle spanned by two points A and B on the circle 

circumference.  When there is ambiguity, we use the notation Arc(ACB) to define precisely 
the portion of the circumference representing Arc(AB): whether it is clockwise or counter-
clockwise. 

 
• Area of a polygon is identified by its extreme points; for example: Area(ABCD). 
 
• The length of a random chord is represented by the random variable L, which has a range of 

(0, 2r). 
 
• A random variable X has cumulative distribution function (CDF) { }xPxF ≤≡ XX )(  and 

probability density function (PDF) )()( xF
dx
dxf XX = .  

 
2. TWO RANDOM POINTS ARE UNIFORMLY AND INDEPENDENTLY DISTRIBUTED 
ON THE CIRCUMFERENCE OF THE CIRCLE, FROM WHICH A RANDOM CHORD IS 
FORMED (Bertrand 1). 
 
This is the first of the original Bertrand randomness characterizations.  There are several equivalent 
randomness formulations/assumptions leading to the same resultant uncertainty of a random chord 
length.  In addition to the Bertrand formulation of two random points on the circle circumference, 
they include the following: 
 
(a) Fix a point on the circumference; then uniformly select a second point on the circumference.  

Join the two points to define a random chord: randomness is defined by the uncertain location 
of the second point, being uniform in (0, 2πr); or uniform in (0, πr) if we limit, by symmetry 
and without loss of generality (wlg), the location of the random point on half of the 
circumference. 

 
(b) Select a random angle θ in (0, π).  Form a random chord AB spanned by two radii with a 

central angle θ: ∠(AOB) = θ.  The randomness of the central angle θ induces the randomness 
of its associated random chord. 

 
(c) Fix a reference radius OA.  Form an inscribed angle ∠(OAB) = φ, with B on the 

circumference and φ being uniform in (0, π/2).  AB, thus created, is the random chord.  The 
randomness of the inscribed angle φ, being uniform in (0, π/2), induces the randomness of its 
associated random chord. See Figure 3. 
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(d) Select a reference tangent line TD with its associated radius OT.  Form a random chord TC 
defined by the angle ∠(DTC) = γ, which is uniform in (0, π/2) and with point C on the 
circumference.  The randomness of the tangential angle γ, being uniform in (0, π/2), induces 
the randomness of its associated chord. See Figure 4. 

 
We now derive the distribution of a random chord for case (b).  Identical distributions can be 
similarly derived in the other cases.  The random angle θ is uniformly distributed in (0, π), which is 
related to the random chord length of L as: 
 

 
 

Figure 3 
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The CDF of L is given by: 
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for Bertrand 1. 
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Figure 4 
 
3. CHORD CENTER IS RANDOMLY SELECTED INSIDE THE CIRCLE (Bertrand 2). 
 
Select a random point inside the circle as the center of the chord, identified as a hollow dot, which 
is equally likely to be anywhere inside the circle of radius r.  This scenario corresponds to 
Bertrand’s second solution. We use X to denote the random radial distance of the randomly selected 
point.  By radial geometry, it can easily be shown that the PDF of X is given as, 
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The random chord length L is similarly related to X by,  
 

( ) .5.0 222 LX −= r  
 
We can, thus, derive 
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The CDF of L can be obtained by integration: 
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Setting l = 3  and r = 1, we obtain 
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as expected for Bertrand 2. 
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4. CHORD CENTER IS UNIFORMLY DISTRIBUTED ON A REFERENCE RADIUS 
(Bertrand 3). 
 
The distance between the center of the random chord and the center of circle is uniform in (0, r), 
formulation 3 in Bertrand’s classical treatment of the subject.  This is equivalent to selecting a 
random point on a (reference) radius to become the center of a random chord, identified by the 
hollow dot.  We define the random variable X, with realization X = x, as uniform over (0, r) being 
the radial distance on the reference radius (See Figure 5). As in Case 2, X and its associated chord 
length L are related as, 
 

( ) ,5.0 222 LX −= r  
 

with .0,1)( rx
r

xf ≤≤=X  

 
Thus, 
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as expected for Bertrand 3. 
 

 
 

Figure 5 
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This completes the analysis for the three classic cases of Bertrand randomness.  We now continue 
to new formulations. 
 
5. DEFINE A RANDOM CHORD AS ONE THAT SEPARATES THE CIRCLE INTO TWO 
PARTS, WITH THE SMALLER AREA, DENOTED BY A, BEING EQUALLY LIKELY IN 
(0, 0.5πr2). 
 
Geometric consideration allows us to relate the area A and the chord length L as, 
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The area A (shaded in Figure 6) equals the difference between the area of the pie slice with a central 
angle of θ and the second term being the area of the triangle with base L = l.  We have also used 

.22sin r
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Since the function h(L) is monotonically increasing, we can derive the PDF of L 
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The CDF is obtained by integration,  
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Numerically, the Bertrand probability in this case is found to be 0.609. 
 

 
 

Figure 6 
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6. SELECTED A RANDOM POINT R INSIDE THE CIRCLE, SPIN A RANDOM ANGLE 
AT R RELIATIVE TO REFERENCE LINE OR  
 
Pick a random point inside the unit circle, denoted by R (and identified as a hollow dot in Figure 7). 
We use Y to express the random radial distance of this point from the circle center (the length of the 
line OR).  Pivoting at this random point, we spin a random angle θ relative to the reference line OR 
uniformly distributed in (0, π/2) to determine a random chord.  The random radial distance from the 
chord center is denoted by the random variable X, with X = Y sinθ. 
 

 
 

Figure 7 
 
We first derive the distribution for X, from which the PDF of the chord length L can be readily 
obtained as in cases 2 and 3.  First, the PDF’s for Y and θ are independent, expressed as: 
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marginal density functions since θ and Y independent.  Note the limits of integration for θ in 
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Figure 8. Sample Space for (θ,Y) 
 
The random chord length L is similarly related to X as in case 2 by  
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The CDF is obtained via integration, 
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This randomness characterization leads to the same random chord length distribution as that of 
Case 4, a fact not entirely obvious at first glance!  And we have the same Bertrand probability, 
0.609. 
 
7. ONE RANDOM POINT IS ON THE CIRCUMFERENCE AND ONE IS INSIDE THE 
CIRCLE. 
 
Connecting and extending these two random points creates a random chord.  We seek to obtain the 
CDF for the length of this random chord,  FL(l) ≡ P{L ≤ l}. 
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We first identify a random point on the circle circumference as K in Figure 9.  If the random point 
inside the circle is within the shaded area KEFK or KABK, the chord length will be smaller than l.  
The evaluation of   P{L ≤ l} becomes a ratio of areas, since the random point inside the circle is 
uniformly distributed inside the circle of radius r. 
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This randomness is identical to that of case 5 (and case 4): pick a random point R inside the circle, 
spin a random angle at R relative to line OR to establish a random chord --- a result not readily 
obvious.  Again, the Bertrand probability is 0.609. 
 

 
 

Figure 9 
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8. Select two random points inside the circle, connecting and extending to form a random 
chord 
 
Identify two points independently and uniformly distributed inside a circle of radius r, joining these 
two points and extending that straight line to create a random chord.  This is perhaps the most 
natural idea of a random chord, one that was not included in Bertrand’s classic paper.  We first 
condition on the location of the first random point.  This random point has a radial distance denoted 
by the random variable Y with its PDF identified in Bertrand Case 2, 
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The conditional CDF of a random chord length, condition on {Y = y}, is then derived using a 
geometric argument based on a ratio of areas.  The CDF of the random chord length, FL(l), will be 
obtained using the law of total probability. 
 
We use Figure 10 to relate various geometrical and area relationships. 
 
The point R, identified as a hollow dot, is the conditional location of the first random point, whose 
radial distance is expressed as a random variable Y, now conditional as Y = y.  The resultant random 
chord length is less than l (the length of the straight line AG) if its random location is inside the two 
(equal-area) shaded areas: ABCRA and EFGRE.  The lines OT and ATG are perpendicular to each 
other.  We now seek to find the area of the shaded region to compute: 
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Figure 10 
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We will use ordered sequences of points (either extreme points, or interior points on an arc) to 
represent areas.  
 
ABCRA = OABCHGO – OGAO – CHGRC, 
 
Where 
 
OABCHGO = area of the cone spanned by a central angle of 2θ, 
 
OGAO = area of a triangle, spanned by a central angle equaling 2θ, 
 
CHGRC = a sliver of a pie near the edge of the circle 
    = OCHGO – OCRO – OGRO = OCHGO –2*OGRO 
 
OCHGO = area of the cone spanned by the central angle ∠(COG), which equals 2(θ − φ):     
 
∠(COG) = ∠(COR)  + ∠(GOR) = 2∠(GOR) = 2*{∠(TOG) - ∠(TOR)} = 2(θ − φ), 
 
OCRO = OGRO = area of a triangle. 
 
The following quantities are essential in our algebra, thus highlighted below: 
 

l: length of the random chord 
 
y: radial distance from the first random point to the circle center 
 
x: radial distance from the center of the random chord to the circle center 

 
The algebra simplifies when we use the following identities: 
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where GT and RT are straight-line distances. 
 
We can now express the area ABCRA: 

 
ABCRA = OABCHGO – OGAO – CHGRC, 

         = OABCHGO – OGAO – (OCHGO –2*OGRO) 
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Given the radial distance of one of the random points R being y, the conditional probability that the 
random chord length is less than l becomes 
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As described earlier, we will make the substitution from l to x as it will simplify our algebra. 
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The CDF of L can now be derived using the Law of Total Probability, by integrating over the 
random variable Y.  The lower limit of integration recognizes the fact that the radial distance of the 
first random point has to be larger than x (the radial distance of the center of the random chord to 
the circle center) if the random chord length is to be less than l. 
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The last equality substitutes x using ( ) .5.0 222 lrx −=  
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The integration of the inverse cosine term appears in an appendix, derived as, 
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We have also used the following formula for the integral of the other term: 
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Differentiating the CDF produces its surprisingly simple PDF: 
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The Bertrand probability in this case is a surprisingly high 0.7468. 
 
Evan’s Robot. 
 
Over a cup of coffee on the Stanford campus, Evan Larson (son of the 2nd author) suggested Poisson 
failures to model randomness. 
 
Starting at its home base and at time t = 0, a robot begins traveling clockwise at a constant angular 
speed of ω (radians) per second around and on the circumference of a circle of radius r.  The robot 
has attached to it a rubber band rooted at its home base.  The robot travels around the circle, with 
the attached rubber band stretched and flexed until the robot stops with a failure episode.  Failure 
occurs as a Poisson process with rate λ per second. 
 

 
 

Figure 11 
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As a function of λ, we shall derive the CDF of the length of the rubber band upon the occurrence of 
the first failure episode. See Figure 11.  
 
Define: 
 
ω = angular speed of the robot, measured in radiant per second. 

λ = Poisson failure rate of the robot, with unit as number per second. 

L = length of the rubber band. 

T = time until failure, negative exponential with parameter λ. 

θ = the total angle (measured in radians) traveled by the robot at the moment it failed. 

θ = ω T. 

β = λ/ω, a function of λ and ω. 

G = the acute central angle spanning the robot’s home to the point of failure 
 
We first obtain the CDF of G, from which we shall derive that for L. 
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The CDF for the length of the rubber band L when the robot stops can be derived by observing the 
relationship between G and L as 
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The CDF of L can be derived from that of G with direct substitution, 
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The PDF is derived through differentiation, 
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When β = λ/ω is large, the robot will fail almost immediately – the linear distance between the base 
and the point of failure will be very small – resulting in a virtual zero Bertrand probability.  On the 
other hand, when β =λ/ω is small, the robot will likely fail after many revolutions around the circle 
– resulting in failure location (approaching) equally likely anywhere on the circle circumference, 
which is the Bertrand 1 uncertainty. 
 
In fact, the chord length CDF (and PDF) becomes that of Bertrand 1 when β = 0 (l’Hospital’s 
Rule).  This is intuitively plausible considering the randomness of a Poisson event: Evan’s robot is 
traveling at a constant speed around the circumference and its first failure is in the distant future (β 
being small), neutralizing the initial potential early failure favoring short chord length.   
 
SUMMARY 
 
We first provide the various distributions of random chord length below, grouped according to their 
similarities: 
 
Case 1, Bertrand 1: Angular Randomness 
 
The random chord length distribution is a function of a trigonometry function of chord length: 
 

.20,
2

sin2)()( 1 rlfor
r
llPlF ≤≤⎟

⎠
⎞

⎜
⎝
⎛=≤= −

π
LL  

 
Case 8, Evan’s Robot: Becoming Bertrand 1 when β → 0 
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Case 2, Bertrand 2: Chord Center is Uniformly Distributed inside the Circle 
 
The random chord length CDF is a function of the square of chord length. 
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Case 3, Bertrand 3: Chord Center is Uniformly Distributed over a Reference Radius 
 
The random chord length distribution equals the square root of a quadratic function of chord length. 
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Cases 4, 5 and 6: Mixed Randomness 
 
The random chord length distribution combines angular (trigonometric function) randomness and area 
(square) randomness of chord length. 
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Case 7: Double Area Randomness 
 
The random chord length distribution combines angular (trigonometric function) randomness and 
(double) area (fourth power) randomness of chord length. 
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Table 1 shows various Bertrand probabilities (the probability that a random chord length will 
exceed r3 ), median, mean and standard deviation of random chord length for each of the cases.  The 
statistics reported here are in the unit of the circle radius r.  The distribution and associated statistics 
in the case of Evan’s Robot (See Table 2) depend on β = λ/ω , and it approaches that of Bertrand 1 
when β is small.  We also provide a comparative graph of mean and standard deviation together with 
the coefficient of variation (the ratio of standard deviation to the mean in Figure 12). It should be 
noted that the coefficient of variation of Evan’s Robot approaches 1 when β goes to infinity, not a 
surprising result as the exponential failure event dominates the uncertainty. 
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Table 1. Probabilities and statistics of random chord length of cases 1-7 
 

Bertrand 1: 
Two Points on 
Circumference

Bertrand 2: 
Chord Center 
inside Circle

Bertrand 3: 
Chord Center 

on Radius

One Point on 
Circumference, 

One inside

Both Points 
inside Circle

Evan's 
Robot

Case 1 Case 2 Case 3 Cases 4, 5, 6 Case 7 Case 8
Bertrand 

Probability 33.33% 25.00% 50.00% 60.90% 74.68% **
Median 1.4142 1.4142 1.7321 1.8295 1.9021 **
Mean 1.2570 1.3331 1.5453 1.6652 1.7676 **
SD 0.6225 0.4715 0.4772 0.4027 0.3500 **  

 
Table 2. Distribution and statistics for the case of Evan’s Robot 

 
β  = λ /ω Large 2 1 0.5 0.25 0.1 Small

Bertrand 
Probability ~ 0 1.49% 10.82% 23.81% 30.48% 32.85% 33.33%

Median ~ 0 0.3448 0.6741 1.1074 1.3298 1.4005 1.4142
Mean ~ 0 0.4702 0.7986 1.0793 1.2052 1.2483 1.2570
SD ~ 0 0.4221 0.5945 0.6427 0.6328 0.6245 0.6225  

 

 
 

Figure 12. Cofficient of Variation, COV  
 

Figure 14 shows the CDFs  of a random chord length arising from these various sources of 
randomness, grouped according to the similarity of their distributions.  The CDF graph also indicates 
the location of the Bertrand probability (the vertical dash line when the random chord length 
equals r3 ).  In fact, the CDF value at r3 actually shows one minus the Bertrand probability. 
 



Bertrand’s Paradox Revisited: More Lessons… 21 

 

 
 

Figure 13. CDF Convergence of Evan’s Robot to Bertrand 1 
 

 
 

Figure 14. CDF of Random Chord Length 
 
The next graph shows the PDFs of the random chord length.  We note that, with the exception of 
Bertrand 2, the PDFs go to infinity as the chord length approaches 2r. 
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Figure 15. Convergence of Evan’s Robot Chord Length PDF 
 

 
 

Figure 16. PDF of Random Chord Length 
 

Crofton’s Method in Geometric Probability 
 
Students of geometric probability are probably aware of the Crofton’s method (Crofton (1885), or 
Larson and Odoni (1981)) to solve for probabilistic quantities (such as moments and CDF) in a 
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geometric setting if certain conditions are satisfied.  We provide the Crofton’s approach to solve 
Case 7 in the appendix. 
 
9. CONCLUSION 
 
In this paper we extended Bertrand’s Paradox to several other realizations, including perhaps the 
most natural interpretation of a random chord, one that Bertrand chose not in include in his classic 
1888 paper.  In addition to deriving the probabilities that the length of an associated random chord 
will exceed 3  (on a circle of unit radius), we derived the probability distribution function for the 
length of each type of random chord.  The eight scenarios examined (including Bertrand’s original 
three) result in six distinct distributions for the length of a random chord.   
 
APPENDIX 
 
Appendix 1 
 
Integration details involving the inverse cosine function 
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In the first line below, we use the above transformation to carry out a change of variable exercise to 
replace the inverse cosine function.  In the second line, we up the variables to carry out integration 
by parts.  From third to fourth: integration of the tangent square function. 
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Appendix 2 
 
Crofton’s Method to “solve” Case 7: 
 
The Crofton’s method appears as an attractive candidate to compute the CDF of a random chord 
length under Case 7: the two points defining a random chord are independently and uniformly 
distributed inside the interior of the circle.  The problem setting satisfies conditions for the 
application of this method (such as rotational invariance).  Interested readers can consult (Larson 
and Odoni (1981), or Crofton’s original paper (1885)).  This method involves examination of the 
infinitesimal changes of the desired quantity (the CDF in our case) as the relevant area is 
infinitesimally enlarged (the radius of our circle).  Such consideration results in a differential 
equation (the desired CDF as a function of the circle radius), whose solution leads to what is being 
sought. 
 
We are seeking );( αlFL , the CDF of the random chord length L, when the circle radius is α.  To 
simplify notation, we set ),;()( αα lFX L=  assuming a fixed value of l.  If we extend the circle 
radius from α to α + dα, X(α) will correspondingly change to X(α) + dX – when the change dα is 
small.  X(α) + dX can be evaluated using conditional expectation (since a CDF is a special kind of 
expectation, as that of an indicator random variable): conditional on where these two random points 
lie.  When α increases to α + dα, there are three distinct scenarios describing the location of the two 
random points: 
 
(1) Both points are inside the original circle of radius α.  In this case the sought after quantity 

remains X(α), with probability 
( ) ( )
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dd
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(2) One point is inside the original circle of radius α, while the other point is inside the circular 

strip of width dα.  In this case, we denote the sought after quantity as ),(1 αX with probability 
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= . The outside factor of 2 represents the two cases as to which of the 

two points is inside the original circle of radius α. 
 
(3) Both points are inside the expanded circular strip:  the probability of this case is of order 

o(dα), of which we shall ignore (as dα goes to zero). 
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Using conditional expectation, we can write: 
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After simplification and ignoring higher order terms, as well as taking the limit 0→αd : 
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Crofton’s method relies on the hope that it is much simpler to find )(1 αX  since one of the two 
points has been restricted to the “boundary” of the circle.  This restricted problem is identical to 
Case 6 of our tour de Bertrand.  As we observe in the derivation of Case 6, the solution is indeed 
simpler: 
 

α
α

α
απ

α 20,
4

4
2

sin2)()(
2

22
1

1 <<
⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡ −
−⎟

⎠
⎞

⎜
⎝
⎛=≡ − lllllFLX  

 

α
αααπ

α 20,4
4

45.0cos2)(
22

1
1 <<

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎟
⎠
⎞

⎜
⎝
⎛−−

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛−= − llllX . 

 
How will one solve such a difficult differential equation? 
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We have used a geometrical consideration to solve for X(α) as examined in Case 7.  The solution to 
the above differential equation is, 
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