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ABSTRACT 
 

The single vehicle routing problem with multiple routes is a variant of the vehicle routing 
problem where the vehicle can be dispatched to several routes during its workday to serve a 
number of customers. In this paper we propose a goal programming model for multi-objective 
single vehicle routing problem with time windows and multiple routes. To solve the model, we 
present a heuristic method which exploits an elementary Shortest Path Algorithm with Resource 
Constraints. Computational results of the proposed algorithm are discussed. 
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1. INTRODUCTION 
 
Vehicle Routing Problem (VRP) is a well known combinatorial optimization problem arising in 
transportation management and logistics. VRP involves the determination of a set of routes for a 
fleet of vehicles, starting and ending at a depot and serving a set of customers with known demands. 
Each customer must be visited by one of these routes and all the customers must be assigned to 
vehicles such that the restrictions on the capacity of vehicles and the duration of a route are met. 
The objective of the problem is to minimize the total cost of the set of routes. 
 
Some vehicle routing problems have pre-set time constraints on the periods of the day in which 
customers should be served. They are known as Vehicle Routing Problem with Time Window 
(VRPTW) (Calvete et al., 2007; Hashimoto et al., 2006; Hong and Park, 1999; Ombuki et al., 2006; 
and Solomon, 1987). 
 
A variant of VRP which has received little attention in the literature in spite of its importance in 
practice is a problem where the same vehicle can perform several routes during a workday. For 
example, in the home delivery of perishable goods, like food, routes are of short duration and must 
be combined to form a complete workday. Azi et al. (2006) proposed an exact algorithm for a 
single-vehicle routing problem with time windows and multiple routes. 
 
The real-life distribution and transportation problems have other objectives than minimizing the 
total travel cost (time or distance). Hence great attention has been paid to multiple objectives VRP 
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in the past years (Calvete et al., 2007; Hong and Park, 1999; Lacomme et al., 2006; Ombuki et al., 
2006; and Tan et al., 2006). The goal programming (GP) approach is an important technique to 
model multi-objective problems and helps decision-makers to solve multi-objective decision 
making problems in finding a set of satisfying solutions.  The purpose of GP is to minimize the 
deviations between the achievement of goals and their aspiration levels. Hong and Park (1999) and 
Calvete et al. (2007) used goal programming approach to model the VRPTW. 
 
In this paper we present a goal programming model for single vehicle routing problem with time 
windows and multiple routes. The remainder of the paper is organized as follows. In Section 2, the 
mathematical formulation of single vehicle routing problem with time windows and multiple routes 
is described as a goal programming model. In Section 3, a heuristic algorithm to solve the model is 
proposed. In Section 4, we carry out some experiments using a set of data obtained from Solomon’s 
instances. Finally in Section 5, we describe some overall conclusions. 
 
2. THE MODEL 
 
We formulate the problem on a directed network as follow. 
 
Let },...,2,1{ nN =  be a set of nodes (each representing a customer location). We define 

),( ANG ′ as a directed graph associated with the problem, where }1{}0{ +=′ nNN UU  is the set 
of nodes and },:),{( NjijiA ′∈= is the set of directed arcs (all possible connections between the 
nodes). Index 0 refers to the central depot, while index 1+n  refers to a virtual node which is a copy 
of depot. 
 
Each node i  is associated with a known demand iq  and also with a known service time is . For nodes 
0 and 1+n  we have 010 == +nqq  and 010 == +nss . Let ],[ ii ba be a time interval during which 
service of customer i has to take place (time window). 
 
Each arc Aji ∈),( is associated with a travel time ijt  and travel cost ijc , represent time and cost of 
going from node i  to node j  through arc ),( ji . For virtual arcs between node 0 and node 1+n , we 
have  
 

01,01,0 == ++ nn tc . 
 
There is a single vehicle of capacity U delivering goods from the depot to the customers. Let’s 
define the vehicle workday by a set of routes },...,2,1{ rR = . Each route originates at node 0 and 
terminates at node 1+n . The number of routes in the set R  is not apparent before solving the 
problem. Hence we set the size of set R  with maximum number of routes which can be defined to 
serve all customers. It should be noted that some of these routes might contain no customer, i.e. 
they are dummy routes. For each route Rk ∈  we define vehicle loading time kL as a function of 
total service time of all customers in route k . In some applications, like the home delivery of 
perishable goods, routes cannot be too long. So we can assume every customer in a route must be 
served before a given deadline, maxT , associated with that route. 
 
To generate a goal programming model for the problem, we set the following goals: 
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Goal (1) Minimize the total cost to serve the customers. 
Goal (2) Maximize the number of served customers. 
Goal (3) Minimize the total waiting time (at customers’ locations or at depot). 
Goal (4) Avoid underutilization of vehicles capacity. 
 
Also to formulate the model we define the following variables: 
 

RkAjixk
ij ∈∈  ,),( , is equal to 1 if route k  contains arc ),( ji and 0 otherwise. 

RkNiy k
i ∈′∈ ,,  is equal to 1 if node i  is in route k and 0 otherwise. 

Niwi ∈  , ,  specifies start time of service at node i . 

Rkww k
n

k ∈+   , 10  stand for the start time and end time of route k , respectively. 

)4()3()2()1( ,,, ki npnp represent deviational variables of the goals. 
 
Given the above goals and variables we formulate the goal programming model of the problem as 
follow: 
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Constraint (1) which includes a positive deviational variable )1(p corresponds to goal (I). This 
constraint allows us to assign a penalty to a deviation from a targeted total delivery cost 0C . 

Constraint (2) guarantees that k
iy  is equal to 1 when node i  is in route k . Constraint (3) refers to 

Goal (2) and states that every customer can only be visited once. Sum of the negative deviational 
variable∑ )2(

in  which is weighted by )2(ω in the objective function, computes the number of 
customers who have not been served. Both constraints (3) and (4) make sure that exactly one arc 
enters and leaves each served customer. Analogously, constraints (5) and (6) ensure that all routes 
leave the depot (node 0) and return to it (node 1+n ). Constraint (7) refers to time windows of 
customers. Constraints (8) and (9) allow us to formulate Goal (3). Constraint (10) corresponds to 
the vehicle capacity constraint and represents Goal (4) by using negative deviational variables )4(

kn . 
Constraints (11)-(16) ensure feasibility of the time schedule.  Constraint (17) computes vehicle 
loading time in route k  and finally, constraint (18) ensures that every customer in a route k  must be 
served before maxT . 
 
The proposed model faces with difficulties on account of large number of variables and constraints. 
So it is necessary to develop an algorithm capable of solving large sized problem. 
 
3. SOLUTION METHOD 
 
To solve the problem we develop an algorithm with goal programming approach which exploits the 
contexts of a shortest path algorithm with resource constrain, as proposed by Azi (2006).  
 
In the shortest path algorithm with resource constraints a path is characterized by its length and the 
consumption of each resource. In this algorithm, the consumed resource is a criterion to compare 
the performance of the routes, e.g., in VRPTW the time windows can be defined as a resource. 
When different paths visit the same nodes, a path might well be better than some other paths, over 
all criteria. The dominance relation in the shortest path algorithm with resource constraint is defined 
as follows. 
 
Path p  dominates p′  if (1) it is not longer, (2) it does not consume more resources for every 
resource considered and (3) every unreachable node for p is also unreachable for path p′ . By 
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eliminating paths through this dominance relation, only labels corresponding to non-dominated 
elementary paths are kept and a solution to the problem is obtained at the end. 
 
Our problem-solving approach, based on this algorithm, is divided into two phases. In the first 
phase, feasible routes are constructed. Then, in the second phase some of these routes are combined 
to form a workday for the vehicle. Therefore, the routing issues are decoupled from the scheduling 
issues of a workday. That is, when a route is known, the sum of the service times and the setup 
times are known.  
 
Phase 1 
 
In Phase1 we want to generate a set of feasible routes which will be used in the second phase. In our 
algorithm, a path is characterized by the set of its nodes and value of each goal. More precisely, a 

path p  is labeled with ),...,,...,,( 11 g
pp

n
pppp ooyydR =  where pd  is the number of nodes in 

path p , 1=i
py  if node i  is in path p , 0 otherwise, },...,2,1{ gG = is the set of goals and k

po  is the 
value of goal k . If all goals of the problem must be minimized, we can define dominance relation as 
follow. 
 
The dominance relation (Azi, 2006): If p  and p′  are two different paths with labels pR  and pR ′  , 

respectively, then path p  dominates p′  if and only if pp dd ≤′ , niyy i
p

i
p ,...,1=≤′ , 

gkoo k
p

k
p ,...1=≥′ . 

 
A path p  thus dominates another path p′  if p  contains all nodes of p′  (although in a different 
order), and p  is better than p′ , for every goal considered. 
 
The algorithm generates all feasible routes and uses the proposed dominance relation to make a set 
of routes for Phase 2.  
 
Phase 2 
 
The contexts of shortest path algorithm proposed in Phase 1, will be used again in Phase 2 to create 
a workday for the vehicle. Here we make a transformed graph where the nodes correspond to the 
routes generated in Phase 1, plus two artificial nodes that correspond to the start and end of the 
vehicle workday. In the graph, there is an arc between nodes r  and r ′  if (1) the two subsets of 
customers in routes r and r ′  are disjoint and (2) it is feasible to serve route r ′  after route r . The 
feasibility is checked through time windows of nodes r  and r ′ . The departure time interval 
associated with each route is used for this purpose. That is, if node r ′ is placed after node r , the 
vehicle must be back at the depot from route r and be ready to depart before the latest departure 
time of route r ′ . If the vehicle is ready before the earliest departure time, then it must wait. Hence, 
to use the shortest path algorithm in Phase 2 we need to determine the feasible time intervals of 
departure from the depot for every route r . These feasible time intervals are used as time windows 
of nodes in the graph. Let us denote the earliest and the latest departure times of route r  as a time 
interval ],[ 00

rr τθ , analogously, the earliest and latest return times ],[ 11
r
n

r
n ++ τθ . 
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Let rn  denote the number of customers in the route r . We define the sequence ),,...,,( 110 +rr nn iiii  

for route r  to represent the sequence of customers ( 00 =i and 11 +=+ ni
rn ).  The latest feasible 

time to begin service at customer ji  in route r is denoted by r
i j

τ . For the depot, rr
i 00

ττ =  and 
r
n

r
i rn 11 +=

+
ττ  are the latest feasible departure and arrival times, respectively. 

 
To determine time interval ],[ 11

r
n

r
n ++ τθ  of each route r , we apply a backward sweep and compute 

the value of r
i j

τ for every ji of customer sequence in route r . Then we apply a forward sweep and 

reset the value of r
i j

τ .  

 
The backward sweep of route r  is applied from 1+rni  to 00 =i . First,  in node 1+rni  the algorithm 

sets 
11 ++

=
rnrn i

r
i bτ  then sweeps to previous nodes and computes r

i j
τ for node ji as follows: 

 

0, ,...,},min{
11

iijbst
rjjjjjj niiii

r
i

r
i =−−=

++
ττ  

 
Where 

jib  is the upper bound of time window corresponding to customer ji . 

 
It should be noted that for virtual node 1+n , we can set +∞=

+1rni
b . At the end of the backward 

sweep, in node 0i  algorithm obtains r
i0

τ . 
 
Once r

i0
τ has been obtained, a forward sweep is applied to get the latest feasible schedule. The r

i j
τ  

values will be reset as follow: 
 

1111
,...,},max{ 1, +−−−

=++=
rjjjjjj niiii

r
i

r
i iijatsττ  

 
Where 

jia is the lower bound of time window corresponding to customer ji .  

 
Now for each path r , we determine the latest feasible departure time r

i
r

00 ττ =  and the latest feasible 

return time r
i

r
n rnr 11 +

=+ ττ . To compute the earliest departure times, r
0θ , and the earliest return 

times, r
n 1+θ , we should consider two cases. Case 1 happens when there is no waiting time in the 

latest feasible schedule of route r . Since the departure time of route r  can be shifted backward by 
rδ  time units, and since we have },...,min{

1100 ++
−−=

rnrn i
r
ii

r
i

r aa ττδ , then we can set 
rrr δτθ −= 00  and rr

n
r
n δτθ −= ++ 11 . In case 2 there is some waiting time in the latest feasible 

schedule and it is not possible to depart earlier from the depot without increasing the route duration. 
Hence rr

00 τθ =  and r
n

r
n 11 ++ =τθ . Now we use our approach which was described in phase 1, to find 

an elementary path with best value of goals. The departure time windows associated with each route 
are used for this purpose. That is, the vehicle must be back at the depot and ready to depart before 
the latest departure time of its next route. If the vehicle is ready before the earliest departure time, 
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then it must wait. When arc ( r ′ , r ′ ) is added to the current path, route r ′  is included into the 
vehicle workday.  
 
4. COMPUTATIONAL RESULTS 
 
In this section we present the experimental results performed by applying the proposed algorithm on 
some instances of problem. Since there is only one vehicle, it can not serve a large number of 
customers during one day. Hence the instances are constructed by taking only the first 25 and 50 
customers of Solomon’s instances C2, R2 and RC2 (1987). Also we create some small size  
 

Table 1: Comparison with optimal solution 
 

 Optimal Solution Heuristic  

Instance No. of routes CPU Time 
(In second) Cost No.  of routes CPU Time 

(In second) Cost r% of 
time 

R201.10 3 3427 354.1 3 5 354.1 0.15% 
R202.10 4 3568 215.3 4 4 215.3 0.11% 
R203.10 3 5840 373.4 3 6 373.4 0.10% 
R204.10 3 1125 265.7 3 5 265.7 0.44% 
R205.10 2 6852 399.6 2 3 399.6 0.04% 
R206.10 4 10523 425.1 4 8 425.1 0.08% 
R207.10 3 3864 467.2 3 6 467.2 0.16% 
R208.10 3 7852 421.6 3 6 421.6 0.08% 
R209.10 3 4893 369.2 3 5 369.2 0.10% 
R210.10 4 12578 402.6 4 6 402.6 0.05% 
R211.10 3 6519 363.9 3 5 363.9 0.08% 

 
Table 2: Experimental results with Tmax=220 

 
 Phase 1 Phase 2 Goal (1) Goal (2) 

Instance No. of 
routes 

CPU Time 
(In second) 

No. of 
routes 

CPU Time 
(In second) Cost 

No. of 
served 

customer 
C201.25 97 3 10 1 279.4 23 
C201.50 227 11 11 10 325.5 27 
C202.25 287 9 10 6 259.6 22 
C202.50 1021 26 12 366 324.9 28 
C203.25 367 15 12 19 295.3 25 
C203.50 1672 658 11 1820 305.5 29 
C204.25 525 13 10 33 380.5 25 
C204.50 2121 1326 11 4330 365.1 29 
C205.25 107 5 9 1 305.9 24 
C205.50 512 35 10 45 295.4 26 
C206.25 166 1 11 1 367.2 24 
C206.50 603 45 11 99 339.2 29 
C207.25 103 10 10 11 258 23 
C207.50 1011 1050 12 549 303.1 29 
C208.25 117 9 10 5 328.6 24 
C208.50 682 325 11 299 339.6 29 
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problems by taking the first 10 customers from instances R2 to evaluate performance of the 
presented heuristic algorithm in comparison to the optimal solutions. The heuristic algorithm 
discussed in this paper was coded and run on a PC Pentium iii, 800MHz, 512 MB Ram. 
 
The results reported in Table1 show that the heuristic leads to optimal solutions in reasonable time 
( 75max =T ). It is apparent that CPU time of Phase 2 depends on the number of routes in Phase 1. 
Tables 2-4 show the results of computational experiments with different Tmax values and problem 
instances. Table 2 shows the results of  C2  and 220max =T , Table 3 shows the results of R2 and 

90max =T . The results of RC2 with 75max =T  are given in Table 4. In these tables the numbers of 
routes in phase 1 and in phase 2 are given. Finally Table 5 summarizes all results. 
 

Table 3: Experimental results with Tmax=90 
 

 Phase 1 Phase 2 Goal (1) Goal (2) 

Instance No. of 
routes 

CPU Time 
(In second) No. of routes CPU Time 

(In second) Cost 
No. of 
served 

customer 

R201.25 297 5 9 2 405.9 22 

R201.50 1653 135 9 105 478.1 29 

R202.25 698 3 8 36 298.2 19 

R202.50 5950 537 8 15310 401.6 25 

R203.25 997 27 6 74 357.0 20 

R203.50 10357 1058 10 103587 398.1 34 

R204.25 1258 93 6 225 332.5 21 

R204.50 6985 985 8 79358 456.7 32 

R205.25 598 5 8 20 401.2 23 

R205.50 4239 341 9 8219 489.3 31 

R206.25 1095 27 8 49 465.2 25 

R206.50 11035 1036 8 98256 495.4 34 

R207.25 1459 95 8 503 497.6 22 

R207.50 14235 18259 8 300523 501.6 31 

R208.25 1357 105 6 487 385.2 23 

R208.50 15210 21357 * * * * 

R209.25 708 14 8 53 435.8 23 

R209.50 7245 6879 9 41268 485.1 31 

R210.25 905 17 8 59 495.3 20 

R210.50 10548 12698 8 101386 498.6 28 

R211.25 1601 122 8 431 445.3 24 

R211.50 7689 10259 8 50269 495.7 32 
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Table 4: Experimental results with Tmax =75 
 

 Phase 1 Phase 2 Goal (1) Goal (2) 

Instance No. of routes CPU Time 
(In second) 

No. of 
routes 

CPU Time 
(In second) Cost 

No. of 
served 

customer 
RC201.25 69 1 8 2 379.1 15 
RC201.50 152 1 8 2 385.6 19 
RC202.25 155 1 7 3 335.6 17 
RC202.50 369 9 8 7 385.6 21 
RC203.25 201 3 7 4 322.3 19 
RC203.50 536 3 7 41 339.1 21 
RC204.25 298 2 8 6 414.7 21 
RC204.50 785 60 8 95 395.8 23 
RC205.25 128 1 7 2 350.8 18 
RC205.50 303 5 7 9 303.5 21 
RC206.25 131 1 7 2 358.4 18 
RC206.50 322 2 8 11 401.9 22 
RC207.25 241 2 7 2 402.5 19 
RC207.50 678 5 7 36 395.8 21 
RC208.25 301 1 8 8 395.3 21 
RC208.50 1006 86 8 106 387.6 23 

 
Table 5 : The summary of results with different problem sets 

 
 Phase 1 Phase 2  

 Ave of 
routes 

Ave of CPU 
Time 

(In second) 
Ave of routes 

Ave of CPU 
Time 

(In second) 

Ave of served 
customer 

C2.25 221.1 8.1 10.3 9.6 23.8 
R2.25 997.5 46.6 7.5 176.3 22.0 
RC.25 190.5 1.5 7.4 3.6 18.5 
C2.50 981.1 434.5 11.1 939.8 28.3 
R2.50 8649.6 6685.8 8.5 79828.1 30.7 

RC2.50 518.9 21.4 7.6 38.4 21.4 
 
Average number of routes in Phase 1 is 469.72 for instances with 25 customers and is 3383.21 for 
instances with 50 customers. These tables show the impact of using dominance relation and maxT  on 
the number of feasible routes in Phase 1. 
 
5. CONCLUSION 
 
In this paper we proposed a linear goal programming model for a variant of vehicle routing problem 
with time windows (VRPTW) where a vehicle can perform several routes during its workday. This 
variant of VRPTW is called single vehicle routing problem with time windows and multiple routes. 
We also proposed a heuristic based on shortest path algorithm to solve the multi-objective problem. 
The proposed algorithm is capable of solving medium-size VRP’s which include around 50 
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customers. As a future development we suggest improving our algorithm to solve large instances of 
VRP. 
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