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ABSTRACT 
 

We consider the problem of using simulation to efficiently estimate the win probabilities for 
participants in a general random knockout tournament. Both of our proposed estimators, one 
based on the notion of “observed survivals” and the other based on conditional expectation and 
post-stratification, are highly effective in terms of variance reduction when compared to the raw 
simulation estimator. For the special case of a classical 2n -player random knockout tournament, 
where each survivor of the previous round plays in the current round, a second conditional 
expectation based estimator is introduced. At the end, we compare our proposed simulation 
estimators based on a numerical example and in terms of both variance reduction and the time 
to complete the simulation experiment. Based on our empirical study, the method of “observed 
survivals” is the most efficient method. 

 

1. INTRODUCTION AND SUMMARY 
 
Selecting a single winner from a set of many contestants is the common theme in many sporting 
events. Tournaments of varying structures are used for choosing a winner in situations where 
players can be compared pairwise. In a knockout tournament players compete head-to-head in 
matches; with the losers being eliminated from the tournament. In a random knockout tournament at 
the outset of each round players are paired at random.  
 
A general knockout tournament involving N players is specified by positive integer parameters n, 
m1,…, mn-1, mn = 1, satisfying 
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The interpretation of these parameters is that the tournament is to consist of n rounds, with round i 

involving mi matches. Let ∑
−
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jk mNr  be the number of players remaining at the beginning of 

round k. 
 
We say that the knockout tournament is a random knockout tournament if the players involved in 

round i are randomly chosen, and then randomly paired, from the ∑
−

=
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j
jmN  players who have not 

been eliminated in any of the preceding rounds. We assume that the outcome of a match between 
two players in any round depends only on the pair and not on the round or previous rounds, and we 
let Pij = 1−Pji denotes the probability that player i defeats player j if they are paired. 
 
The player who wins the match in round n is called the winner of the tournament. Letting Pi be the 
probability that player i is the winner of the tournament i = 1, . . . ,N, we are interested in using 
simulation to efficiently estimate these Pi’s  
 
In section 2 we propose an efficient simulation procedure based on the notion of “observed 
survivals”. In section 3 we combine conditional expectation and post-stratified sampling for another 
simulation approach. In section 4, we consider the “classical knockout tournament” where N =2n 
and round k consists of 2n-k matches, and present a second conditional expectation estimator. Two 
numerical examples are considered in section 5. In these examples, a considerable variance 
reduction over the raw simulation estimator is gained when using any of our suggested methods. 
The time to complete the simulation experiment is also considered for each method. Considering 
the variance reduction criterion in parallel with the time to obtain the simulation results, we 
conclude that the observed survival method is best. 
 
2. METHOD 1: OBSERVED SURVIVALS AND THE PRODUCT ESTIMATOR 
 
We can model the evolution of the random knockout tournament from each round to the next one 
by the transitions of a Markov chain whose states are the sets of players alive at the outset of each 
round. Let Ni be the total number of rounds that player i survives (that is, for 0 ≤ j < n, Ni = j if 
player i loses in round j +1). Our problem of estimating Pi = P(Ni > n −1) is in fact a special case 
of a more general problem of using simulation to estimate the distribution of the number of 
transitions it takes a Markov chain to enter a particular set of states. Specifically, Ni+1 is the 
number of transitions that it takes the Markov chain whose state is the set of surviving players at the 
beginning of each round to enter a state that does not contain i. In Ross and Schechner (1985) 
simulation estimators based on observed hazards were developed to efficiently estimate first 
passage distributions to a given set of states of a Markov chain. Our method 1 uses the estimator 
developed in Ross and Schechner (1985). 
 
Each simulation run involves simulating the tournament through n −1 rounds. (There is no need to 
simulate round n). 
 
Observe that 
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Note that )11()( −≥−>= kNkNPis iik  is the discrete survival rate value representing the 
probability that player i survives round k given that he has survived up to round k. Using simulation, 
we illustrate how to estimate ∏ =

=−>
n

k ki isnNP
1

)()1( . 

 
Remark. Using that i will play in round 1 with probability 2m1/N and, if he does play, that his 
opponent is equally likely to be any of the other N−1 players, we have that  
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Let j

iN  be the number of rounds that i survives in the jth simulation run. We define “observed 
survivals” at the jth simulation run as point estimates of sk(i), k = 1,…,n, as follows. Let 
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where j

kβ  is the simulated set of players present at the beginning of round k. Thus, if j
iN  is the 

number of rounds that i survives in the jth simulation run, then 
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Note that )(ij

kλ  is an unbiased estimator of sk(i) provided that 1−≥ kN j
i . 

 
Suppose that we make a total of r simulation runs. Let 
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Then )(ikλ  is an estimate of the discrete survival rate value )11()( −≥−>= kNkNPis iik  and 

∏ =

n

k k i
1

)(λ  is a consistent estimate of ∏ =
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k ki snNP
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)1(  as r, the number of simulation 

runs, goes to infinity. 
 
Remark. Suppose performing r simulation runs, we have not been able to obtain point estimates of 
sm(i),…, sn(i). In other words, consider the situation where 1−< mN j

i  for all j = 1, .., r. To estimate 
)1( −> nNP i  based on the aforementioned estimator it is useful to derive analytic bounds for sk(i). 

 
Consider the set of probabilities for player i, {Pij: j≠i, j=1, 2,..., N}, and order them so that 

121
...

−
≤≤≤

NiIiIiI PPP . Then, lower and upper bounds for sk(i) are as follows 
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Approximation of Var (∏ =

n

k k1
λ ) 

 
In Ross and Schechner (1985)  a two-step method to approximate Var (∏ =

n

k k1
λ ) is developed. 

First Var ( kλ ), k =1, ..., n is approximated, and then using the Delta method and combining these 

approximations, an approximation of Var (∏ =

n

k k1
λ ) is obtained. (See Ross and Schechner, 1985  

for details.) 
 
3. METHOD 2: CONDITIONAL EXPECTATION AND POST STRATIFICATION 
 
Until player i loses a match, player i is designated as the surrogate for i. If a player beats i in some 
round, then at the beginning of the next round that player becomes the surrogate for i. Any player 
beating a surrogate for i during a round takes over as the surrogate for i at the beginning of the next 
round. In this manner, at the beginning of each round exactly one of the remaining players is the 
surrogate for i. Let Ti be the number of matches played by players while they are the surrogate of i. 
 
Suppose that Ti=t. Let Fi,1 denote the first player to play i in a match; let Wi,1 be the winner of that 
match. Let Fi,2 denote the next player to play Wi,1 in a match; let Wi,2 be the winner of that match. Let 
Fi,3 denote the next player to play Wi,2 in a match; let Wi,3 be the winner of that match, and so on up 
to Fi,t. Consequently, in order to win the tournament, player i would have to successively beat all the 
players Fi,j , j=1,…,t. 
 
Now, let 
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denote the proportion of the players that have survived the first j−1 rounds who play in round j. 
Also, let Ij , j=1,…,n, be independent Bernoulli random variables such that  
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It is easy to see that 
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To compute the preceding probabilities, let 
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Conditioning on Is gives that 
 

)()1()1()( 11 kPpkPpkP sssss −− −+−=  
 
Starting with P1(1) = p1, P1(0)=1-p1, we can recursively solve the preceding until we have the 
quantities Pn(k), k=0,...,n. 
 
Let Ii be the indicator of the event that i wins the tournament. Because 
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we could use ∏ =
t
j Fi jiP1 ,,  as a conditional expectation estimator of Pi. However, because there 

would appear to be a strong negative correlation between Ii and Ti, a post stratification estimator 
should have an even smaller variance. That is, write 
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and then, after completing r simulation runs, estimate ][ kTIE ii =⎢  by the average of the quantities 

∏ =
i

ji
T
j FiP1 ,,  obtained in those runs having Ti=k. It can be shown (see Glasserman, 2004, p. 235) 

that as the number of simulation runs goes to infinity the variance of the post-stratified estimator is 
of the same order of magnitude as that of the stratified estimator that does the proportion Pn(k) of its 
runs conditional on Ti=k. We can also estimate the variance of the estimator of ][ kTIE ii =⎢  with 

the sample variance of the values ∏ =
i

ji
T
j FiP1 ,

, having Ti=k divided by the generated number of 

such values. 
 
Remark. For a fixed value of i, there may be values of k for which there are no runs for which Ti=k. 
If the value of Pn(k) is sufficiently small, we can use 0 as the estimate of )(][ kPkTIE nii =⎢ . 
However, if there are enough such values of k, the preceding post stratification will not work for 
estimating Pi. In this case, we suggest using the simulated data to estimate Pi by using the 

conditional expectation estimator ∏ =
i

ji
T
j FiP1 ,,  in conjunction with using Ti as a control variable 

with known mean ∑ =
=

n

j ji pTE
1

][ . (Of course, we would still use the post stratification procedure 

to estimate the values Pj for which the preceding difficulty did not arise.) 
 
Example. To get an idea of the amount of variance reduction the preceding methods yield, suppose 
we want to estimate Pi for a specified i when Tij=α, j≠i. Now, with Ij, j=1,...,n, as previously defined 
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The straight conditional expectation estimator reduces, in this case, to the estimator iTα . Its 
variance is 
 

∏
=

−−−=

−=

−=

n

j
ijj

i
T

i
TT

Prm

PE

PEVar

i

ii

1

22

22

22

)2)1(1(                

])[(                

])[()(

α

α

αα

 

 
For instance, when N=5, mj≡1, α=1/2, the preceding gives that 
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whereas the variance of the raw simulation estimator is Pi(1-Pi) = 0.16. 
 
Both the conditional expectation stratification estimator and the previous section’s estimator based 
on survival probabilities have 0 variance when Pij≡α. 
 
4. CLASSICAL KNOCKOUT TOURNAMENT 
 
In a classical random knockout tournament N=2n, and there are 2n-k matches in the kth round of the 
tournament. In performing a simulation run we can determine pairings in each round by generating 
a single random permutation nRR

21,...,  of 1,…, 2n that would determine how to assign players to 
starting positions that are numbered from 1 to 2n. Matches in the first round are specified by pairing 
players assigned to adjacent starting positions. In the kth round, adjacent winners of the previous 
round are paired, k = 2,...,n. Consider, for instance, an eight-player random knockout tournament 
with, [1, 2, 3, 4, 5, 6, 7, 8], as the generated random permutation. In the first round, player 1 plays 
against player 2, player 3 plays against player 4, player 5 plays against player 6, and player 7 plays 
against player 8. In the second round, the winner of player 1 and 2 plays against the winner of 
player 3 and 4, the winner of player 5 and 6 plays against the winner of player 7 and 8. In the last 
round the survivors of the second round play against each other. A recursive procedure has been 
introduced in Edwards (1996) to compute winning probabilities for a classical random knockout 
tournament when players’ starting positions are known and from that point on pairings are 



94 Ross and Ghamami 

determined as described above. Thus, given the random permutation R, we can compute the 
conditional win probabilities, Pi, i=1,…, 2n. Thus, in this case, we have a second conditional 
expectation estimator. 
 
Remark. When compared to method 2, the second conditional expectation estimator is derived by 
conditioning on less information and so it is preferable to method 2 in terms of the variance 
reduction criterion. 
 
5. NUMERICAL EXAMPLES 
 
Consider a knockout tournament with 8 players. It is common to represent players’ probabilities, Pij, 
i=1,2,…,8; j=1,2,…,8, in a matrix which is usually called the “preference matrix”. Consider the 
following preference matrix for an 8-player random knockout tournament: 
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7.4.5.4.7.5.4.
3.4.6.9.5.5.2.
6.6.2.4.1.2.3.
5.4.8.3.7.3.6.
6.1.6.7.8.4.5.
3.5.9.3.2.6.7.
5.5.8.7.6.4.8.
6.8.7.4.5.3.2.

 

 
We consider both a one-match-per-round random knockout tournament (N=8, n=7, mi≡1), and a 
classical 8-player random knockout tournament. Using 105 simulation runs, we estimate Pi’s for 
both types of tournaments. 
 
The result. The following first three tables refer to the simulation result of the one-match-per-round 
random knockout tournament, and the last three tables refer to the classical random knockout 
tournament. (Note that in tables given below, numbers below each Pi refer to simulation estimates 
related to player i). Recall that method 1 is the method of observed survivals, and method 2 refers to 
the conditional expectation combined with post-stratification. In the simulation of the classical 
knockout tournament method 3 refers to the second conditional expectation estimator introduced in 
section 4. Based on our numerical example, method 2 in the one-match-per-round tournament and 
both method 2 and 3 in the classical knockout tournament are preferable to the method of observed 
survivals in terms of variance reduction. However, in addition to the variance reduction, the factor 
of time has also been taken into account by measuring the amount of time MATLAB takes to 
complete our simulation experiments. It is interesting to observe that our estimator based on the 
notion of observed survivals takes considerably less time compared to the conditional expectation 
based estimators in both types of tournaments. This can be explained by noting that when 
computing simulation estimators based on the notion of conditional expectation introduced in this 
paper, there are many multiplication operations involved in a single simulation run. In contrast, in 
method 1, point estimates of sk(i) are first collected for k=1,2,...,n over 105 simulation runs, and then 
averaged. Pi is then estimated by the product of these averages at the end of the simulation 
experiment. Based on the values obtained in our numerical example, method 1 is the most efficient 
simulation procedure for estimating Pi’s in random knockout tournaments. 
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One Match Per Round Random Knockout Tournament 
 

Table 1. Estimates of Pi’s 
 

 P1 P2 P3 P4 P5 P6 P7 P8 
Raw Simulation .1097 .2129 .1132 .1388 .1195 .0481 .1208 .1369 

Method 1 .1112 .2112 .1141 .1394 .1184 .0483 .1207 .1365 
Method 2 .1113 .2098 .1131 .1394 .1183 .0483 .1194 .1370 

 
Table 2. Variance of the estimators based on 105 simulation runs (10-9 scale) 

 
 P1 P2 P3 P4 P5 P6 P7 P8 

Raw Simulation 977 1676 1004 1195 1052 458 1062 1182 
Method 1 448.45 122.2 182.1 208.43 104 65.67 130.08 52.31 
Method 2 59 111 63 84 55 21 68 62 

 
Table 3. Elapsed time (in second) 

 
Raw Simulation Method 1 Method 2 

101.926 184.9 7362 
 

Classical Random Knockout Tournament 
 

Table 4. Estimates of Pi’s 
 

 P1 P2 P3 P4 P5 P6 P7 P8 
Raw Simulation .1083 .2249 .1107 .1422 .1183 .0367 .1209 .138 

Method 1 .1078 .2245 .1123 .1439 .1174 .0363 .1188 .1384 
Method 2 .1082 .2244 .1124 .1437 .118 .0366 .1192 .1385 
Method 3 .108 .2241 .1122 .1437 .1176 .0365 .1193 .1387 

 
Table 5. Variance of the estimators based on 105 simulation runs (10-9 scale) 

 
 P1 P2 P3 P4 P5 P6 P7 P8 

Raw Simulation 966 1743 985 1220 1043 353 1063 1189 
Method 1 107 81 114 130 78 38 117 42 
Method 2 51 60 68 92 40 10 51 21 
Method 3 14 23 22 31 13 3 16 9 

 
Table 6. Elapsed time (in second) 

 
Raw Simulation Method 1 Method 2 Method 3 

9.1791 13.2288 2580.4 3475.3 
 
Remark. Recall in method 1, we compute kλ ’s from r simulation runs to obtain a single point 
estimate of Pi. We used the method of Ross and Schechner (1985)  to estimate the variance of the 
estimator. Calling this the internal variance estimator, we studied its accuracy by comparing it with 
an external variance estimator Var(ext) based on a meta-experiment of 1000 independent 
experiments. 
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From the aforementioned numerical example, we obtained for the classical tournament that 
Var(int)=120×10-9 and Var(ext)=118×10-9, leading us to conclude that the internal variance 
estimator is accurate. 
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