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ABSTRACT

In a multiple linear regression model, there are instances where one has to update the regression
parameters. In such models as new data become available, by adding one row to the design
matrix, the least-squares estimates for the parameters must be updated to reflect the impact of
the new data. We will modify two existing methods of calculating regression coefficients in
multiple linear regression to make the computations more efficient. By resorting to an initial
solution, we first employ the Sherman-Morrison formula to update the inverse of the transpose
of the design matrix multiplied by the design matrix. We then modify the calculation of the
product of the transpose of design matrix and the design matrix by the Cholesky decomposition
method to solve the system. Finally, we compare these two modifications by several
appropriate examples.

Keywords: Regression, Inverse matrix, Cholesky decomposition, Sherman-Morrison -
Woodbury formula

1. INTRODUCTION

There are some studies in the literature that employ the Sherman—Morrison formula and the
corresponding generalization given by the Sherman—-Morrison-Woodbury formula to express the
inverse of a matrix after a small rank perturbation in terms of the inverse of the original matrix.

Hager (1989) presents the history of Sherman-Morrison-Woodbury formulas and discusses some of
its applications to statistics, networks, structural analysis, asymptotic analysis, optimization, and
partial differential equations. He notes that the Sherman-Morrison-Woodbury formulas express the
inverse of a matrix after a small rank perturbation in terms of the inverse of the original matrix.
Hager in his paper surveys the history of these formulas and examines some applications where
these formulas are helpful. Especially he presents an application of the modified formula to estimate
some parameters in a linear model as new data are received.
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Egidia and Maponia (2006) proposed a new direct method to solve linear systems. Their method is
based on the Sherman-Morrison formula and uses a finite iterative scheme. As they say, the
Sherman—Morrison formula and the corresponding generalization given by the Sherman—Morrison—
Woodbury formula have been used in several applications, such as the solution of special linear
systems, the solution of linear systems arising in mathematical programming problems and other
interesting applications. There are many aspects of Sherman-Morrison-Woodbury formula which
have been addressed in the literature (see: Fitzpatrik and Murphy , 1993, Kok Song Chua, 2003 and
Lai and Vemuri, 2003).

Cholesky decomposition, on the other hand, is widely used for solving linear systems. Pourahmadi,
et. al (2007) present a method for simultaneous modeling of Cholesky decomposition of several
covariance matrices. They highlight the conceptual and computational advantages of the
unconstrained parameterization of the Cholesky decomposition and compare the results with those
obtained by the classical spectral (eigenvalue) and variance-correlation decompositions. Some other
studies related to employing the Cholesky decomposition for solving linear systems are Kaci et. al
(2001), Khamis and Kepler (2002), and Huang et al (2006).

Many of the results derived for the simple linear model can be extended to the general linear case. It
is not possible to develop the general model conveniently without resorting to matrix notation. We

will denote the transpose of an arbitrary matrix A by A'and if Ais a square nonsingular matrix,
then we denote its inverse by A™.

Consider the linear regression model
Y =6+ X, +..+ B,x, +e (1)

and assume that a response y; is observed at the values x;,x;;,....x;, i =1, . . ., nwithn>p+ 1.
That is, assume that

P
E(yj)= Y. By, Var(yi)=c®, Cowy;,yr)=0, i#k
J=0
It is possible to reformulate the model in matrix notation as follows:
E(Y)=XB V=4l

where | isthe n x n identity matrix, and Y, B, and Xare

Vi o Xo -0 Xy,
Y=|:1| B=| : | X=|": :

yn ﬁp an T xnp

The least-square (LS) estimates are the values g, = /§ ; that minimize the quantity
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S= ﬁ{yi _ fﬂjxy} _ (Y = XB)(Y - XB)

If we set the first partial derivatives of S with respect to 3;'s, j=0,1,...,p, equal to zero and solve

the resulting system of equations, then we obtain the LS estimates. Specifically, we should solve the
following set of equations:

0 . & !
5= 22|:yi - Zﬂjx(/}(_x,'k) =0, k=01...,p
aﬁk i=1 Jj=0

This system of equations is linear in g, s, and it is conveniently expressed in matrix notation as
XY = X'X.B )
Note that if the matrix X'X is nonsingular, then there exists a unique solution of the form

B = (X'X) XY )
Now suppose we receive new data that gives us the relationcB = y. The new X matrix and

X Y
Y vector corresponding to the additional data are X™" = { 4} and Y™ = { } respectively .
¢ y

If W denotes the product X'Xthat is inverted in (3), then the new W corresponding to the new
X can be expressed as:

Wnew — W0|d + EIE (4)

Therefore, after adding one row to the design matrix, relations (2) and (3) will be changed to:

(xnew )t Ynew — Wnew . B (5)
and
B — (WneW)—l (XHEW)t Ynew (6)

Unless indicated otherwise, we will assume that W = X'X is nonsingular. Of course, a more basic
assumption would be that X has full rank (for more detail see Bain and Engelhardt ,1992 or Neter

et. al, 1996). Thus, one can easily find that X" has also full rank. Hence the matrix
W™ = (X"")" X" is nonsingular (Hoffman, 1971).

To solve this new system, which is obtained after adding new data, one can either evaluate
(W™")™ by the inverse matrix modification formula which will be stated in the next section and
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from (6) directly obtain the regression coefficients or without evaluating (W"*)™, directly from (5)

and by decomposing W""to the product of the lower and upper triangular matrices solve the
system and find the regression coefficients by some simple matrix operations. In this paper we
employ the other methods to achieve this purpose (Gloub and Von Loan, 1998 and Rencher, 2000).

To the best of our knowledge, no work has been done on numerical comparison between Cholesky
decomposition method and Sherman-Morrison formula for solving linear systems. In this paper, by
some appropriate examples, we compare these two methods for updating the least-square estimates
for the parameters of multiple linear regression models and show that the Sherman-Morrison
formula has considerably more numerical error than the Cholesky decomposition method.

In the next two subsections we will present the Sherman-Morrison formula and the Cholesky
decomposition method. In section 2 we will present some useful algorithms followed by two
appropriate numerical examples in section 3.

1.1. Sherman-Morrison and Woodbury Formulas

Hager (1989) discusses various applications of the Sherman-Morrison and Woodbury formulas. He
states the Woodbury and the Sherman-Morrison formula as follows:

If both Aand | — VAU are invertible, then A — UV is invertible and we have
(A- UV)‘1 =A1t+ A‘1U(I - VA‘1U)‘1VA‘1 @)
Suppose that U is nxm and V' is mxn .

We see that (7) provides a formula for the inverse of a matrix after it is modified by mrank 1

corrections. Notice that the matrix | —VVA™U is mxm. Formula (7) which is frequently called the
Woodbury formula is useful in situations where m is much smaller than » and the structure of A is

“nice” so that the effort involved in evaluating the correction A™'U(1 - VA™U) ' VA™ relative to
the effort involved in inverting a general nx» matrix is small (Hager, 1989).

In the special case where U is a column vector # and V is a row vector v, (7) simplifies to

1

—(1 AT AYuivAT (8)

(A-iv) =AT+

Equation (8) is often called the Sherman-Morrison formula. Based on the study of Hager (1989),
equation (7) appeared in several papers before Woodbury’s report (1950) while (8) is actually a
formula given by Bartlett (1951).

In the context of our modifications, we can replace the vectors u# and v in (8) with the vectors

113 =tn

—c'”and ¢ respectively and replace the matrix A in (8) with the matrix W to find from (8) that

1
TR ED)

(W-(=¢'é))* =W+ W (=" )eW
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Or

1

(WneW)fl — (W +E[E)fl — W-l _ -
1+ewWeh)

wiziew? 9)
where ¢ is the vector of the new data. Since W”" is nonsingular then it is invertible and the
relation (9) is just right.

1.2. Cholesky Decomposition Method

This method converts the symmetric matrix Wor W"™" to a lower triangular matrix L such

that W = LL'. With this conversion the system depicted in (2) (or (5)) can be easily solved. This
method is based on the following definitions and theorem.

i=1,7=1

Jj<n End

No

i=i+1

Yes

Wi, 7)=W(i,j)+x(i).v(i)
|

i=it+1

Figure 1: Flowchart of updating the matrix W
Definition: A (complex) n x n matrix A is said to be positive definite if

. A = A” i.e Ais a Hermitian matrix.
. x"Ax>0forall xeC" x=0
Theorem: (Stoer and Bulirsch, 1993) For each n x n positive definite matrix A there is a unique

nxn lower triangular matrix L (I = 0 for k > i) with [,>0,i=10, I, . . ., n, satisfying A = LL". If
Aisreal,sois L.
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2. ALGORITHMS
In this section we will examine two algorithms for updating the design matrix and decomposing the

matrix W to lower and upper triangular matrices (for more details see Golub and Von Loan
(1989)).

Algorithm 1: Updating the general matrix W for computing W"*"

Figurel shows the algorithm flowchart for computation of the outer product update through which
we can compute W™ (see (4)).

Algorithm 2. Cholesky decomposition:

Figure 2 shows the flowchart of the algorithm for decomposing a Hermitian positive definite
matrix A, .

k=i-1 _
> AlG.i)=x%p(i)
No
>
k=1 =i+l
Yes
x=x- A1.k)xA(i.k)
ji<n Yes
k=k-1 No
i=it+]

Figure 2: Flowchart of decomposing a Hermitian positive definite matrix A

nxn
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3. NUMERICAL EXAMPLES

In this section we present two appropriate examples. We name the initial matrix X, and once a row

is added to it we arrive at matrix X, . All calculations are performed with four digits of accuracy
for each of the cases under study.

-1
2 _ 13 1
Example 1. Let X, :[3 1 } andX,=[3 1 |,thenwehave X;X, :W:{1 ) } and
4

0.08 -0.04
(X%,) =W = -

-0.04 0.52

2.005

Now let exact B be B :{ } then X[Y which we call R will be equal to {

22.0649} s
—4.0001 '

—5.9952
we will have

WiR - 2.005
" | —4.0001] "

Now with Cholesky decomposition for solving the system depicted in (2) by algorithm 2 one gets

) 3.6056 0O 3.6056 0.2774 .
XIX, =W = -
0.2774 1.3868 | 0 1.3868
So,
6.1196 2.005
Ly -R , y — , LIBChOL — y , then BChOl. — )
—-5.5471 —3.9999

Comparing the real B and B from Cholesky decomposition method denoted by B<""  we can find

29 1
a small error. Now for X, by using algorithm 1, we have X;X, = W"™" =[1 2} and if the

exactB =
1.2234

1.2436 .
, then R will be {

36.0543}
—0.0101 '

So from (9),

0.08 -0.04 0.32
T Y

—-0.04 0.52 +g -0.16

25

}[0.32 —0.16]=[

0.0351 - 0.0175}

1 —-0.0175 0.5088

Which leads to



82 Sajadifar and. Allameh

B — (W™)R = 0.0351 —0.0175]36.0543] [1.2441
a 1 -0.0175 0.5088 |[1.2234 | |-0.0085

where B5™ denotes the solution of the linear system depicted by (6) whose corresponding
(W"™)™ comes from the Sherman-Morrison formula.
and by the Cholesky decomposition method we have

. ew 93852 0 5.3852 0.1857 .
XoX, =W™ = =LL".
0.1857 1.4020|0 1.4020
36.0543 6.6951 . tes Chol cho. | 1.2436
So,Ly = ,then y = and sinceL B~ =y, thus B~ = .
1.2234 —0.0142 —-0.0101

If eS =‘B—BS’M‘and gChet =‘B—BCh°" denote the errors corresponding to the Sherman-

Morrison formula and Cholesky decomposition method respectively, we will find in example 1 after

receiving new data, that0 = e“"" <e5™ .
Example 2. Let
[ 2.4752 —0.1896 1 1.0073 4.7896 |
-6.7352 -8.96 4,2356 —-0.0001 62.0079
X, =| 47.7868 —35.5691 -23.7998 41.0973 15.3714
-14.6933 -32.1950 -19.0205 23.0820 0.4232
| 45.1882  13.2548 28.6621 —34.2043 -23.2021
Soif B is
B=[1.07 -06742 2 -0.7352 9
then

Rz[—353.3117 —13504.8443 —5941.7900 12540.3001 41483.7387]'.

Now we have B = W™.R, thus

[ 0.0128 0.0019 -0.1062 -0.0776 0.0090 | 1.0629 |
0.0019 0.0028 -0.0135 -0.0079 0.0014 0.7382
B=|-0.1062 -0.0135 0.9020 0.6614 -0.0760 | R=| 1.7329
—-0.0776 -0.0079 0.6614 0.4867 —0.0556 1.0735

| 0.0090 0.0014 -0.0760 -0.0556 0.0067 | 110.1898 |
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and by the Cholesky decomposition method we have

[ 67.7712 ]
—-8.3788  49.8747
XX, =W=| 6.0689  37.1235 18.8064 L
1.2044  —53.1008 -22.9986 6.5295
|-10.7112 -30.3592 22.3631 54.3754 12.2276

SinceLy = R , thus, y =[-5.2133 —271.6513 221.9721 494.1765 110.0586] and
[1.0711 ]
~0.6741
1.9904
0.7281
| 9.0008 |

L'B=Yy,then B=

Now add the row,[25.9999 -15.0563 9.3248 -29.7953 -36.2248] to X, and call the modified
matrix X, . If exact B is

B=[5.071 -3.9942 -0.0073 1.1123 4.1},
then

R =[22936.9659 -22060.0619 -10852.5632 20421.8202 22279.2954]

From (9) we have

[ 1.6900  0.0858 -14.4307 -10.6841 1.1935 |
0.0858  0.0044 -0.7326 -0.5424  0.0606
(W“GW)-lzw-l—; —-14.4307 -0.7326 123.2211 91.2295 -10.1914|.
1+140.9109
—-10.6841 —-0.5424 91.2295 67.5437 —7.5454
| 11935  0.0606 -10.1914 -7.5454  0.8429 |
So,
[ 0.0009 0.0013 -0.0045 —-0.0023 0.0006 |
0.0013  0.0028 —0.0083 -0.0041 0.0010
(W™ )™ =1 -0.0045 —0.0083 0.0337 0.0185 —0.0042|.
—-0.0023 —-0.0041 0.0185 0.0107 -0.0024
| 0.0006 0.0010 -0.0042 -0.0024 0.0008 |
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Now B is ) .
7.1991
—3.3240
B=(W"™)'R=|-1.6186 |.
1.9620
| 6.0940 |
But by the Cholesky decomposition method one gets
[ 72.5874 ]
—-13.2159 51.0854
XX, =W™ =| 9.0062 34.8299 23.6936 L.

—-0.5479 457285 -42.0208 18.2338
—22.9758 -23.1503 -4.0525 58.7350 37.7479]

[ 315.9910 | [ 5.0710 |
—350.0796 -3.9943
Ly =R, then y =| —63.5279 | and since L'B“"" =y, we will have B“™" =| —0.0071|.
261.0955 1.1123
| 154.7663 | | 4.1000 |
Table 1. Comparison between regression coefficient results from (9) and Cholesky with the exact
solution
Ecaxt B B from (9) B from eSs™M gChol..
Cholesky
Examplel with 2.0050 2.0050 2.0050 0.0000 0.0000
X, —4.0001j (— 4.0001] (—3.9999} (o.oooo (0.0002
Examplel with 1.2436 1.2441 1.2436 0.0005 0.0000
X, —0.0101J (—o.oossj —0.0101j [0.0016 [o.oooo
1.0700 1.0629 1.0711 0.0071 0.0011
. -0.6742 0.7382 -0.6741 1.4124 0.0001
Example2 with | | 5 4009 1.7329 1.9904 0.2671 0.0096
Xl 0.7352 1.0735 0.7281 0.3383 0.0071
9.0000 10.1898 9.0008 1.1898 0.0008
5.0710 7.1991 5.0710 2.1281 0.0000
. —3.9942 —3.3240 —3.9943 0.6702 0.0001
Example2 with | 1 _ 5473 ~1.6186 ~0.0071 1.6113 0.0002
X2 1.1123 1.9620 1.1123 0.8497 0.0000
4.1000 6.0940 4.1000 1.9940 0.0000
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Table 1 shows the results of these two examples.

As can be seen, in both examples, the errors associated with the Cholesky decomposition are
considerably less than the ones associated with the Sherman-Morrison formula.

4. CONCLUSIONS

In this paper, using the Sherman-Morrison formula we first updated the (X'X)™ matrix after
receiving new data by resorting to an initial inverse solution and then modified the calculation of
(X'X) by utilizing the Cholesky decomposition method to solve the system. In this study we

compared these two modifications. Resorting to some numerical examples it can be seen that using
the Cholesky decomposition method to update the regression coefficients leads to considerably less
error than using the Sherman-Morrison formula. Especially when the size of predicting variables in
the multiple linear regression is too large, this error can lead to an irremediable size in forecasting
the response variable. One way to overcome this fault can be resorting to much higher accuracy in
performing the calculations. Of course it should be noted that even though the error associated with
the method based on the Sherman-Morrison formula is greater than the one incurred by the
Cholesky decomposition method, the former method has the advantage of dealing with linear
relations only. This fact can significantly affect the time complexity corresponding to these two
methods.
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