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ABSTRACT 
 
In a multiple linear regression model, there are instances where one has to update the regression 
parameters. In such models as new data become available, by adding one row to the design 
matrix, the least-squares estimates for the parameters must be updated to reflect the impact of 
the new data. We will modify two existing methods of calculating regression coefficients in 
multiple linear regression to make the computations more efficient. By resorting to an initial 
solution, we first employ the Sherman-Morrison formula to update the inverse of the transpose 
of the design matrix multiplied by the design matrix. We then modify the calculation of the 
product of the transpose of design matrix and the design matrix by the Cholesky decomposition 
method to solve the system. Finally, we compare these two modifications by several 
appropriate examples. 

 

Keywords: Regression, Inverse matrix, Cholesky decomposition, Sherman-Morrison -
Woodbury formula 

 

1. INTRODUCTION 
 
There are some studies in the literature that employ the Sherman–Morrison formula and the 
corresponding generalization given by the Sherman–Morrison–Woodbury formula to express  the 
inverse of a matrix after a small rank perturbation in terms of the inverse of the original matrix. 
 
Hager (1989) presents the history of Sherman-Morrison-Woodbury formulas and discusses some of 
its applications to statistics, networks, structural analysis, asymptotic analysis, optimization, and 
partial differential equations. He notes that the Sherman-Morrison-Woodbury formulas express the 
inverse of a matrix after a small rank perturbation in terms of the inverse of the original matrix. 
Hager in his paper surveys the history of these formulas and examines some applications where 
these formulas are helpful. Especially he presents an application of the modified formula to estimate 
some parameters in a linear model as new data are received. 
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Egidia and Maponia (2006) proposed a new direct method to solve linear systems. Their method is 
based on the Sherman–Morrison formula and uses a finite iterative scheme. As they say, the 
Sherman–Morrison formula and the corresponding generalization given by the Sherman–Morrison–
Woodbury formula have been used in several applications, such as the solution of special linear 
systems, the solution of linear systems arising in mathematical programming problems and other 
interesting applications. There are many aspects of Sherman-Morrison-Woodbury formula which  
have been addressed in the literature (see: Fitzpatrik and Murphy , 1993, Kok Song Chua, 2003 and 
Lai and Vemuri, 2003). 
 
Cholesky decomposition, on the other hand, is widely used for solving linear systems. Pourahmadi, 
et. al (2007) present a method for simultaneous modeling of Cholesky decomposition of several 
covariance matrices. They highlight the conceptual and computational advantages of the 
unconstrained parameterization of the Cholesky decomposition and compare the results with those 
obtained by the classical spectral (eigenvalue) and variance-correlation decompositions. Some other 
studies related to employing the Cholesky decomposition for solving linear systems are Kaci et. al 
(2001), Khamis and Kepler (2002), and Huang et al (2006). 
 
Many of the results derived for the simple linear model can be extended to the general linear case. It 
is not possible to develop the general model conveniently without resorting to matrix notation. We 
will denote the transpose of an arbitrary matrix A  by tA and if A is a square nonsingular matrix, 
then we denote its inverse by 1A− . 
 
Consider the linear regression model 
 

εxxx ++++= ppβββ ...1100Y  (1) 
 
and assume that a response yi is observed at the values  xi0,xi1,…,xip, i =1, . . . , n with n > p + 1. 
That is, assume that  
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It is possible to reformulate the model in matrix notation as follows: 
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The least-square (LS) estimates are the values jj ββ ˆ=  that minimize the quantity 
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If we set the first partial derivatives of S with respect to jβ 's, j=0,1,…,p,  equal to zero and solve 
the resulting system of equations, then we obtain the LS estimates. Specifically, we should solve the 
following set of equations: 
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This system of equations is linear in jβ ’s, and it is conveniently expressed in matrix notation as 
 

X.BXYX tt =  (2) 
 
Note that if the matrix XXt  is nonsingular, then there exists a unique solution of the form 
 

YXX)(XB t1t −=  (3) 
 
Now suppose we receive new data that gives us the relation yc =Br . The new X matrix and 

Y vector corresponding to the additional data are ⎥
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If W denotes the product XXt that is inverted in (3), then the new W corresponding to the new 
X can be expressed as:  
 

cc t rr+= oldnew WW  (4) 
 
Therefore, after adding one row to the design matrix, relations (2) and (3) will be changed to: 
 

.BWY)(X newnewtnew =  (5) 
 
and 
 

newtnew1new Y)(X)(WB −=  (6) 
 
Unless indicated otherwise, we will assume that XXW t=  is nonsingular. Of course, a more basic 
assumption would be that X has full rank (for more detail see Bain and Engelhardt ,1992 or Neter 
et. al, 1996). Thus, one can easily find that newX has also full rank. Hence the matrix 

newtnewnew XXW )(=  is nonsingular (Hoffman, 1971). 
 
To solve this new system, which is obtained after adding new data, one can either evaluate 

1)( −newW  by the inverse matrix modification formula which will be stated in the next section and 
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from (6) directly obtain the regression coefficients or without evaluating 1)( −newW , directly from (5) 

and by decomposing newW to the product of the lower and upper triangular matrices solve the 
system and find the regression coefficients by some simple matrix operations. In this paper we 
employ the other methods to achieve this purpose (Gloub and Von Loan, 1998 and Rencher,  2000). 
 
To the best of our knowledge, no work has been done on numerical comparison between Cholesky 
decomposition method and Sherman-Morrison formula for solving linear systems. In this paper, by 
some appropriate examples, we compare these two methods for updating the least-square estimates 
for the parameters of multiple linear regression models and show that the Sherman-Morrison 
formula has considerably more numerical error than the Cholesky decomposition method. 
 
In the next two subsections we will present the Sherman-Morrison formula and the Cholesky 
decomposition method. In section 2 we will present some useful algorithms followed by two 
appropriate numerical examples in section 3. 
 
1.1. Sherman-Morrison and Woodbury Formulas  
 
Hager (1989) discusses various applications of the Sherman-Morrison and Woodbury formulas. He 
states the Woodbury and the Sherman-Morrison formula as follows: 
 
If both A and UVAI 1−− are invertible, then UVA − is invertible and we have 
 

111111 VAU)VAU(IAAUV)(A −−−−−− −+=−  (7) 
 
Suppose that U is mn×  and V is nm× .  
 
We see that (7) provides a formula for the inverse of a matrix after it is modified by m rank 1 
corrections. Notice that the matrix UVAI 1−−  is mm× . Formula (7) which is frequently called the 
Woodbury formula is useful in situations where m is much smaller than n  and the structure of A  is 
“nice” so that the effort involved in evaluating the correction 1111 VAU)VAU(IA −−−− −  relative to 
the effort involved in inverting a general nn×  matrix is small (Hager, 1989). 
 
In the special case where U is a column vector u

r  and V is a row vector v
r , (7) simplifies to  
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Equation (8) is often called the Sherman-Morrison formula. Based on the study of Hager (1989), 
equation (7) appeared in several papers before Woodbury’s report (1950) while (8) is actually a 
formula given by Bartlett (1951). 
 
In the context of our modifications, we can replace the vectors uv  and v

r  in (8) with the vectors 
“ tcr− ” and cr  respectively and replace the matrix A in (8) with the matrix W to find from (8) that  
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Or 
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where cr is the vector of the new data. Since newW  is nonsingular then it is invertible and the 
relation (9) is just right. 
 
1.2. Cholesky Decomposition Method 
 
This method converts the symmetric matrix W or newW  to a lower triangular matrix L such 
that tLLW = . With this conversion the system depicted in (2) (or (5)) can be easily solved. This 
method is based on the following definitions and theorem. 

 

 
 

Figure 1: Flowchart of updating the matrix W  
 
Definition: A (complex) n × n matrix A is said to be positive definite if  
 
• A = AH, i.e A is a Hermitian matrix. 

•  xHAx > 0 for all nx C∈  0≠x   

 
Theorem: (Stoer and Bulirsch, 1993) For each n × n positive definite matrix A there is a unique 
n×n lower triangular  matrix L (lik = 0 for k > i) with lii > 0, i = 0, 1, . . . , n, satisfying A = LLH. If 
A is real, so is L. 
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2. ALGORITHMS 
 
In this section we will examine two algorithms for updating the design matrix and decomposing the 
matrix W  to lower and upper triangular matrices (for more details see Golub and Von Loan 
(1989)).  
 
Algorithm 1: Updating the general matrix W for computing newW   
 
Figure1 shows the algorithm flowchart for computation of the outer product update through which 
we can compute newW (see (4)). 
 
Algorithm 2. Cholesky decomposition: 
 
Figure 2 shows the flowchart of the algorithm for decomposing a Hermitian positive definite 
matrix nn×A .  
 

 
 

 
Figure 2: Flowchart of decomposing a Hermitian positive definite matrix nn×A  
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3. NUMERICAL EXAMPLES 
 
In this section we present two appropriate examples. We name the initial matrix 1X and once a row 
is added to it we arrive at matrix 2X .  All calculations are performed with four digits of accuracy 
for each of the cases under study. 
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Now with Cholesky decomposition for solving the system depicted in (2) by algorithm 2 one gets 
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Comparing the real B and B from Cholesky decomposition method denoted by Chol.B , we can find 

a small error. Now for 2X by using algorithm 1, we have ⎥
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Which leads to 
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where MSB −  denotes the solution of the linear system depicted by (6) whose corresponding 

1new )(W − comes from the Sherman-Morrison formula. 
and by the Cholesky decomposition method we have 
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If MSMS BBe −− −= and Chol.Chol. BBe −=  denote the errors corresponding to the Sherman-

Morrison formula and Cholesky decomposition method respectively, we will find in example 1 after 
receiving new data, that MSChol. ee0 −<= . 
 
Example 2. Let  
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and by the Cholesky decomposition method we have 
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Now add the row, [ ]2248.367953.293248.90563.159999.25 −−−  to 1X and call the modified 
matrix 2X . If exact B is 
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Now B is 
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But by the Cholesky decomposition method one gets 
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Table 1. Comparison between regression coefficient results from (9) and Cholesky with the exact 

solution 
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⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

0008.0
0071.0
0096.0
0001.0
0011.0

 

 
 

Example2 with 
2X  

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

−
−

1000.4
1123.1
0073.0
9942.3

0710.5

 

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

−
−

0940.6
9620.1
6186.1
3240.3

1991.7

 

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

−
−

1000.4
1123.1
0071.0
9943.3

0710.5

 

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

9940.1
8497.0
6113.1
6702.0
1281.2

 

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

0000.0
0000.0
0002.0
0001.0
0000.0
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Table 1 shows the results of these two examples. 
 
As can be seen, in both examples, the errors associated with the Cholesky decomposition are 
considerably less than the ones associated with the Sherman-Morrison formula. 
 
4. CONCLUSIONS 
 
In this paper, using the Sherman-Morrison formula we first updated the 1tX)(X − matrix after 
receiving new data by resorting to an initial inverse solution and then modified the calculation of 

X)(Xt  by utilizing the Cholesky decomposition method to solve the system. In this study we 
compared these two modifications. Resorting to some numerical examples it can be seen that using 
the Cholesky decomposition method to update the regression coefficients leads to considerably less 
error than using the Sherman-Morrison formula. Especially when the size of predicting variables in 
the multiple linear regression is too large, this error can lead to an irremediable size in forecasting 
the response variable. One way to overcome this fault can be resorting to much higher accuracy in 
performing the calculations. Of course it should be noted that even though the error associated with 
the method based on the Sherman-Morrison formula is greater than the one incurred by the 
Cholesky decomposition method, the former method has the advantage of dealing with linear 
relations only. This fact can significantly affect the time complexity corresponding to these two 
methods. 
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