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Abstract
In this research, a single batch processing madtheduling problem with
minimization of total earliness and tardiness as djective function is
investigated.We first formulate the problem as axedi integer linear
programming model. Since the research problemasvsito be NP-hard, an
improved memetic algorithmis proposed to efficigrgblve the problem. To
further enhance the memetic algorithm and avoidnptare convergence, we
hybridize it with a variable neighborhood searchgedureas its local search
engine. A dynamic programming approach is also gsed to find optimal
schedule for a given set of batches. Wedesign aichagexperiment to
evaluate the effects of different parameters on peeformance of the
proposed algorithm. The results of an extensive pgational study
demonstrate the efficacy of the proposed algorithm.
Keywords: Batch processing machine, total earliness andnesd, memetic
algorithm, variable neighborhood search, dynamogm@mming.

1- Introduction

A batch processing machine (BPM) can processrakyobs simultaneously. The jobs that are
processed together on the machine are referredath. All the jobs in a batch have the same start
and completion time on the machine. The procedsimg of a batch is equal to the largest processing
time of the jobs in the batch. There are seveplieations of batch processing machines in ingustr
practice. Burn-inoven operations in semiconductatustries and chemical processes performed in
tanks or kilns arethe examples of such problemsndfiéet al. (2011) performed a comprehensive
literature review of scheduling semiconductor mawotifring operations.

This paper is motivated by burn-in oven operaim semiconductor manufacturing. Burn-in ovens
are batch processing machine and are used todatstiess of integrated circuit chips. Severghhi
can be tested in a burn-in oven simultaneously. Aura-in process is often a bottleneck step in the
back-end process of semiconductor manufacturinguss its processing time is much longer than
that of the other steps.Therefore, optimal schedulon burn-in ovens is very important in
semiconductor manufacturing.

The earliness and tardiness penaltiesare imgomaeasurement in Just-in-time production
systems.Early jobs may increase holding costs asts aelated to the deterioration of finished or
perishable goods.
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However, tardy jobs lead to lost sales and eustodissatisfaction and hence loss of reputation.
Minimizing the earliness and tardiness penaltigsiogprove the efficiency and cost-effectiveness of
a production system.

So, incorporating earliness and tardiness cordides is so important in the current competitive
environment.

In this paper, minimization of total earliness a@adliness on a single batch processing machine
with non-identical job sizes is considered. Itgs@amed that all the jobs have a common and loase du
date. Common due date assumption is applicableamymroduction systems,such as base wafers in
the front-end of burn-in ovens. Base wafersare rpegssed wafers that held on stock for further
processing based on the specific customer requedtss situation, a large number of chips hawe th
same external due date and hence the same interaaate with respect to the burn-in oven (Ménch
et al., 2006).

Despite the research problem is shown to be NP-hgBtucker et al. (1998), there are a few
research that propose heuristic and metaheurigficibtomsfor the research problem in the literature
Thus, there are rooms for proposing effective aligors for the problem. This motivates us to focus
on developing an improved memetic algorithm whichpbys variable neighborhood search as its
local search procedure.

The rest of the paper is organized as follows: fRdlditerature to our problem is briefly provided
in Section 2. The characteristics of the problerd anmathematical formulation are presented in
Section 3.The details ofthe proposed improved miena¢gorithm, including variable neighborhood
search and dynamic programming, are introducedati®e4.The experimental design to evaluatethe
mathematical model and the proposed algorithmarerted in Section 5. Finally, conclusions and
directions for the future research are discuss&kttion 6.

2- Related literature

Many researchers focused on batch processing neskhmeduling problems due to its industrial
applications. In this section, only the papers hgwhe most similarities with our assumptions are
reviewed.A single batch processing machine with-idemtical job sizes was considered by Uzsoy
(1994). He gave complexity results for both makespanimization and total completion time
minimization and also provided some heuristics abdanch and bound algorithm for these problems.
Dupont and Jolai (1998) and Jolai and Dupont (19@f)osed Several heuristic algorithms for the
same problems. A branch and bound algorithm tomir@ the makespan was developed by Dupont
and Dhaenens-Flipo (2002).Rafiee Parsa et al. (20dposed a branch and price algorithm for the
same problem. They showed that their proposed ithgohas a better performance than the branch
and bound algorithm proposed by Dupont and DhaeRkps (2002).An algorithm based on
clustering techniques to minimize the makespan pvaposed byChen et al. (2011).The problem of
minimizing total weighted tardiness with job releaslates was considered byWang (2011).
Heproposed a two-phase heuristic to obtain appratdreolutions.Malapert et al. (2012) presented a
constraint programming approach to minimize the imarn lateness. The problem of minimizing
makespan with dynamic job arrivals was address&thdny et al. (2014). They proposed a number of
constructive heuristics. Cabo et al. (2015) intitlia new neighborhood search, called split-merge,
to minimize the maximum lateness of the jobs. Farendetails about the literature of batch
scheduling problems, we refer the reader toPottk Kovalyov (2000), Mathirajan and Sivakumar
(2006),and Ménch et al. (2011).

There are several research efforts focused on ojgngl metaheuristic algorithms for the single
batch processing machine in recent years,e.g.,Céiealy (2010), Xu et al. (2012), Damodaran et al.
(2013), Jia and Leung (2014), and Al-Salamah (2015)

Considering non-regular objective functions, Qi afd (1999) addressed the problem
ofminimization earliness and tardiness on a sitgleeh processing machine when the jobs have a
distinct due date.They assumed that all of the jabge identical job sizes and the same processing
times. They proposed a dynamic programming algoritb solve the problem in polynomial time.
Brucker et al. (1998) proved that all the batchesithing problems with due date related criteria are
NP-hard. It follows that the minimization of eadss and tardiness is also NP-hard.The earliness and
tardiness minimization problem with a common dugedmd identical job sizes under a maximum
allowable tardiness constraint was considered mgdHdet al. (2006). They proposed a hybrid genetic
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algorithm for the problem. Zhao et al. (2006) cdased a common due window scheduling problem
with batching on a single machine. They developgalgnomial time algorithm for minimizingthe
penalty of total weighted earliness and tardindd8nch and Unbehaun (2007) developed three
decomposition heuristics to minimize the earlinesd tardiness on parallel burn-in ovens with unit
job size and a common due date.Recently, Li e2él15) extended the problem of minimizing the
earliness and tardiness to the case of non-idénita sizes. They proposed a hybrid genetic
algorithm for the problem.

Concluding from the literature review, a few resbaconsidered the problem of minimizing the
earliness and tardiness of all the jobs with n@nittal job sizes. Considering the industrial ralee
of this problem, it is obvious that there are roofos developing heuristic and metaheuristic
algorithms for the research problem.

3- Problem formulation

The single BPM problem with non-identical job sizesninimize the total earliness and tardiness
of jobs is considered in this research. Theregstaofnjobs which are available for processing on a
batch processing machine. Eachjjebl, ..., n is characterized by its processing tip@nd sizs;.
All the jobs have a common and loose or nonresteéadue daté, which is greater than or equal to
the makespan of the given set of jobs, so we assuate> 3, ; p;. The machine can process a group
of jobs as a batch as long as the total size ob#teh is less than or equal to the machine capBcit
Jobs cannot be split across the batches. Oncertdoegsing of a batch is initiated, it cannot be
interrupted and other jobs cannot be introduced ittte machine until the processing is
completed.The processing time of a batih determined by the longest processing time antbag
jobs in the batch. Based on the standard classdicacheme for scheduling problems (Graham et al.,
1979), the above problem can be noted|as- batch,s; < B,d; = d| X.(Ej + Tj).

The decision variables and the binary mixed imtdigear programming (BMILP) formulation of
the problem under study are as follows:

Decision variables:

1 If job j is assigned to batch b
ij:

0 Otherwise
Cy: Completion time of batch

ET,: Absolute deviation of the completion time of babcfrom the due daté

ET;:  Absolute deviation of the completion time of jpfrom the due daté

Py: Processing time of bate¢h
The model:
n
Minimize Z ET, (1)
j=1
n
Subject to: 2 Xjp =1 j=1,..,n (2
b=1
n
2 Sixjp < B b=1,..,n ()
j=1
Pb = ijpj ] =1,..,n b= 1,..,n (4)
C1=2P (5)
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CbZCb—1+Pb b=2,...,n (6)

ET, >d—Cy b=1,..,n 7
ET, = C,—d b=1,..,n (8)
ET; = ETp, — M(1 — xjp) j=1.,m;b=1,..,n 9)
Pbl Cb,ETb,E’T] 2 O ] - 1, ey, b - 1, Wy, n (10)
xjp € {0,1} j=1L..,mb=1,..,n (11)

Minimizingthe total earliness and tardiness of jab®xpressed by equation (1)as the objective
function. Constraint set (2) ensures that eachig@ssigned exactly to one batch. The total sizalof
the jobs in a particular batch cannot exceed thehina’'s capacity. Constraint set (3) is incorpalate
into the model for this reason. Constraint set dd)ermines the processing time of each batch.
Constraint sets (5) and (6) ensure that the coiopléine of each batch is greater than or equtido
completion time of its predecessor batch plus ic@ssing time. The absolute deviation of the
completion time of batch from the due datd is determined by constraint sets (7) and (8)olfjjis
assigned to batdh, thenET;is equal taET;,. Constraint set (9) is incorporated into the mddethis
reason. In this constraiM, is a large enough constant. Since the value diheas and tardiness of
batches is less than sum of the processing tinjebsf we can sef = Z’}:lpj.Constraint sets (10)
and (11) specify the type of decision variables.mtmber of variables and the number of constraints
in this model are? + 4n and2n? + 5n, respectively.

4- An improved memetic algorithm

The research problem is shown to be NP-hard by®ruekal. (1998).Thus,the research hasfocused
on developing metaheuristicalgorithm for finding ane optimal solutions for large-sized
problems.Memetic algorithm (MA) is an evolutionalgorithm which combines genetic algorithm
(GA) with local search procedures.MA was first aituced as a hybrid GA combined with an
individual learning procedure for local refinemdayt Moscato (1989). Previous researchshows that
MA has a good performance in scheduling and timegproblems (Hart et al., 2005). In the
proposed algorithm,called MA-VNS, a variable neigitiood search algorithm (VNS) is usedas local
search procedure, to enhance the memetic algofitierdetailsof theproposedMA-VNSalgorithm for
the research problem is as follows:

4-1- Solution representation

In evolutionary algorithms, defining a proper saat representation strongly affects the
computational effort in crossover, mutation, anchlassearch procedures. INMA algorithm, solutions
are represented as chromosomes.Different steggedlgorithm such as crossover and mutation are
applied on chromosomes. Each chromosome in theopeabMA-VNS algorithm is defined as the
sequence of jobs. So each permutation of digitsntdpresents a chromosome or solution.

4-2- Initial population

The initial population can be generated from vasimethods. Sequencing rules such as the longest
processing time (LPT), and the shortest procesaimg (SPT) can be used for generating the initial
population. So, in the proposed algorithm two @ thitial chromosomes are generated based on the
LPT and SPT orders. For the rest chromosomes,otte are arranged in a random sequence. The
number of chromosomes within the population throggherations is presented fyp_size

4-3- Selection strategy for recombination

At each generation, the algorithm selects a fewormlsomes from the population for
recombination and generating new chromosomes. Thenosomes that are combined to produce
new ones are called parents and the newly genesatstlare called offspring. In this researcha linar
tournament selection strategy is used for choosipgir of parents.In the binary tournament selectio
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two chromosomes are randomly chosen with equalaitity from the population. Then, the best
chromosome of these two ones is considered asrtteérent. The process is repeated in the same
wayto select the second parent.

4-4-Crossover operator

Combining chromosomes for generating new oneslisccarossover. In this research, two point
order crossover is used for combining two pareontproduce new offspring. Assume that two
chromosomes are selected for recombination. Ihittalo random numbers are uniformly generated
to determine the piece of the first parent that ael copied to the offspring. Then, this pieceapied
to the same position of the offspring. The resbti§pring is completed according to the second
parent. The digits that do not appear in the copiede from the first parent complete the empty
alleles of offspring by considering their ordetlie second parent.Apossible combination by applying
order crossover is presented in Figure 1.The copiece from the first parent is highlighted. Since
the first parent transfers more information to pfisg, the first parent is considered as the
chromosome with better fithess between two seledtedmosomes for crossover.

Parent 1 2 1] 4 1 8 3 6 7 | 10 9
Parent 2 8 10 3] 9 6 4 5 ]

o —
Offspring| 10| 9] 4 | 1 [ 8 | 3 | 6 | 5] 2]
Figure 1.0Order crossover operator

The number of newly generated chromosomes throughsover procedure is dependent on
thecrossover rate Crossover rate is a number which is evaluatea aatio of number of newly
generated ones toop_size If the population size is 50 and the crossovée s 0.6, then at each
generation of the algorithm 50x0.6=30 new chromassare produced through crossover procedure.
In this case, 30 pairs of chromosomes should leeteal for applying crossover operator on them.

4-5- Mutation operator

Mutation procedures are used in evolutionary atgors for diversification. In this research, after
generating new chromosomes through crossover puoegdfew of them are selected to go through
swap mutation operator. In swap mutation procedwe,alleles are selected and their positions are
swapped as presented in Figure 2. In this casethttee and fifth allelesare randomly selected and
then swapped.

(0] o4 1[8]3]6]5]2[ 7]

(0] o8] 1[4]3]6]5]2[ 7]
Figure 2 Mutation operator

Mutation ratedetermines the number of offspring that shouldlgough mutation procedure at
each generation of the algorithm. For instanceufation rate is set to 0.02 then at each generatio
mutation would be applied on 2% of offspring.

4-6- Variable neighborhood search

In MA, each new offspring go through a local segsobcedure to find a new solution with a better
fitness.A local search is performed and the neightad with the best objective function value is
chosen.In this research,variable neighborhood Beaappliedto enhance the quality of solutions.

Most local search heuristics use only one neightmtstructure. However, a local optimum with
respect to one neighborhood structure is not nadgssa local optimum with respect to another
structure. The variable neighborhood search usksreht neighborhood structures and switches
between them while searching for a better soluttWS employsa systematic change of the neighbor
within the search space to find the global optinamio get a better local optima. In the proposed
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MA-VNS, three different neighborhood structures ased as illustrated in Figure 3, i.e. Adjacent
interchangeX;), Swap {V,) and InsertionX3)neighborhood structures.

(0] o 8] 1] 48] 6] 5] 2] 7]

[20] of 4] 1] 868 5[2] 7]
(a) Adjacent interchange structur®y()

v
(w0]9 8] 1]a]3[]6] 5] 2] 7]

(1048|193 ]6]5s5]2[ 7]
(b) Swap structurei()

(0] o] 8] 2] 4] 3] 6] 5[2] 7 |

v
(0] 9] 8] 1 2] 4] 3] 6] 5[] 7|
(c) Insertion structurei(3)
Figure 3.Neighborhood structures in the VNS

In the first neighborhood,the position of two adjac alleles are interchanged. In the swap
neighborhood structure, the position of two noraadpt allelesare changed whereas in the insertion,
one allele is removed from its position and ingrteanother position.

Initially the search is performed in the first naigrhood structure to find a better solution. If a
movecauses improvement in the fithess of chromosdnie confirmed andthe search continues on
theimproved chromosome. Otherwise, the search ls@st¢o the next neighborhood structure.The
neighbors are examined one by one for a solutidh etter fitness in the neighborhood structures.
The switching of neighborhoods prevents the sehethg stuck at the local minimum. When there is
no better solution found in the first neighborh@idicture, it can be a local minimum. But when the
neighborhood changes, it is probable that a bstiletion can be found and thus the local minimum is
skipped.The search terminates after a fixed nunolbdterations. The implementation of VNS is
described as follows:

Step I: Setr « Initial solution,t « 0 (Iteration number), « 1 (Structure number).
Stepll: Generate a neighbor solutionof x using the structufg;.
Steplll: Compare fitness af; with x; If fitness(x,) < fitness(x), thenx « x,; else l «
[+ 1.
SteplV: t « t+1; If t =ty (the maximum number of iterations), then stop asturn
x;otherwise, go to step V.
Step V: Ifl = 4, thenl « 1, and go to Step II; else go to Step II.

4-7- Updating the population

At each generation of evolutionary algorithm, aftgenerating new chromosomes through
crossover and mutation steps the population is tegddn this research,ifthe fitness ofthe newly
generated chromosome is better thanthe secondtphetmparticipated in crossover, then the second
parent is replaced with this offspring. This medbBamincreases the rate of improvement of the best
solution. However, it reduces the diversificatioh the algorithm. To overcome this trap, the
algorithm restarts from another region in the deamace randomly.

After replacing new offspring with their parentif least one of the new offspring ischosen to enter
the population, the algorithm is continued with tinedated population; otherwise,the population
should be regenerated. For this purpose, the #igoreplaces all the current chromosomes with new
randomly generated ones except the best elite adsome that is obtained so far. Every time
regenerating the population occurs the algorithstargs its process from another region in the $earc
space.
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4-8- Calculating fitness of a chromosome

The fitness of a chromosome is equal to the todalireess and tardiness of all the jobs. For
calculating the fitness of a chromosome, first jiiles are assigned to the batches based on the job
sequence in the chromosome and then the batch@samessed on themachine in order to minimize
the total earliness and tardiness of all the jobs.

The first-first (FF) procedure which is commonlyedsor the bin-packing problem(Coffman et al.,
1997), is adapted for the research problem to ftvenbatches. The adaptive FF procedurecan be
described as follows: The first unassigned job fritvea sequence is assigned to the first available
batch with enoughresidual capacity. If none of ékisting batches can accommodate the job, then a
new batch is created, and the job is assignedsm#w batch. This procedure is repeated untihall
jobs from the sequence are assigned to a batch.

For computing the optimal schedule that minimizestbtal earliness and tardiness of all the jobs
for a given set of formed batches, we propose fattfe dynamic programming algorithm (DP). The
aim of the DP algorithm is to find a schedule @& given batches in such a way that the total ezs$in
and tardiness is minimized.The details of the d@thm are described as follows.

Let ¢ = {B;,B,, ..., By} be a given set of formed batches, wheres the number of batches aAg
is a batch containing a subset of jobsHct 1,2,...,m. Suppose that the batches are sorted in abatch

weighted shortest processing time (BWSPT) order—lr < i <- < —, whereP, andn,; denote

the processing time and the number of jobs prodassleatctb respectlvely

Let ET,(s) be the minimum cost to schedule batchds+ 1, ..., m given that batches2, ..., b —
1 are scheduled and the sum of processing timeedbaliches that are scheduled early or on tirge is
The state variable is defined only bybecause by knowinsg the sum of processing time of the
batches that are scheduled tardy can be deternfiieck the processing time of all the previously
scheduled batches ¥Z1 P,, the sum of processing time of the previously daked tardy batches is
Yb-1p, —s. The recursive relation is as follows:

ETy(s) = min <nps + ETp41(s + P), ny 2 P, —s |+ ETyi1(5) (12)

and the boundary conditions are:
m

ET,..(s)=0, s=0,1, Z P, (13)

a=1
The optimal schedule is determinedEdt, (0) and the corresponding schedule can be found by
backtracking. Note that the first and second exgpoesin the recursive relation (16) is the cost of
scheduling batchb early and late, respectively.To determine the tic@mplexity of the
algorithm,note thab is 0(m) ands isO(}l-, P,). Thus, the recursive relation is use@in 7>, P,)
times. Consequently, the time complexity of thepmsed DP algorithm &(m Y./~ P,).
The steps of the proposed MA-VNS algorithm are gmé=d as a flowchart in Figure 4.
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Initialize population and
parameters

v

Generation— 1

v

Calculate thé-itness valuef
choromosomes

v

Determine the best solution

. Satisfy stop™~_
Report the best found solutior Criterion? <
\ 4
End i—1
i <=pop_size x
Crossover rat@
\ 4
Select two chromosomes using A
selection strategy
\ 4
Apply crossover on the selected Update population and the best
chromosomes for generating new solution
offspring
Apply mutation to the new
offspring using mutation Y
mechanism Generation— Generation +1 ——

Apply VNS on the new offspring

Figure 4. The flow chart of the proposed MA-VNS algorithm

5- Computational experiments

In this section, the specification of the test amsles is described in the first part. Tuning the
parameters of the MA-VNS algorithm is discussethimsecond part. Finally, the performance of the
proposed algorithm is compared with CPLEX and thst lavailable metaheuristic algorithmin the
literatureproposed by Li et al. (2015). ILOG CPLHER.0, a commercial optimization software, is
used to solve the mathematical model. All the algors are coded in MATLAB 16.0 and executed
on a PC with2.3 GHz processor and 2 GB RAM.

To evaluate the efficacy of the proposed algorithiims test problems generated by Li et al. (2015)
are used. Several parameters may affect the resultt as the number of jobs, the size and the
processing time of jobs.The specifications of thietdnces are presented in Table 1.
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Table 1. Specifications of the test problems

Parameters Levels

Number of jobs#) 20, 40, 60, 80, 100, 200

Job processing time() Discrete uniform [1, 10] and Discrete uniform [D]5

Job sizesy) Discrete uniform [1, 30] and Discrete uniform [B5)
n

Due date d) pj
j=1

Machine capacityR) 40

5-1- Parameters tuning

The performance of the MA-VNSalgorithm is generagnsitive to the setting of the parameters
that influence the search mechanism and the coemeegrate. A preliminary study on the
performance of the MA-VNS showed that some pararseseich as Population sizpop sizi
Crossover rate@), Mutation rate Jr), andthe number of iterations in VN$,,(,) affect the
performance. To tune the proper value for thesamaters, we conducted a statistical analysis based
on Taguchi method (Taguchi, 1986). Taguchi methttdngts to increase the robustness of the
system by minimizing the variation of the outpusuks. Several computational experiments are
conducted for determining the proper values of gheameter levels. Consequently, there are four
main factors and three levels for each parameteiesaThe factors and their levels are presented in
details in Table 2.

Table 2Levels of main factors

A: Population size B: Crossover rate C: Mutation rate D: Number of iterations in VNS
(pop_siz (€) (M) (tmax)
A(1): 20 B(1): 0.2 C(1): 0.01 D(1): 10
A(2): 50 B(2): 0.4 C(2): 0.1 D(2): 20
A(3): 100 B(3): 0.8 C(3): 0.5 D(3): 30

The orthogonal array,(3*) is the best fittest design for factors’ levels. r2ddomly generated
test instances are solved by all 9 predefined stenahown in Table 3. Totally, 180 runs should be
executed for the design. The response variabldefdesign is calculated based on the objective
function of the MA-VNS algorithm.

Table 3Factors levels of orthogonal ariay3*)

Factors levels

Scenario no. A B C D
1 A(1) B(1) Cc@) D(1)
2 A(1) B(2) C(2) D(2)
3 A1) B(3) C(3) D(3)
4 A(2) B(1) C(2) D(3)
5 A(2) B(2) C(3) D(1)
6 A(2) B(3) C(1) D(2)
7 A(3) B(1) C(3) D(2)
8 A(3) B(2) C(1) D(3)
9 A(3) B(3) C(2) D(1)

The robustness of the algorithm is measured byribens of Signal-to-Noise (S/N) ratio. The S/N
ratio is computed as10log(ET)?. For minimization problems, the larger value ol $atio leads to
the smaller variation of the output results. Sitioe test instances have different sizes and therefo
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different objective functions, the size effect skiobe eliminated. So, the objective function vatiie
each test instance is changed to the relative perge deviation (RPD). RPD is calculated as
(ET — ETyest)/ (ETy0rst — EThest), WhereET is the total earliness and tardiness value ohddirmen the
MA-VNS algorithm for the test instancgT,,.,;antET,, s+ are respectively the best and worst total
earliness and tardinessvalue obtained for tharsttnce from different scenarios. Therefore, tié S

2
ratio for each scenario is calculated(®ynN), = —1010g( ) RPDir) ,r=12,..9.

1
20

FigureSrepresents the results of Taguchi experintemteach factor, the best level is the one with
smaller RPD and higher S/N ratio. Based on the Ghigesults, the best levels are A(2), B(3), C(2),
and D(3). The best setting of parameters is giaerable 4.

0

9

S/N Ratio

ACT)

A2y

Y = = Y = = = = = =

% =z 8 D g @ D z & z

3 £ & & J o o & & &
Factor (Lewl])

0.8

RPD

0.5

0.4

0.3

ALy

A2y

A(3)
B(l)
B(2)
B(3)
<L)
<)
<@
D(1)
D(2)
()

Factor (Level)

Figure 5.The results of Taguchi experiment

Table 4. Taguchi results: selected levels of factors

A: Population size B: Crossover rate C: Mutation rate D: Number of iterations in VNS
(pop_sizg (©) (M) (tmax)
A(2): 50 B(3): 0.8 C(2):0.1 D(3): 30
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5-2- Evaluation of BMILP model and MA-VNS algorithm on small-sized instances

In this section, the results of the proposed atgoriare compared with the solutions of the binary
mixed integer modelpresented in Section 3. The insdmlved by using CPLEX. Since the research
problem is NP-hard, the optimal solution for mediand large sized problems cannot be found in a
reasonable time. CPLEX did not converge even aftening for several hours, so it was terminated
after 24 hours and the best found solution is fisedomparison.

Problems withn = 10, 20, and 40 are considered and for each leive] a random problem
instance in each category of job sizes and jobgasing times are generated.The number of variables
and the number of constraints in the mathematicalehfor different number of jobs are presented in
Table 5.

Table 5. Number of variables and constraints in the mattaral model

No. jobs No. Binary variables No. Total variables 0.IConstraints
10 100 140 250
20 400 480 900
40 1600 1760 3400
n n? n? +4n 2n? +5n

The results obtained from MA-VNS and CPLEX arespréged in Table6.The last column
represents the optimality gap (GAP) of CPLEX. Age'GAP implies that CPLEX requires much
more time to converge to an optimal solution.

Table 6 Comparison of MA-VNS and CPLEX

p; s; n MA-VNS/CPLEX Gap (%)
10 1.0000 0.00
U[1,30] 20 0.9469 4.23
40 0.9472 7.38
U[1,10]
10 1.0000 0.00
U[15,35] 20 0.9669 3.62
40 0.9175 8.59
10 1.0000 0.00
U[1,30] 20 1.0000 4.71
011, 50] 40 0.9151 12.01
10 1.0000 0.00
U[15,35] 20 0.9299 13.48
40 0.9491 9.36

As can be seen from Table 6, MA-VNS and CPLEX fimel optimal solutions for all the instances
with 10 jobs. However, the computational time regdiby MA-VNS is extremely less than CPLEX.
For the instances with 20 and 40 jobs, CPLEX cawtlfind the optimal solution within 24 hours.
The optimality gap infers that CPLEX needs moreetiim converge to an optimal solution. For these
instances, the solutions obtained from MA-VNS area or better than the best solutions reported by
CPLEX. This results demonstrate the verificatiotha&f proposed algorithm.

5-3- Evaluation of the MA-VNS algorithm

For evaluating the efficiency of MA-VNS on largesd instances, it has been compared with the
proposed algorithm developed by Li et al. (201%)Jedd GAMARB. For each combination of the
number of jobs, job sizes, and job processing tibegistances are tested, for a total 0f240. Adl th

67



instances are solved by each of the algorithmet lal. (2015)used 1000 generation as the stopping
criterion of GAMARB,we also use the same stoppiritedon to fairly compare the algorithms. The
performance comparison between MA-VNS and GAMARBesresentedin Table 7.

Table 7Comparing solution quality of MA-VNS and GAMARB

pj S; n MA-VNS GAMARB MA-VNS/ GAMARB
20 160.5 163.9 0.9795
40 561.8 584.8 0.9607
60 1205.3 1291.7 0.9331
U[1,30
[1,30] 80 2124.0 2340.9 0.9074
100 3534.6 3968.3 0.8907
200 13730.6 15523.6 0.8845
U[1,10] Average 0.9260
20 296.2 300.3 0.9864
40 1201.5 1220.6 0.9844
U[15,35] 60 2525.6 2573.2 0.9815
’ 80 4294.6 4376.4 0.9813
100 7058.3 7193.4 0.9812
200 27159.7 27762.1 0.9783
Average 0.9822
20 656.6 675.0 0.9728
40 2716.4 2841.2 0.9561
U130 60 5813.0 6219.3 0.9347
[1,30] 80 10072.4 10859.8 0.9275
100 15202.2 16520.4 0.9202
200 61873.3 67275.5 0.9197
Average 0.9385
U[1,50] g
20 1303.6 1316.1 0.9905
40 5409.3 5477.0 0.9876
U115 35 60 11865.9 12023.4 0.9869
[15,35] 80 18812.0 19114.3 0.9842
100 31972.3 32565.0 0.9818
200 127355.6 129968.0 0.9799
Average 0.9852

From Table 7, it can be observed that MA-VNS hbstser performance compared to GAMARBIn
all categories of problem instances. The perforraasicthe proposed algorithm for problems with
small job sizes is more significant than the caskmge job sizes. For the problems with large job
sizes, two algorithms have almost the same perfocmand obtain solutions with similar quality.
Since when the size of jobs are larger, more jobspaocessed individually, and thus the feasible
search space is much smaller compared to the ¢aseatl job sizes. This leads to a reduction in the
performance differences between two algorithms. pédormance comparison between MA-VNS
and GAMARB for different job processing time shothat, job processing time has no significant
impact on the solution quality. It also can be obsé that the performance differences between two
algorithms become more considerable by increagiegnumber of jobs. The results for different
categories of job processing times and job sizeslaepictedin Figures 6 and 7.
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The average computational time of MA-VNS and GAMARBhown in Table 8. The results show
that there is no significant difference between algorithms in terms of computational time.The two
algorithms need more time as the number of jobseases. Finally, we can conclude that MA-VNS
provides better solutions than GAMARB but need agjpnately the same computational time.
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Table 8 Computational time for the MA-VNS and GAMARB

D; n
/ MA-VNS GAMARB MA-VNS GAMARB

20 1.6 1.8 2.3 2.1
40 8.1 7.9 11.4 10.2
60 16.4 17.6 17.6 19.7

U[1,10] 80 30.8 31.6 32.8 33.0
100 25.4 27.6 37.5 35.2
200 60.12 57.4 85.6 81.8
20 2.7 2.1 2.0 2.3
40 10.4 9.4 10.2 9
60 18.7 20.3 22.3 24.8

U[L50] g 278 26.2 42.7 3091
100 55.7 52.9 54.2 53
200 94.2 92.5 97.6 98.8

6- Conclusions

The minimization of total earliness and tardiness @ single batch processing machine is
investigated in this research. A mathematical mddelthe research problem is proposed. An
improved memetic algorithm, which combines evoludity algorithmswith variable neighborhood
search procedure is presented.Computational exeetarshow that theproposed MA-VNS has a
superior performance than the best available matadtie algorithm existing inthe literature i.ehet
GAMARB algorithm byLi et al. (2015).Developinglowdboundingmethods for evaluating the
performance of metaheuristic algorithmsisan intergsextension and opportunity for the future
research.lt's also possible to relax the common diate assumption. Consideringminimization of
earliness and tardiness on batch processing systentiseother machine environments such as
flowshop and parallel machines, is another possiliiee research topic.
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