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Abstract 
In this research, a single batch processing machine scheduling problem with 
minimization of total earliness and tardiness as the objective function is 
investigated.We first formulate the problem as a mixed integer linear 
programming model. Since the research problem is shown to be NP-hard, an 
improved memetic algorithmis proposed to efficiently solve the problem. To 
further enhance the memetic algorithm and avoid premature convergence, we 
hybridize it with a variable neighborhood search procedureas its local search 
engine. A dynamic programming approach is also proposed to find optimal 
schedule for a given set of batches. Wedesign a Taguchi experiment to 
evaluate the effects of different parameters on the performance of the 
proposed algorithm. The results of an extensive computational study 
demonstrate the efficacy of the proposed algorithm. 
Keywords: Batch processing machine, total earliness and tardiness, memetic 
algorithm, variable neighborhood search, dynamic programming. 

1- Introduction 
   A batch processing machine (BPM) can process several jobs simultaneously. The jobs that are 
processed together on the machine are referred as a batch. All the jobs in a batch have the same start 
and completion time on the machine. The processing time of a batch is equal to the largest processing 
time of the jobs in the batch.  There are several applications of batch processing machines in industry 
practice. Burn-inoven operations in semiconductor industries and chemical processes performed in 
tanks or kilns arethe examples of such problems. Mönch et al. (2011) performed a comprehensive 
literature review of scheduling semiconductor manufacturing operations. 
   This paper is motivated by burn-in oven operations in semiconductor manufacturing. Burn-in ovens 
are batch processing machine and are used to test heat-stress of integrated circuit chips. Several chips 
can be tested in a burn-in oven simultaneously. The burn-in process is often a bottleneck step in the 
back-end process of semiconductor manufacturing because its processing time is much longer than 
that of the other steps.Therefore, optimal scheduling on burn-in ovens is very important in 
semiconductor manufacturing. 
   The earliness and tardiness penaltiesare important measurement in Just-in-time production 
systems.Early jobs may increase holding costs and costs related to the deterioration of finished or 
perishable goods.  
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   However, tardy jobs lead to lost sales and customer dissatisfaction and hence loss of reputation. 
Minimizing the earliness and tardiness penalties can improve the efficiency and cost-effectiveness of 
a production system. 
 So, incorporating earliness and tardiness considerations is so important in the current competitive 
environment.  

In this paper, minimization of total earliness and tardiness on a single batch processing machine 
with non-identical job sizes is considered. It is assumed that all the jobs have a common and loose due 
date. Common due date assumption is applicable in many production systems,such as base wafers in 
the front-end of burn-in ovens. Base wafersare preprocessed wafers that held on stock for further 
processing based on the specific customer requests. In this situation, a large number of chips have the 
same external due date and hence the same internal due date with respect to the burn-in oven (Mönch 
et al., 2006). 

Despite the research problem is shown to be NP-hard byBrucker et al. (1998), there are a few 
research that propose heuristic and metaheuristic algorithmsfor the research problem in the literature. 
Thus, there are rooms for proposing effective algorithms for the problem. This motivates us to focus 
on developing an improved memetic algorithm which employs variable neighborhood search as its 
local search procedure.   

The rest of the paper is organized as follows: Related literature to our problem is briefly provided 
in Section 2. The characteristics of the problem and a mathematical formulation are presented in 
Section 3.The details ofthe proposed improved memetic algorithm, including variable neighborhood 
search and dynamic programming, are introducedin Section 4.The experimental design to evaluatethe 
mathematical model and the proposed algorithmare reported in Section 5. Finally, conclusions and 
directions for the future research are discussed in Section 6. 

2- Related literature 
Many researchers focused on batch processing machine scheduling problems due to its industrial 

applications. In this section, only the papers having the most similarities with our assumptions are 
reviewed.A single batch processing machine with non-identical job sizes was considered by Uzsoy 
(1994). He gave complexity results for both makespan minimization and total completion time 
minimization and also provided some heuristics and a branch and bound algorithm for these problems. 
Dupont and Jolai (1998) and Jolai and Dupont (1998)proposed Several heuristic algorithms for the 
same problems. A branch and bound algorithm to minimize the makespan was developed by Dupont 
and Dhaenens-Flipo (2002).Rafiee Parsa et al. (2010) proposed a branch and price algorithm for the 
same problem. They showed that their proposed algorithm has a better performance than the branch 
and bound algorithm proposed by Dupont and Dhaenens-Flipo (2002).An algorithm based on 
clustering techniques to minimize the makespan was proposed byChen et al. (2011).The problem of 
minimizing total weighted tardiness with job release dates was considered byWang (2011). 
Heproposed a two-phase heuristic to obtain approximate solutions.Malapert et al. (2012) presented a 
constraint programming approach to minimize the maximum lateness. The problem of minimizing 
makespan with dynamic job arrivals was addressed byZhou et al. (2014). They proposed a number of 
constructive heuristics. Cabo et al. (2015) introduced a new neighborhood search, called split–merge, 
to minimize the maximum lateness of the jobs. For more details about the literature of batch 
scheduling problems, we refer the reader toPotts and Kovalyov (2000), Mathirajan and Sivakumar 
(2006),and Mönch et al. (2011). 

There are several research efforts focused on developing metaheuristic algorithms for the single 
batch processing machine in recent years,e.g.,Cheng et al. (2010), Xu et al. (2012), Damodaran et al. 
(2013), Jia and Leung (2014), and Al-Salamah (2015). 

Considering non-regular objective functions, Qi and Tu (1999) addressed the problem 
ofminimization earliness and tardiness on a single batch processing machine when the jobs have a 
distinct due date.They assumed that all of the jobs have identical job sizes and the same processing 
times. They proposed a dynamic programming algorithm to solve the problem in polynomial time. 
Brucker et al. (1998) proved that all the batch scheduling problems with due date related criteria are 
NP-hard. It follows that the minimization of earliness and tardiness is also NP-hard.The earliness and 
tardiness minimization problem with a common due date and identical job sizes under a maximum 
allowable tardiness constraint was  considered byMönch et al. (2006). They proposed a hybrid genetic 
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algorithm for the problem. Zhao et al. (2006) considered a common due window scheduling problem 
with batching on a single machine. They developed a polynomial time algorithm for minimizingthe 
penalty of total weighted earliness and tardiness. Mönch and Unbehaun (2007) developed three 
decomposition heuristics to minimize the earliness and tardiness on parallel burn-in ovens with unit 
job size and a common due date.Recently, Li et al. (2015) extended the problem of minimizing the 
earliness and tardiness to the case of non-identical job sizes. They proposed a hybrid genetic 
algorithm for the problem. 

Concluding from the literature review, a few research considered the problem of minimizing the 
earliness and tardiness of all the jobs with non-identical job sizes. Considering the industrial relevance 
of this problem, it is obvious that there are rooms for developing heuristic and metaheuristic 
algorithms for the research problem. 

 
3- Problem formulation 

The single BPM problem with non-identical job sizes to minimize the total earliness and tardiness 
of jobs is considered in this research. There is a set of �jobs which are available for processing on a 
batch processing machine. Each job� = 1, … , � is characterized by its processing time�� and size	�. 
All the jobs have a common and loose or nonrestrictive due date
, which is greater than or equal to 
the makespan of the given set of jobs, so we assume that
 ≥ ∑ ��� . The machine can process a group 
of jobs as a batch as long as the total size of the batch is less than or equal to the machine capacity	�. 
Jobs cannot be split across the batches. Once the processing of a batch is initiated, it cannot be 
interrupted and other jobs cannot be introduced into the machine until the processing is 
completed.The processing time of a batch� is determined by the longest processing time among the 
jobs in the batch. Based on the standard classification scheme for scheduling problems (Graham et al., 
1979), the above problem can be noted as	1|� − ����ℎ, 	� ≤ �, 
� = 
| ∑(�� + ��). 

 The decision variables and the binary mixed integer linear programming (BMILP) formulation of 
the problem under study are as follows: 

 
Decision variables: 

 

���= � 1 If	job	�	is	assigned	to	batch	�
0 Otherwise 2 

3�: Completion time of batch � 

���: Absolute deviation of the completion time of batch � from the due date 
 

���: Absolute deviation of the completion time of job � from the due date 
 

4�: Processing time of batch � 

 
The model: 
 

Minimize 5 ���6
�78   (1) 

Subject to: 5 ��� = 16
�78  � = 1, … , � (2) 

 5 	����6
�78 ≤ � � = 1, … , � (3) 

 4� ≥ ����� � = 1, … , �; 	� = 1, … , � (4) 

 38 ≥ 48  (5) 
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 3� ≥ 3�:8 + 4� � = 2, … , � (6) 

 ��� ≥ 
 − 3� � = 1, … , � (7) 

 ��� ≥ 3� − 
 � = 1, … , � (8) 

 ��� ≥ ��� − <(1 − ���) � = 1, … , �; 	� = 1, … , � (9) 

 4� , 3�, ��� , ��� ≥ 0 � = 1, … , �; 	� = 1, … , � (10) 

 ��� ∈ 	 >0,1? � = 1, … , �; 	� = 1, … , � (11) 

 
Minimizingthe total earliness and tardiness of jobs is expressed by equation (1)as the objective 

function. Constraint set (2) ensures that each job is assigned exactly to one batch. The total size of all 
the jobs in a particular batch cannot exceed the machine’s capacity. Constraint set (3) is incorporated 
into the model for this reason. Constraint set (4) determines the processing time of each batch. 
Constraint sets (5) and (6) ensure that the completion time of each batch is greater than or equal to the 
completion time of its predecessor batch plus its processing time. The absolute deviation of the 
completion time of batch � from the due date 
 is determined by constraint sets (7) and (8). If job � is 
assigned to batch	�, then ��� is equal to ���. Constraint set (9) is incorporated into the model for this 
reason. In this constraint,< is a large enough constant. Since the value of earliness and tardiness of 
batches is less than sum of the processing time of jobs, we can set	< = ∑ ��6�78 .Constraint sets (10) 
and (11) specify the type of decision variables.The number of variables and the number of constraints 
in this model are �@ + 4� and	2�@ + 5�, respectively. 

 
4- An improved memetic algorithm 

The research problem is shown to be NP-hard byBrucker et al. (1998).Thus,the research hasfocused 
on developing metaheuristicalgorithm for finding near optimal solutions for large-sized 
problems.Memetic algorithm (MA) is an evolutionary algorithm which combines genetic algorithm 
(GA) with local search procedures.MA was first introduced as a hybrid GA combined with an 
individual learning procedure for local refinement by Moscato (1989). Previous researchshows that 
MA has a good performance in scheduling and timetabling problems (Hart et al., 2005). In the 
proposed algorithm,called MA-VNS, a variable neighborhood search algorithm (VNS) is usedas local 
search procedure, to enhance the memetic algorithm.The detailsof theproposedMA-VNSalgorithm for 
the research problem is as follows: 

4-1- Solution representation 
In evolutionary algorithms, defining a proper solution representation strongly affects the 

computational effort in crossover, mutation, and local search procedures. InMA algorithm, solutions 
are represented as chromosomes.Different steps of the algorithm such as crossover and mutation are 
applied on chromosomes. Each chromosome in the proposed MA-VNS algorithm is defined as the 
sequence of jobs. So each permutation of digits 1 to �represents a chromosome or solution. 

4-2- Initial population 
The initial population can be generated from various methods. Sequencing rules such as the longest 

processing time (LPT), and the shortest processing time (SPT) can be used for generating the initial 
population. So, in the proposed algorithm two of the initial chromosomes are generated based on the 
LPT and SPT orders. For the rest chromosomes, the jobs are arranged in a random sequence. The 
number of chromosomes within the population through generations is presented by pop_size.  

4-3- Selection strategy for recombination 
At each generation, the algorithm selects a few chromosomes from the population for 

recombination and generating new chromosomes. The chromosomes that are combined to produce 
new ones are called parents and the newly generated ones are called offspring. In this researcha binary 
tournament selection strategy is used for choosing a pair of parents.In the binary tournament selection, 
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two chromosomes are randomly chosen with equal probability from the population. Then, the best 
chromosome of these two ones is considered as the first parent. The process is repeated in the same 
wayto select the second parent.  

4-4-Crossover operator 
Combining chromosomes for generating new ones is called crossover. In this research, two point 

order crossover is used for combining two parents to produce new offspring. Assume that two 
chromosomes are selected for recombination. Initially two random numbers are uniformly generated 
to determine the piece of the first parent that will be copied to the offspring. Then, this piece is copied 
to the same position of the offspring. The rest of offspring is completed according to the second 
parent. The digits that do not appear in the copied piece from the first parent complete the empty 
alleles of offspring by considering their order in the second parent.Apossible combination by applying 
order crossover is presented in Figure 1.The copied piece from the first parent is highlighted. Since 
the first parent transfers more information to offspring, the first parent is considered as the 
chromosome with better fitness between two selected chromosomes for crossover. 

 
Parent 1 2 1 4 1 8 3 6 7 10 9 
Parent 2 8 10 3 9 6 4 5 2 1 7 

           
Offspring 10 9 4 1 8 3 6 5 2 7 

Figure 1.Order crossover operator 
 
The number of newly generated chromosomes through crossover procedure is dependent on 

thecrossover rate. Crossover rate is a number which is evaluated as a ratio of number of newly 
generated ones to pop_size. If the population size is 50 and the crossover rate is 0.6, then at each 
generation of the algorithm 50×0.6=30 new chromosomesare produced through crossover procedure. 
In this case, 30 pairs of chromosomes should be selected for applying crossover operator on them. 

4-5- Mutation operator 
Mutation procedures are used in evolutionary algorithms for diversification. In this research, after 

generating new chromosomes through crossover procedure,a few of them are selected to go through 
swap mutation operator. In swap mutation procedure, two alleles are selected and their positions are 
swapped as presented in Figure 2. In this case, the third and fifth allelesare randomly selected and 
then swapped. 

 
 
 

10 9 4 1 8 3 6 5 2 7 
          

10 9 8 1 4 3 6 5 2 7 
Figure 2.Mutation operator 

 
Mutation rate determines the number of offspring that should go through mutation procedure at 

each generation of the algorithm. For instance, if mutation rate is set to 0.02 then at each generation, 
mutation would be applied on 2% of offspring. 

4-6- Variable neighborhood search 
In MA, each new offspring go through a local search procedure to find a new solution with a better 

fitness.A local search is performed and the neighborhood with the best objective function value is 
chosen.In this research,variable neighborhood searchis appliedto enhance the quality of solutions. 

Most local search heuristics use only one neighborhood structure. However, a local optimum with 
respect to one neighborhood structure is not necessarily a local optimum with respect to another 
structure. The variable neighborhood search uses different neighborhood structures and switches 
between them while searching for a better solution. VNS employsa systematic change of the neighbor 
within the search space to find the global optimum or to get a better local optima. In the proposed 
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MA-VNS, three different neighborhood structures are used as illustrated in Figure 3, i.e. Adjacent 
interchange (C8), Swap (C@) and Insertion (CD)neighborhood structures. 

 
 

10 9 8 1 4 3 6 5 2 7 
          

10 9 4 1 8 6 3 5 2 7 
(a) Adjacent interchange structure (C8) 

          
10 9 8 1 4 3 6 5 2 7 

 
10 4 8 1 9 3 6 5 2 7 

(b) Swap structure (C@) 

          
10 9 8 1 4 3 6 5 2 7 
          

10 9 8 1 2 4 3 6 5 7 
(c) Insertion structure (CD) 

Figure 3.Neighborhood structures in the VNS 
 
In the first neighborhood,the position of two adjacent alleles are interchanged. In the swap 

neighborhood structure, the position of two non-adjacent allelesare changed whereas in the insertion, 
one allele is removed from its position and inserted in another position.  

Initially the search is performed in the first neighborhood structure to find a better solution. If a 
movecauses improvement in the fitness of chromosome, it is confirmed andthe search continues on 
theimproved chromosome. Otherwise, the search switches to the next neighborhood structure.The 
neighbors are examined one by one for a solution with better fitness in the neighborhood structures. 
The switching of neighborhoods prevents the search being stuck at the local minimum. When there is 
no better solution found in the first neighborhood structure, it can be a local minimum. But when the 
neighborhood changes, it is probable that a better solution can be found and thus the local minimum is 
skipped.The search terminates after a fixed number of iterations. The implementation of VNS is 
described as follows: 

 
Step I: Set � ← Initial solution, � ← 0 (Iteration number), F ← 1 (Structure number). 
StepII: Generate a neighbor solution �8 of � using the structureCG. 
StepIII: Compare fitness of �8 with	�; If HI��J		(�8) ≤ HI��J		(�), then � ← �8; else   F ←F + 1. 
StepIV: � ← � + 1; If � = �KLM (the maximum number of iterations), then stop and return 

 �;otherwise, go to step V. 
Step V: If F = 4, then F ← 1, and go to Step II; else go to Step II. 

4-7- Updating the population 
At each generation of evolutionary algorithm, after generating new chromosomes through 

crossover and mutation steps the population is updated. In this research,ifthe fitness ofthe newly 
generated chromosome is better thanthe second parent that participated in crossover, then the second 
parent is replaced with this offspring. This mechanism increases the rate of improvement of the best 
solution. However, it reduces the diversification of the algorithm. To overcome this trap, the 
algorithm restarts from another region in the search space randomly. 

After replacing new offspring with their parent if at least one of the new offspring ischosen to enter 
the population, the algorithm is continued with the updated population; otherwise,the population 
should be regenerated. For this purpose, the algorithm replaces all the current chromosomes with new 
randomly generated ones except the best elite chromosome that is obtained so far. Every time 
regenerating the population occurs the algorithm restarts its process from another region in the search 
space. 
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4-8- Calculating fitness of a chromosome 
The fitness of a chromosome is equal to the total earliness and tardiness of all the jobs. For 

calculating the fitness of a chromosome, first the jobs are assigned to the batches based on the job 
sequence in the chromosome and then the batches are processed on themachine in order to minimize 
the total earliness and tardiness of all the jobs. 

The first-first (FF) procedure which is commonly used for the bin-packing problem(Coffman et al., 
1997), is adapted for the research problem to form the batches. The adaptive FF procedurecan be 
described as follows: The first unassigned job from the sequence is assigned to the first available 
batch with enoughresidual capacity. If none of the existing batches can accommodate the job, then a 
new batch is created, and the job is assigned to this new batch. This procedure is repeated until all the 
jobs from the sequence are assigned to a batch. 

For computing the optimal schedule that minimizes the total earliness and tardiness of all the jobs 
for a given set of formed batches, we propose an effective dynamic programming algorithm (DP). The 
aim of the DP algorithm is to find a schedule of the given batches in such a way that the total earliness 
and tardiness is minimized.The details of the DP algorithm are described as follows. 
Let 	N = >�8, �@, … , �K? be a given set of formed batches, where O is the number of batches and �� 
is a batch containing a subset of jobs for	� = 1,2, . . . , O. Suppose that the batches are sorted in abatch 

weighted shortest processing time (BWSPT) order, i.e.,
QR6R ≤ QS6S ≤ ⋯ ≤ QU6U, where 4� and �� denote 

the processing time and the number of jobs processed in batch b, respectively. 
Let ���(	) be the minimum cost to schedule batches �, � + 1, … , O given that batches 1,2, … , � −1 are scheduled and the sum of processing time of the batches that are scheduled early or on time is 	. 

The state variable is defined only by 	 because by knowing	, the sum of processing time of the 
batches that are scheduled tardy can be determined. Since the processing time of all the previously 
scheduled batches is ∑ 4L�:8L78 , the sum of processing time of the previously scheduled tardy batches is ∑ 4L − 	�:8L78 . The recursive relation is as follows:  

 

���(	) = OI�	 V��	 + ���W8(	 + 4�)	, �� X5 4L − 	�
L78 Y + ���W8(	)Z (12) 

 
and the boundary conditions are: 

��KW8(	) = 0,						 = 0, 1, … , 5 4L
K

L78  (13) 

The optimal schedule is determined at ��8(0) and the corresponding schedule can be found by 
backtracking. Note that the first and second expression in the recursive relation (16) is the cost of 
scheduling batch � early and late, respectively.To determine the time complexity of the 
algorithm,note that � is [(O) and 	 is[(∑ 4L)KL78 . Thus, the recursive relation is used [(O ∑ 4L)KL78  
times. Consequently, the time complexity of the proposed DP algorithm is[(O ∑ 4L)KL78 . 

The steps of the proposed MA-VNS algorithm are presented as a flowchart in Figure 4. 
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Start

End

Initialize population and 
parameters

Calculate the Fitness value of 
choromosomes

Determine the best solution

Generation ← 1

Satisfy stop 
Criterion?

Yes

Generation ← Generation + 1

Update population and the best 
solution

i ←  1

 i <= pop_size × 
Crossover rate?

Apply crossover on the selected 
chromosomes for generating new 

offspring

Apply mutation to the new 
offspring using mutation 

mechanism

Select two chromosomes using 
selection strategy

Apply VNS on the new offspring

i ← i + 1

Yes

No

Report the best found solution

No

 
 

Figure 4. The flow chart of the proposed MA-VNS algorithm 
 

5- Computational experiments 
In this section, the specification of the test instances is described in the first part. Tuning the 

parameters of the MA-VNS algorithm is discussed in the second part. Finally, the performance of the 
proposed algorithm is compared with CPLEX and the best available metaheuristic algorithmin the 
literatureproposed by Li et al. (2015). ILOG CPLEX 12.0, a commercial optimization software, is 
used to solve the mathematical model. All the algorithms are coded in MATLAB 16.0 and executed 
on a PC with2.3 GHz processor and 2 GB RAM. 

To evaluate the efficacy of the proposed algorithms, the test problems generated by Li et al. (2015) 
are used. Several parameters may affect the results, such as the number of jobs, the size and the 
processing time of jobs.The specifications of the instances are presented in Table 1. 
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Table 1.  Specifications of the test problems 

Parameters Levels 

Number of jobs (�) 20, 40, 60, 80, 100, 200 

Job processing time (��) Discrete uniform [1, 10] and Discrete uniform [1, 50] 

Job sizes (	�) Discrete uniform [1, 30] and Discrete uniform [15, 35] 

Due date (
) 5 ��6
�78  

Machine capacity (�) 40 

 

5-1- Parameters tuning 
The performance of the MA-VNSalgorithm is generally sensitive to the setting of the parameters 

that influence the search mechanism and the convergence rate. A preliminary study on the 
performance of the MA-VNS showed that some parameters such as Population size (pop_size), 
Crossover rate (\), Mutation rate (ℳ), andthe number of iterations in VNS (�KLM) affect the 
performance. To tune the proper value for these parameters, we conducted a statistical analysis based 
on Taguchi method (Taguchi, 1986). Taguchi method attempts to increase the robustness of the 
system by minimizing the variation of the output results. Several computational experiments are 
conducted for determining the proper values of the parameter levels. Consequently, there are four 
main factors and three levels for each parameter values. The factors and their levels are presented in 
details in Table 2. 

 
Table 2.Levels of main factors 

A: Population size 
(pop_size) 

B: Crossover rate 
(\) 

C: Mutation rate 
(ℳ) 

D: Number of iterations in VNS 
(�KLM) 

A(1): 20 B(1): 0.2 C(1): 0.01 D(1): 10 

A(2): 50 B(2): 0.4 C(2): 0.1 D(2): 20 

A(3): 100 B(3): 0.8 C(3): 0.5 D(3): 30 

 
The orthogonal array ^_(3a) is the best fittest design for factors’ levels. 20 randomly generated 

test instances are solved by all 9 predefined scenarios, shown in Table 3. Totally, 180 runs should be 
executed for the design. The response variable of the design is calculated based on the objective 
function of the MA-VNS algorithm. 

 
Table 3.Factors levels of orthogonal array^_(3a) 

Scenario no. 
Factors levels 

A B C D 
1 A(1) B(1) C(1) D(1) 
2 A(1) B(2) C(2) D(2) 
3 A(1) B(3) C(3) D(3) 
4 A(2) B(1) C(2) D(3) 
5 A(2) B(2) C(3) D(1) 
6 A(2) B(3) C(1) D(2) 
7 A(3) B(1) C(3) D(2) 
8 A(3) B(2) C(1) D(3) 
9 A(3) B(3) C(2) D(1) 

 
The robustness of the algorithm is measured by the means of Signal-to-Noise (S/N) ratio. The S/N 

ratio is computed as	−10 Fbc(��)@. For minimization problems, the larger value of S/N ratio leads to 
the smaller variation of the output results. Since the test instances have different sizes and therefore 
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different objective functions, the size effect should be eliminated. So, the objective function value of 
each test instance is changed to the relative percentage deviation (RPD). RPD is calculated as (�� − ���def)/ (��hijef − ���def), where �� is the total earliness and tardiness value obtained from the 
MA-VNS algorithm for the test instance. ���defand��hijef are respectively the best and worst total 
earliness and tardinessvalue obtained for the test instance from different scenarios. Therefore, the S/N 

ratio for each scenario is calculated by (k l⁄ )j = −10 log o 8@p ∑ q4rsj@ps78 t@ , u = 1,2, … ,9. 

Figure5represents the results of Taguchi experiment. For each factor, the best level is the one with 
smaller RPD and higher S/N ratio. Based on the Taguchi results, the best levels are A(2), B(3), C(2), 
and D(3). The best setting of parameters is given in Table 4. 

 

 
 

Figure 5.The results of Taguchi experiment 
 

Table 4.  Taguchi results: selected levels of factors 

A: Population size 
(pop_size) 

B: Crossover rate 
(\) 

C: Mutation rate 
(ℳ) 

D: Number of iterations in VNS 
(�KLM) 

A(2): 50 B(3): 0.8 C(2): 0.1 D(3): 30 
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5-2- Evaluation of BMILP model and MA-VNS algorithm on small-sized instances 
In this section, the results of the proposed algorithm are compared with the solutions of the binary 

mixed integer modelpresented in Section 3. The model is solved by using CPLEX. Since the research 
problem is NP-hard, the optimal solution for medium and large sized problems cannot be found in a 
reasonable time. CPLEX did not converge even after running for several hours, so it was terminated 
after 24 hours and the best found solution is used for comparison. 

Problems with � = 10, 20, and 40 are considered and for each level of	�, a random problem 
instance in each category of job sizes and job processing times are generated.The number of variables 
and the number of constraints in the mathematical model for different number of jobs are presented in 
Table 5. 

 
Table 5.  Number of variables and constraints in the mathematical model 

No. jobs No. Binary variables No. Total variables No. Constraints 
10 100 140 250 
20 400 480 900 
40 1600 1760 3400 � �@ �@ + 4� 2�@ + 5� 

 
 
 The results obtained from MA-VNS and CPLEX are presented in Table6.The last column 

represents the optimality gap (GAP) of CPLEX. A large GAP implies that CPLEX requires much 
more time to converge to an optimal solution. 

 
 
As can be seen from Table 6, MA-VNS and CPLEX find the optimal solutions for all the instances 

with 10 jobs. However, the computational time required by MA-VNS is extremely less than CPLEX. 
For the instances with 20 and 40 jobs, CPLEX could not find the optimal solution within 24 hours. 
The optimality gap infers that CPLEX needs more time to converge to an optimal solution. For these 
instances, the solutions obtained from MA-VNS are equal or better than the best solutions reported by 
CPLEX. This results demonstrate the verification of the proposed algorithm. 

5-3- Evaluation of the MA-VNS algorithm 
For evaluating the efficiency of MA-VNS on large-sized instances, it has been compared with the 

proposed algorithm developed by Li et al. (2015), called GAMARB. For each combination of the 
number of jobs, job sizes, and job processing times,10 instances are tested, for a total of240. All the 

Table 6.Comparison of MA-VNS and CPLEX 

wx yx z  MA-VNS/CPLEX Gap (%) 

{[}, }~] 
�[1,30] 10  1.0000 0.00 

20  0.9469 4.23 
40  0.9472 7.38 

     

�[15,35] 10  1.0000 0.00 
20  0.9669 3.62 
40  0.9175 8.59 

      

{[}, �~] 
�[1,30] 10  1.0000 0.00 

20  1.0000 4.71 
40  0.9151 12.01 

     

�[15,35] 10  1.0000 0.00 
20  0.9299 13.48 

 40  0.9491 9.36 
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instances are solved by each of the algorithms. Li et al. (2015)used 1000 generation as the stopping 
criterion of GAMARB,we also use the same stopping criterion to fairly compare the algorithms. The 
performance comparison between MA-VNS and GAMARB is representedin Table 7. 

 

 
 
From Table 7, it can be observed that MA-VNS has a better performance compared to GAMARBin 

all categories of problem instances. The performance of the proposed algorithm for problems with 
small job sizes is more significant than the case of large job sizes. For the problems with large job 
sizes, two algorithms have almost the same performance and obtain solutions with similar quality. 
Since when the size of jobs are larger, more jobs are processed individually, and thus the feasible 
search space is much smaller compared to the case of small job sizes. This leads to a reduction in the 
performance differences between two algorithms. The performance comparison between MA-VNS 
and GAMARB for different job processing time shows that, job processing time has no significant 
impact on the solution quality. It also can be observed that the performance differences between two 
algorithms become more considerable by increasing the number of jobs. The results for different 
categories of job processing times and job sizes are depictedin Figures 6 and 7. 

Table 7.Comparing solution quality of MA-VNS and GAMARB 

wx yx z  MA-VNS GAMARB MA-VNS/ GAMARB 

{[}, }~] 

�[1,30] 
20  160.5 163.9 0.9795 
40  561.8 584.8 0.9607 
60  1205.3 1291.7 0.9331 
80  2124.0 2340.9 0.9074 
100  3534.6 3968.3 0.8907 
200  13730.6 15523.6 0.8845 

    Average 0.9260 
      

�[15,35] 
20  296.2 300.3 0.9864 
40  1201.5 1220.6 0.9844 
60  2525.6 2573.2 0.9815 
80  4294.6 4376.4 0.9813 
100  7058.3 7193.4 0.9812 
200  27159.7 27762.1 0.9783 

     Average 0.9822 
       

{[}, �~] 

�[1,30] 
20  656.6 675.0 0.9728 
40  2716.4 2841.2 0.9561 
60  5813.0 6219.3 0.9347 
80  10072.4 10859.8 0.9275 
100  15202.2 16520.4 0.9202 
200  61873.3 67275.5 0.9197 

    Average 0.9385 
      

�[15,35] 
20  1303.6 1316.1 0.9905 
40  5409.3 5477.0 0.9876 
60  11865.9 12023.4 0.9869 
80  18812.0 19114.3 0.9842 
100  31972.3 32565.0 0.9818 
200  127355.6 129968.0 0.9799 

     Average 0.9852 
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Figure 6. Comparison theperformance of algorithms for instances with wx~{[}, }~] 

 
 

 
Figure 7. Comparison theperformance of algorithms for instances with wx~{[}, �~] 

 
 
The average computational time of MA-VNS and GAMARB is shown in Table 8. The results show 

that there is no significant difference between two algorithms in terms of computational time.The two 
algorithms need more time as the number of jobs increases. Finally, we can conclude that MA-VNS 
provides better solutions than GAMARB but need approximately the same computational time. 
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6- Conclusions 

The minimization of total earliness and tardiness on a single batch processing machine is 
investigated in this research. A mathematical model for the research problem is proposed. An 
improved memetic algorithm, which combines evolutionary algorithmswith variable neighborhood 
search procedure is presented.Computational experiments show that theproposed MA-VNS has a 
superior performance than the best available metaheuristic algorithm existing inthe literature i.e., the 
GAMARB algorithm byLi et al. (2015).Developinglower boundingmethods for evaluating the 
performance of metaheuristic algorithmsisan interesting extension and opportunity for the future 
research.It’s also possible to relax the common due date assumption. Consideringminimization of 
earliness and tardiness on batch processing systems in theother machine environments such as 
flowshop and parallel machines, is another possible future research topic. 
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