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Abstract 

Due to narrow streets, dense traffic, and transportation restrictions, city logistics 

operations are under increasing pressure and need innovative approaches. Recently 

coordination of trucks and drones has been used as a new solution, which can improve 

the efficiency of city logistics operations. This paper also focuses on a truck and drone 

delivery system. As the major contributions, this paper develops a new mix integer 

programming model to formulate the hybrid truck and drone routing problem with soft 

time windows and proposes an effective two-phased metaheuristic algorithm. To 

evaluate the performance of the proposed metaheuristic, we carried out numerous 

computational experiments, where the results show the efficiency of the proposed 

metaheuristic. Finally; a detailed sensitivity analysis is performed. 

Keywords: City logistics, last-mile delivery, truck-drone routing problem, 

metaheuristics, time window 

 

1- Introduction 
   In recent years, with the increase in E-commerce popularity and customers’ expectations for door-to-door 

and fast delivery, transportation in urban areas has increased which is responsible for economic, 

environmental, and social destructive effects. As a solution, researchers proposed to use the unmanned 

aerial vehicle (UAV) for delivery tasks. They travel at direct distances and dense traffic is not reducing 

their performance. They provide fast deliveries and produce less air pollution. Although this mode of 

transportation provides several benefits in comparison to ground vehicles, they have some restrictions. 

UAVs also called drones have limited battery capacities and payloads, and it is not economical to use them 

independently.  For that matter, various studies suggested hybrid truck and drone delivery systems, which 

take advantage of trucks’ large capacity and drones’ high speed (Freitas et al. 2019). 

   Because of urban restrictions and regulations, there are some difficulties for hybrid truck and drone 

delivery systems. Security and safety are the biggest issues in drone delivery systems (Chen, et al. 2021), 

which require the drone to fly within the sight radius of its operator. Drones are generally operated by truck 

drivers, and it is hard to drive and operate the drone at the same time, so the truck should be parked while 

the drone is flying. It is also contrary to urban logistic ideals to park a trailer or van at a customer location 

to service another customer. Taking the mentioned issues into account, we worked on the hybrid truck and 

drone routing problem with time windows. See Fig. 1. In this study, the truck departs from the depot and 

transports to some parking stations which have enough space for truck parking and drone operations. We 

also call these parking stations as rendezvous locations. Then the drone takes off and delivers parcels to the 

customers. 
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Fig 1. Hybrid truck-drone routing problem 

 
The main contributions of this paper can be summarized as follows: 

 This is the first study to model the two-echelon truck-drone routing problem with rendezvous 

locations and time windows. 

 In this paper, we have proposed an effective two-phased metaheuristic algorithm.  

The remainder of this paper is organized as follows. 

 Section 2 represents an overview of related literature. Section 3 represents a mathematical model for 

the problem. We describe our proposed metaheuristic in section 4. The computational results are provided 

in section 5, and section 6 outlines future research directions and concludes our study. 

 

2- Literature review 
   Vehicle routing problem (VRP) is a well-known problem that aims to find vehicle routes to serve 

customers with minimum costs or minimum delivery time. In recent years, several variations of VRP have 

been studied in the literature. For instance, Hafezalkotob et al. (2017) considered competition between two 

distributors and proposed a vehicle routing problem in a competitive environment. Shojaie et al. (2016) 

considered stochastic demands and time windows and proposed a competitive VRP. Rabani et al. (2021) 

focused on the transportation of medicines and their wastes and proposed a bi-objective pickup and delivery 

mathematical model.  

   A hybrid truck-drone routing delivery system is also a new variation of the VRP. Murray and Chu (2015) 

were the first who coordinate both a delivery truck and a drone for package delivery and proposed the flying 

sidekick traveling salesman problem (FSTSP). In this problem, the drone has maximum traveling distance 

constraints and it can pick up/deliver only one parcel per flight. There are so many papers worked on this 

problem (Luo et al., 2021); some extended the problem formulation (Jeong et al., 2019) and some presented 

a new solution (Freitas et al., 2019).  
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   One extension to FTSP is the traveling salesman problem with drones (TSP-D), where the drone is not 

allowed to start a flight directly from/ to the depot (Bouman et al. 2018, Poikonen et al. 2019, and Wang et 

al. 2019). Tu et al. (2018) extended this problem to the traveling salesman problem with multiple drones 

(TSP-mD) in which, the truck travels with m drones instead of one drone.     

   Murray and Raj (2020) coordinated a truck and a fleet of heterogeneous UAVs and presented the multiple 

flying sidekicks traveling salesman problem (mFSTSP). Raj and Murray (2020) assumed variable speeds 

for UAVs and proposed the multiple flying sidekicks traveling salesman problem with variable drone 

speeds (mFSTSP-VDS). 

   Another extension of the coordination of trucks and drones is the vehicle routing problem with drones. In 

this problem, multiple trucks are deployed (Schermer et al. 2019, Poikonen et al. 2017, Chen et al. 2021) 

which could be equipped with one or more drones.  

   Although the concept of multi-visits per drone trip is primarily used in surveillance applications (Luo et 

al., 2021) in city logistics also; it can also reduce costs by eliminating unnecessary truck transportation. We 

refer to: (Chen et al. 2021, Luo et al. 2021, Kitjacharoenchai et al. 2020) 

   Most of the related literature focused on the problem in which truck plays the mobile depot role. 

Considering another application of drones, Pina-Pardo et al. (2021) proposed to use them for truck 

resupplying and introduced the traveling salesman problem with release dates and drone resupply. 

   Lu et al. (2017) proposed a two-echelon ground vehicle and a UAV routing problem, in which the ground 

vehicle can stop recycling and launching the UAV only in rendezvous nodes. Similarly; Karak and 

Abdelghany (2019) mentioned some real-world city logistics restrictions for the coordination of trucks and 

drones and proposed the hybrid vehicle-drone routing problem. They adopted the problem to city logistics 

concept in a way that truck parking stations were different from customers’ locations. In this kind of 

formulation, truck stops were assumed variable, and candidate locations for a parking station could be 

selected among customers or other feasible locations, so it covers more comprehensive applications of truck 

and drone coordination. Teimoury and Rashid (2023) also considered the hybrid truck and drone routing 

problem with non-customer truck stop locations and proposed a large neighborhood search algorithm to 

solve the problem.  

   As another aspect of truck and drone coordination; some studies considered the dispatch-wait-collect 

tactic, in which the drone returns to the same locations at which it is dispatched (Li et al. 2020, Chen et al. 

2021), and some assumed a drone can visit the truck in a different location instead of its departure location 

(Wang et al. 2019, Sacramento et al. 2019, Schermer et al. 2019, Luo et al. 2021).   

 

2-1-Research gap 
   Only a few studies have assumed rendezvous locations in the literature. Only a limited number of studies 

have addressed the possibility of multiple drone departures per truck stop. In addition, most studies have 

focused on either completion time or total delivery time dimensions, while few have taken into account 

operational costs. Although a few studies have addressed customers’ hard time windows, there has been no 

research on truck and drone routing problems with customers’ soft time windows. Thus, we proposed a 

mathematical model for the truck and drone routing problem with soft time windows. This study considers 

rendezvous locations and multiple drone departures per truck stop and presents a linear formulation and a 

metaheuristic algorithm. 

  

3- Formal problem description and formulations 
   This section defines the truck and drone routing problem with rendezvous locations. In this delivery 

system, parcels are loaded on the truck, and it transfers them to rendezvous locations in the customers’ 

vicinity. Then parcels are loaded on the drone and it delivers them to the customers.  

 

 The drone visits each customer only once. 

 There is a sight radius for drone operation. 
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 The truck only stops at rendezvous locations. Each rendezvous point represents a parking location 

with sufficient space for truck parking and drone operation. 

 The truck has enough capacity to serve all the demands.  

 Each customer has a soft time window; if the delivery system services the customer after or before 

the time window, a penalty cost must be paid.  

    

   We defined the problem on G= (N, A) as a directed graph, where A is the set of arcs and N is the set of 

vertices partitioned into N ={0, 𝑠 + 1} ∪ 𝑆 ∪ 𝐶, in which 0 𝑎𝑛𝑑 𝑠 + 1 represent the central depot, S is the 

set of rendezvous nodes, and 𝐶 is the set of customer nodes. 

 

3-1- Mathematical model formulation 
   In this section, we proposed a MIP model for the problem. The objective function calculates the 

operational costs.  

 

Sets: 

N Set of all nodes, where 𝑁 = S ∪  𝐶, 

S 

Set of all rendezvous locations, where 0 and s+1 demonstrate the depot. 𝑆 = {0,1, … , 𝑠, 𝑠 + 1}. 0 

demonstrates the depot index where transportation is started and 𝑠 + 1 demonstrates the depot index where 

transportation is finished, 

𝑆0 Set of rendezvous nodes,  𝑆0 = {1, … , 𝑠}, 
𝑆1 Set of rendezvous nodes and 0, 𝑆1 = {0,1, … , 𝑠}, 
𝑆2 Set of rendezvous nodes and 𝑆 + 1, 𝑆2 = {1, … , 𝑠, 𝑠 + 1}, 
C Set of customers, 𝐶 =  {1, … , 𝑐 }, 
R Set of all possible drone routes for each selected rendezvous location, where R={1, … , |𝑟|}. |𝑟| is the 

maximum number of drone routes per rendezvous location.  

 

Parameters: 

TCO𝑘𝑓 Truck transportation costs between node k and node f, 

DCO𝑖𝑓 Transportation costs for the drone to service customer i from rendezvous location f, 

𝑑𝑖,𝑘 Distance between customer (i) and rendezvous location (k), 

𝜌 The maximum flying time that a drone can travel for each departure, 

𝑆𝑅 Sight radius for operating the drone, 

𝑑𝑠 Drone speed,  

 𝑡𝑡𝑓𝑘 Truck travel time between node f and node k,  

𝐿𝑇𝑊𝑗  Starting time of time window for customer j, 

𝑈𝑇𝑊𝑗  Ending time of time window for customer j, 

TWCO Time window violation penalty, 

M Big positive number. 

 

Indexes: 

i, j Customer nodes, 

k, f Rendezvous nodes and depot, 

r Route index for each rendezvous location. 

 

Variables: 

𝑍𝑘 A binary variable, which gets the value of 1 if rendezvous node k is selected; otherwise, it gets 0, 

ℎ𝑖𝑘 A binary variable, which gets the value of 1 in case of assigning customer i to rendezvous node k; 

otherwise, it gets 0, 

𝑈𝑘,𝑟
𝑖  A binary variable, which gets the value of 1 in case of assigning customer i to a rendezvous node k 

and route u; otherwise, it gets 0, 



24 
 

 𝑇𝑓𝑘 A binary variable, which gets the value of 1 if the truck transports from rendezvous node f to k; 

otherwise, it gets 0, 

𝐷𝐴𝑗 Drone arrival time in node j, 

 𝑇𝐴𝑘 Truck arrival time at rendezvous location k, 

 𝑇𝐷𝑘 Truck departure time from rendezvous node k, 

𝑢𝑝𝑘 Order number of rendezvous nodes, 

𝑇𝑊𝑉𝑖  Time window violation for customer i 

𝑈𝑉𝑖  Time window violation if customer i is serviced after 𝑈𝑇𝑊𝑗, 

𝐿𝑉𝑖  Time window violation if customer i is serviced before 𝐿𝑇𝑊𝑗  

 

Objective function: 

(1) 𝑀𝑖𝑛 𝑂𝑏𝑗 = ∑ 𝑇𝑓𝑘𝑇𝐶𝑂𝑘𝑓

𝑘,𝑓∈𝑆0

+ ∑ ℎ𝑖𝑘𝐷𝐶𝑂
𝑖,𝑘

𝑘∈𝑆0,𝑖∈𝐶

+ 𝑇𝑊𝐶𝑂 ∑ 𝑇𝑊𝑉𝑖

𝑖∈𝐶

 

Subject to: 

(2) 
∑ ℎ𝑖𝑘

𝑘∈𝑆0

= 1                                                                                              ∀𝑖 ∈ 𝐶 

(3) ℎ𝑖𝑘 ≤ 𝑍𝑘                                                                                           ∀𝑖 ∈ 𝐶, 𝑘 ∈ 𝑆0                

(4) ∑ 𝑈𝑘,𝑟
𝑖

𝑟∈𝑅

= ℎ𝑖𝑘                                                                                         ∀𝑖 ∈ 𝐶, 𝑘 ∈ 𝑆0 

(5) 𝑍𝑘 = 1,                                                                                                      ∀ 𝑘 ∈ {0, 𝑠 + 1} 

(6) ∑ ℎ𝑖𝑘

 𝑓∈𝑆2

𝑑𝑖𝑘 ≤ 𝑆𝑅                                                                                 ∀𝑖 ∈ 𝐶, 𝑘 ∈ 𝑆0  

(7) 
∑ 2ℎ𝑖𝑘 𝑘∈𝑆0 𝑑𝑖𝑘

𝑑𝑠
≤ 𝜌                                                                                                 ∀𝑖 ∈ 𝐶, 𝑘 ∈ 𝑆0         

(8) ∑ 𝑇𝑘𝑓

𝑓∈𝑆2≠𝑘

= 𝑍𝑘                                                                                       ∀𝑘 ∈ 𝑆1     

(9) ∑ 𝑇𝑓𝑘

𝑓∈𝑆1≠𝑘

= 𝑍𝑘                                                                                       ∀𝑘 ∈ 𝑆2     

(10) 𝑇𝑓𝑘 ≤
𝑍𝑓 + 𝑍𝑘

2
                                                                                       ∀𝑓, 𝑘 ∈ 𝑆 

(11) 𝑢𝑝𝑘 − 𝑢𝑝𝑓 + 𝑀(𝑇𝑘𝑓) ≤ 𝑀 − 1                                                         ∀𝑘, 𝑓 ∈ 𝑆 

(12) 𝑇𝐴𝑘 − (𝑇𝐷𝑓 + 𝑡𝑡𝑓𝑘) ≥ (𝑇𝑓𝑘 − 1). 𝑀                                                 ∀𝑓 ∈ 𝑆1, ∀𝑘 ∈ 𝑆2 

(13) 𝐷𝐴𝑗 ≥ 𝐷𝐴𝑖 + (
𝑈𝑘,𝑟−1

𝑖 𝑑𝑖𝑘

𝑑𝑠
+

𝑈𝑘,𝑟

𝑗
𝑑𝑗𝑘

𝑑𝑠
) − 𝑀(1 − 𝑈𝑘,𝑟−1

𝑖 ) − 𝑀 (1 − 𝑈𝑘,𝑟

𝑗
)   ∀𝑖, 𝑗 ∈ 𝐶, 𝑘 ∈ 𝑆0, 𝑟 ∈ 𝑅  

(14) 𝐷𝐴𝑗 ≥ 𝑇𝐴𝑘 +
𝑈𝑘1

𝑗
𝑑𝑗𝑘

𝑑𝑠
− 𝑀 (1 − 𝑈𝑘1

𝑗
)                                                               ∀𝑗 ∈ 𝐶, 𝑘 ∈ 𝑆0 

(15) 𝑇𝐷𝑘 ≥ 𝐷𝐴𝑗 +
𝑈𝑘,|𝑟|

𝑗
𝑑𝑗𝑘

𝑑𝑠
− 𝑀 (1 − 𝑈𝑘,|𝑟|

𝑗
)                                            ∀𝑗 ∈ 𝐶, 𝑘 ∈ 𝑆0 

(16) 𝐷𝐴𝑗 − 𝑈𝑉𝑗 ≤ 𝑈𝑇𝑊𝑗                                                                                ∀𝑗 ∈ 𝐶 

(17) 𝐷𝐴𝑗 + 𝐿𝑉𝑗 ≥ 𝐿𝑇𝑊𝑗                                                                                  ∀𝑗 ∈ 𝐶 

(18) 𝑇𝑊𝑉𝑗 ≥ 𝑈𝑉𝑗                                                                                             ∀𝑗 ∈ 𝐶 

(19) 𝑇𝑊𝑉𝑗 ≥ 𝐿𝑉𝑗                                                                                              ∀𝑗 ∈ 𝐶   
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Binary variables: 𝑍𝑘, ℎ𝑖𝑘, 𝑈𝑘,𝑟
𝑖  

Integer variables: 𝑢𝑝𝑘, 𝑢𝑐𝑖 

Positive variables: 𝑇𝑓𝑘 , 𝑇𝐴𝑘 , 𝐷𝐴𝑗 , 𝑇𝐷𝑘 , 𝑈𝑉𝑗 , 𝐿𝑉𝑗 , 𝑇𝑊𝑉𝑗  

 

   The objective function is minimizing the operational costs. Constraints (2 and 3) assign customers to 

selected rendezvous locations. Constraint 4 assign customers to a drone route of a selected rendezvous 

location. Constraint 5 selects depot nodes as truck stop locations. Constraint 6 restrict drone traveling 

distance in the sight radius of rendezvous locations. Constraint 7 restrict drone traveling duration for its 

battery endurance. Constraints (8, 9, and 10) ensure that the truck travels only between selected rendezvous 

locations. Also, if a rendezvous location is selected, it will be visited by the truck only once. Constraint 11 

is to evade sub-tours. Constraint 12 calculate truck arrival time in rendezvous locations. Constraints (13 

and 14) calculate drone arrival time in customer locations. Constraint 15 calculate truck departure time in 

rendezvous locations. Constraints (16, 17, 18 and 19) calculate time window violations) ensure that 

customers are serviced in their time window durations. To prepare a better description, Fig. 2 is presented. 

If the drone arrives before the starting time of the time window, the time window violation equals LV and 

will be calculated based on constraints (17 and 19), and if the drone arrives after the finishing time of the 

time window, the time window violation equals to UV and will be calculated based on constraints (16 and 

18). 

LTW UTW

DA DADA

UVLV

Time

 

Fig 2. Description of the time window violation  

 

4- Solution method 
   The hybrid truck-drone routing problem with time windows is a complex optimization problem that 

requires several considerations: selecting rendezvous locations for truck stop nodes, customer assignment, 

and scheduling truck and drone routes to optimize operational costs. Due to the computational complexity 

of this problem, we proposed a two-phased metaheuristic, in which the first phase constructs an initial 

solution and the second phase improves the solution. Algorithm 1 presents the framework of our two-phased 

metaheuristic. 

Algorithm 1: Hybrid Truck and Drone (HTD) metaheuristic framework 

Require: travel time matrix, distance matrix; costs matrix 

1-s𝑜𝑙 ← create an initial solution  

2- 𝑆𝑜𝑙∗ ← solution improvement (Sol) 

3- return 𝑆∗ 

 

4.1- Making an initial solution: 
   The initial solution phase selects all rendezvous locations, assigns customers to their nearest rendezvous 

locations, and then randomly schedules customers. After discarding rendezvous locations with no customer, 

the initial solution phase constructs truck routes. For a better description, the first phase of the proposed 

algorithm is presented as follows: 
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Algorithm 2: Create an initial solution 

Require: travel time matrix, distance matrix; costs matrix 

1: 𝑠𝑒𝑡𝑝 ← make set of customers assigned for each rendezvous location 

2: for all i∈ C, do 

3:  find the nearest rendezvous location (p) 

4:   put i in 𝑠𝑒𝑡𝑝 

5:  end for 

6: 𝑆𝑜𝑙𝑇𝑠𝑝
𝑑 ← define customers’ sequences 

7: for all p∈S0, do 

8:  𝑆𝑜𝑙𝑇𝑠𝑝
𝑑𝑝

← randomly schedule customers assigned to rendezvous location p 

9: end for 

10: discard parking stations with no customer 

10: 𝑆𝑜𝑙𝑇𝑠𝑝
𝑇 ← Truck scheduling using Regret procedure 

11: return 𝑆𝑜𝑙 

    

   Where 𝑆𝑜𝑙𝑇𝑠𝑝
𝑑  defines drone route scheduling, 𝑆𝑜𝑙𝑇𝑠𝑝

𝑑𝑝
 is the drone route scheduling for rendezvous 

location p, 𝑆𝑜𝑙𝑇𝑠𝑝
𝑇  is the truck route scheduling for the remaining rendezvous locations and Sol defines our 

initial solution containing selected rendezvous locations, customer assignments, drone routes, and truck 

routes. In this algorithm, we defined the Regret procedure. The regret process selects the next sequence 

based on evading the maximum regret. Regret value for scheduling node (j) exactly after node (i) is 

calculated as follows: 

 

𝑟𝑒𝑔𝑟𝑒𝑡𝑖𝑗 = 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 (𝑇𝐶𝑂𝑘𝑗 , 𝑓𝑜𝑟 𝑘 ≠ 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 𝑛𝑜𝑑𝑒𝑠) − 𝑇𝐶𝑂𝑖𝑗                                                                       (20) 

4-2- Improvement phase 

   This phase of the metaheuristic begins with a solution and generates a neighborhood solution (𝑆𝑜𝑙́ ) for 

each iteration. Then Sol can be updated based on our Hybrid Simulated Annealing (HSA) acceptance 

criterion. The procedure of the algorithm is continued until in a predetermined number of iterations (�̅�); the 

solution is not improved. Algorithm 3 describes the improvement heuristic. 

 
Algorithm 3: Improvement phase 

Require: Sol, travel time matrix, distance matrix; costs matrix 

Ensure: Sol 

1: k←1 

2:  while k≤ �̅�, do 

3:  𝑆𝑜𝑙́ ←Shake (Sol) 

4:  if 𝑆𝑜𝑙́   is not feasible 

5:                                   k←k+1,  

6:                       else 

7:                             update the Sol based on SA,  

8:                               update 𝑓𝑁  

9:                             if 𝑓(𝑆𝑜𝑙́ ) ≤ 𝑓(𝑆𝑜𝑙)  

10:                                            k←1 

11:                           else 

12:                                          k←k+1 

13:                           end if 

14:                      end if     

15: end while 

 

   Where f(sol) is the objective value, 𝑠𝑜𝑙́  is the new solution, and 𝑓𝑁 is the worst objective value among the 

last N iterations. 
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   For each iteration, the shaking procedure randomly selects an operator among the following operators 

and constructs a neighborhood solution: 

 

1) Reducing parking stations: This operator randomly selects a rendezvous location, discards it, and 

assigns its customers to their nearest rendezvous locations. In this operator, the sequence of the remained 

rendezvous locations will not change.  

 

2) Replacing parking stations: The number of rendezvous locations in this operator will not change, just 

a selected rendezvous location is replaced with a discarded rendezvous location. For this, a rendezvous 

location among discarded rendezvous locations in previous iterations is selected, and simultaneously 

nearest rendezvous locations to that are removed.  

 

3) (1, 1) exchange in the truck route: This operator randomly selects two rendezvous stations and replaces 

their sequence.  

 

4) Customer insertion: This operator randomly selects a rendezvous location and randomly changes the 

sequences of its customers. 

 

5) Customer assignment: This operator randomly selects a customer and assigns that to the next nearest 

rendezvous location. As there may be some rendezvous locations with one customer, this operator also can 

reduce the number of rendezvous locations.  

 

4-2-1-Acceptance procedure 

   In this paper, HSA accepts all neighborhood solutions if 𝑓(𝑆𝑜𝑙́ ) ≤ 𝑓(𝑆𝑜𝑙). For the new solution with  

𝑓(𝑆𝑜𝑙́ ) > 𝑓(𝑆𝑜𝑙), operators approve the new worse solution with the following probability function. 

𝑒(
−(𝑓(𝑆𝑜𝑙́ )−𝑓(𝑆𝑜𝑙))

𝑇
)
 

(19) 

   Where T (temperature) is reduced after each iteration with 𝑇 = 𝑇. 𝜀, and  0 < 𝜀 < 1. For the first iteration, 

T is considered equal to the objective value calculated by the initial solution. 

   To avoid local optimal solutions, the first operator also accepts a solution rejected by the SA probability 

function, if 𝑓(𝑆𝑜𝑙́ ) < 𝑓𝑁.  

 

5- Computational study 
   Our proposed algorithm was implemented in Python 3.9.12, and the CPLEX is used to solve the proposed 

MIP model. All computations are performed on a LENOVO Laptop with Intel(R) Core (TM) i7-9750HF 

CPU @ 2.60 GHz, 2.59 GHz, and 16 GB installed RAM running Windows 10. 

 

5-1- Test instances 
   To evaluate the performance of the proposed solution method, we generated 250 instances. We generated 

customer locations and rendezvous locations in a 6000*6000 m2 square. Customers must be covered with 

the rendezvous locations, so we created them in a way that at least one rendezvous node is in sight radius 

of each second-class or third-class customer. The sight radius is considered to be 500 meters for this data 

instance. We have assumed that the depot is located at the vertex of the square (0, 0). We assumed 10 meters 

per second for truck speed and 20 meters per second for drone speed. We assumed the drone travel costs 

are equal to 0.01 dollars per kilometer. Also, the truck travel costs are 0.5 dollars per kilometer. For small-

size instances, we considered random time windows with 900 seconds duration, and for large-size instances, 

we considered 1-hour duration for time window durations. It is also assumed that the time window violation 

penalty is 5 dollars per hour. In this way, we created 25 instance types and generated 10 instances for each 

type. 
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5-2- Performance of the proposed metaheuristic 
   In this section, we considered 200 instances with various customer sizes (8, 12, 16, 24, and 32) and 

different rendezvous location sizes (4, 6, 8, 10, and 12). Karak and Abdelghany (2019) also studied the two-

echelon truck and drone routing problem and proposed a MILP and three heuristic algorithms based on the 

Clarke and Wright algorithm. One of their proposed algorithms was DDH. To analyze the performance of 

our MILP and metaheuristic, we adopted their formulation with our proposed problem. We compared the 

performance of Karak and Abdelghany’s (2019) MILP with our proposed MILP and HTD in table 1 for 

small-size and medium-size instances. For this analysis, we limited the computational time to 1800 seconds. 

As is demonstrated, our MILP outperforms Karak and Abdelghany’s (2019) formulation. The maximum 

CPU time for HTD for the mentioned instances is 0.46 seconds, and the maximum average gap is 0.0264, 

which is a reasonable performance for a newly implemented metaheuristic. 

   We compared HTD with DDH in Table 2 for large-size instances. As it is depicted, although DDH solves 

the instances in less CPU time, HTD outperforms DDH in terms of objective value which highlights the 

effectiveness of our proposed metaheuristic.  

 
Table 1. Performance of the MDR and AHTD for small-sized instances 

No. 

Total 

number 

of 

nodes 

Number 

of 

customers 

Number of 

rendezvous 

locations 

Number 

of 

Instances 

CPLEX 

HTD 
Karak and 

Abdolghany’s 

(2019) MILP 

Our MILP 

Average 

cost 

CPU 

time 

(sec) 

Average 

cost 

CPU 

time 

(sec) 

Average 

cost 

CPU 

time 

(sec) 

Average 

gap (%) 

1 12 8 4 10 4.33 0.54 4.33 0.08 4.33 0.02 0 

2 14 8 6 10 4.18 3.11 4.18 0.27 4.22 0.02 0.95 

3 16 12 4 10 4.91 1.24 4.91 0.15 4.91 0.02 0 

4 18 12 6 10 5.33 9.06 5.33 0.42 5.38 0.04 0.93 

5 20 12 8 10 4.50 92.18 4.50 1.61 4.57 0.05 1.55 

6 20 12 10 10 4.66 1620.67 4.66 5.70 4.73 0.06 1.50 

7 20 16 4 10 6.14 3.61 6.14 0.82 6.17 0.05 0.48 

8 22 16 6 10 5.71 28.42 5.71 2.14 5.75 0.06 0.70 

9 24 16 8 10 5.93 366.89 5.93 6.87 6.02 0.07 1.51 

10 26 16 10 10 5.42 1800 5.38 47.44 5.49 0.09 2.04 

11 28 24 4 10 6.47 11.55 6.47 1.24 6.52 0.07 0.77 

12 30 24 6 10 6.19 108.24 6.19 2.99 6.27 0.08 1.29 

13 32 24 8 10 6.61 1800 6.57 18.30 6.68 0.11 1.67 

14 34 24 10 10 6.20 1800 6.05 202.55 6.21 0.15 2.64 

15 36 24 12 10 6.25 1800 6.23 1614.92 6.30 0.22 1.12 

16 36 32 4 10 8.09 1614.30 8.09 2.67 8.14 0.09 0.61 

17 38 32 6 10 8.53 1800 8.38 9.04 8.51 0.12 1.55 

18 40 32 8 10 8.29 1800 8.21 113.56 8.37 0.17 1.94 

19 42 32 10 10 - 1800 8.17 1800 8.11 0.24 -0.73 

20 44 32 12 10 - 1800 8.08 1800 7.96 0.46 -1.48 

 

Table 2. Comparing the HTD and DDH for large-size instances 

No. Number of 
customers 

Number 
of 

rendezvo
us 

locations 

Number 
of 

Instances 

DDH HTD 

Obj. CPU time (s) Obj. CPU time(s) Gap (%) 

1 50 15 10 15.87 0.64 16.14 1.15 -1.68 

2 75 20 10 16.10 1.18 16.40 2.08 -1.81 

3 100 25 10 33.29 2.74 33.99 4.46 -2.08 

4 125 30 10 47.08 7.68 48.04 10.10 -2.03 

5 150 35 10 50.95 22.43 52.15 33.10 -2.35 
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   We analyzed the sensitivity of operational costs for various time window widths in figure 3. It is illustrated 

that increasing the time window width reduces truck stop locations, which may result in lower truck 

transportation costs and fewer time window violations. As it is depicted, for shorter durations of the time 

window, it has more impact on operational costs. Also, for smaller drone speeds, the operational costs show 

more sensitivity due to increasing the time window width. 

 

 

Fig 3. The performance of the delivery system for various values of drone speed and time window widths 

 

   Because of tall buildings in urban areas, to ensure the safety of the drone and its parcels, we assumed a 

sight radius for drone operation (SR). Figure 4 and figure 5, depict the overall costs of the system and the 

number of selected parking stations for various sight radiuses. As it is demonstrated, for small values of 

drone operational costs the objective value and number of selected rendezvous locations show high 

sensitivity due to the increase of sight radius.  
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Fig 4. Sensitivity of the system’s objective value for various values of drone operational costs and sight radiuses 

 

 

Fig 5. Sensitivity of the number of selected rendezvous locations for various values of drone operational costs and 

sight radiuses 

 

6- Conclusion 
   In this paper, we considered the hybrid truck and drone routing problem with soft time windows and 

proposed a new effective MILP model for the problem. The hybrid truck-drone routing problem is known 

as an NP-hard problem, so we developed a two-phased metaheuristic, which provides high-quality solutions 

with reasonable runtimes for practical and large-size instances.   

   Applying the proposed heuristic, we have investigated some aspects of the problem and obtained some 

insights. The overall cost of the delivery system is largely determined by the width of the time window and 

drone speed. According to the computational results, increasing the sight radius improves the overall costs, 

which shows that truck and drone delivery systems could be more effective in urban areas with shorter 

buildings and wider view space.  
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   It would be more practical to consider a delivery system with multiple trucks and multiple drones.  The 

model also could be extended by considering an uncertain environment. Finally, there are also opportunities 

to present more efficient heuristics. 
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