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Abstract 
Hospitals are critical facilities which have a great role to affects the number of 

mass casualties after disasters. Hence, it is necessary to adopt strategies to 

increase hospitals preparedness and to improve their resilience. The present 

paper tries to propose a strategy to cope with surge of demands under 

disruptions in a hospital. An optimization model for bed management 

considering collaboration between hospital wards in order to minimize the 

waiting times of the patients provided in this research and the objective 

function under the proposed strategy and without the proposed strategy were 

compared. The results show that the proposed strategy can reduce the patients 

waiting time under disruptions. Due to the complexity of the proposed model, 

a Lagrangian relaxation-based heuristic is developed to solve the model. 

Computational results show that the proposed algorithm is able to reach 

desirable gap in a reasonable time.  

Keywords: Bed management, operations research in health care, patient 

waiting time, hospital performance 

1-Introduction 
   In recent years, number of disasters both man–made and natural has found on increasing trend. In addition, 

urbanization and environment  degradation have had a great impact on the increase of disasters (Cimellaro 

et al., 2018).   

   A disaster could lead to heavy demands for hospitals. It is expected that after a disaster, a huge surge of 

damaged population requests health services. Natural events such as hurricanes and earthquakes as well as 

man-made like such as terrorist attacks or mass shootings need efficient hospital responses in order to 

diminish the number of casualties. Moreover, these events could even lead to performance loss at the 

hospitals; for example, hurricanes could reduce the number of hospital workforces or cause damage to some 

infrastructural networks like electrical network. So it is necessary to use the resources efficiently and enable 

the hospitals to deal with increase in demand when their performance decrease (Shahverdi et al., 2019).  

Hospitals have to be enabled to manage the surge of demands to prevent system failure (Cimellaro et al., 

2018).  

   Hospitals have a significant role in determining the number of causalities after disasters (Achour and 

Price, 2010), and their importance has grown up over the last 20 years due to the rise in the number of large 

scale disasters (Sauer et al., 2009) . Therefore, it is critical to ensure the continuation of the operational state 

of the hospitals after disasters and avoid over-crowding at hospital wards.  
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   Overcrowding may cause social and economic losses. Performance reduction of hospital could be 

translated into increase in patients’ waiting time (Cimellaro et al., 2011) and available beds reduction 

(Jacques et al., 2014).  

   Hospital resilience is defined as the ability of the hospital to prepare, plan for, absorb and recover from 

undesired events, and ensures the continuation of its operation after disasters (Zhong et al., 2014a, Zhong 

et al., 2014b). Resilience is the capacity of the system to adapt, and the flexibility of the system, which 

enables it to recover the performance to the normal state (Paturas et al., 2010, Braun et al., 2006). From 

disaster management perspective, resilience is a capability of the medical facilities to maintain their 

operational level when facing with an undesirable event and respond to the urge of demand (Bruneau et al., 

2003, Cimellaro et al., 2010).  

   Collaboration between partners in a firm can improve resiliency. Members of a firm should work together 

in order to deal with challenges in the real world (Banomyong, 2018). Collaboration in the field of supply 

chain has been investigated by many researchers; they have mentioned the benefits of the collaboration 

such as lower inventory levels and reduction in the number of warehouses and distribution centers (Horvath, 

2001, Min et al., 2005, Sahay, 2003, Zacharia et al., 2009, Lehoux et al., 2014). Collaboration enables the 

firms to improve their business performance and customer satisfaction and helps them to gain more 

knowledge (Kahn et al., 2006). Collaboration is defined in the literature as the ability or a culture toward a 

common goal to create value or bring mutual benefits to the partners (Min et al., 2005, Fawcett et al., 2008). 

The present research aimed at propose a mathematical model for bed management in hospitals in order to 

minimize the waiting time of patients. Under disruptions, change of the objective caused severe 

overcrowding in the hospital and can lead to the cessation of patient care services. Therefore, a collaboration 

strategy is proposed in the mathematical model to improve resiliency of the hospital against surge of 

demands. The contributions of the present paper are as follows:  

- Modeling the bed management problem to allocate patients to the ward based on their attributes such 

as gender and requested services from resilience perspective 

- Considering bed sharing as a collaboration strategy to enhance the hospital resilience 

- Developing a Lagrangian based heuristic to solve the proposed model  

- Establishing collaboration among the hospital wards to improve performance level and resiliency 

   This paper is organized as follows: Section 2 provides a review of bed management models in the 

literature. Section 3 describes the problem and proposes the optimization model. Section 4 provides the 

numerical result and compares the results under proposed strategies. Section 5 introduces a novel 

Lagrangian-based heuristic to solve the model. Section 5 provides computational results of the proposed 

solution method, and Section 6 presents conclusion and future directions. 

2-Literature review  
   Much of bed allocation and bed management literature is on the application of queuing theory and 

simulation. Preater (2002) reviewed more than 150 papers on the application of queuing theory in healthcare 

and categorized them based on the areas of Appointments, Departments, Ambulances, Compartmental 

Modeling, and Miscellaneous. Dangerfield (1999) surveyed the studies about the application of dynamic 

flow methods. 

   There are many papers available on the application of queuing theory in healthcare. Pouraliakbari et al. 

(2017) tried to propose a model for locating healthcare facilities in the competitive location environments 

which incorporates the theories of customer choice behavior to patronize the facility. They considered 

multiple type of facilities and used queuing theory for calculating the traveling time.  Cochran and Bharti 

(2006) proposed a stochastic model for bed planning using queuing theory and discrete event simulation 

(DES). They sought maximizing bed utilization by balancing the demands. Their case study was an obstetric 

hospital. Gorunescu et al. (2002a) presented a model using queuing theory to determine optimal bed 

numbers. They also developed another model using queuing theory and investigated the bed occupancy in 

case of changing the input parameters of the model (Gorunescu et al., 2002b). 

   There are papers that have used simulation models. Holm et al. (2013) proposed a DES to calculate the 

optimal beds in different wards. Since the tradition in under study hospital was to place patients in the 
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corridors when the hospital is overbooked, they minimized the number of patients placed in the crowding 

beds. Moengin et al. (2014) used DES to evaluate and optimize the number of beds with the objective of 

balancing the utilization of patients with a view to reduce their waiting time. Harper and Shahani (2002) 

simulated the flow of patients through hospital wards considering elective and emergency patients in order 

to find the most suitable beds for such patients. Khasha et al. (2018) used DES for improving patients flow 

in surgical suits. They stated that the proposed scenarios result 22.15% improvement in patient length of 

stay.  

   Optimization models have also been used for resource allocation. Yazdanparast et al. (2018) presented an 

integrated algorithm for optimizing resource allocation in emergency department. Bachouch et al. (2012) 

proposed a tool based on integer programming to plan hospital beds efficiently. They provided a schedule 

that enables nurses to allocate patients based on their attributes. Guido et al. (2018) proposed an 

optimization model for patients’ bed admission scheduling, and solved the problem using metaheuristic 

algorithm. Li et al. (2009) presented a multi-objective model for allocation of beds in hospitals. They were 

motivated by a real world problem which was the difference between the occupancy rates of a hospital 

wards in China. They used queuing theory results as an input to the goal programming approach to solve 

the problem. Blake and Carter (2002) used goal programming to allocate resources in a hospitals. Wu et al. 

(2019) investigated blockage in health services, and they provided an optimization model using tandem 

queuing theory.   

   To the best of our knowledge, the literature about bed planning from optimization perspective is scarce, 

and a few of them were inspired by a real world problem. In this paper, we propose a model to allocate beds 

to patients in a hospital using a Lagrangian relaxation based heuristic. It is assumed that each ward of a 

hospital consists of some rooms, which have finite beds. Based on the domestic regulations, patients who 

are hospitalized at a room must have same gender. Computational results show that the proposed algorithm 

can provide efficient lower and upper bounds. 

3-Problem description 
   As mentioned above, the model developed in this paper addresses the allocation of the patients to the beds 

in hospital wards. We were motivated by the length of waiting list in a hospital in Iran. The process of 

admitting patients is started by visiting the hospital clinics. When the patients visit the clinic, the physicians 

examine them and put them in the hospitalization queue, if necessary. It is to be noted that each ward of the 

hospital has different queues and different averages of length of stay. Then the patients have to wait until 

the hospital calls them for hospitalization.  Figure 1 shows a hospital with two wards; each ward has its 

own queue for hospitalization, and below of each ward, number of patients in queue is illustrated. It is 

assumed that there is a rule that the patients hospitalized in a room must have same gender. Based on the 

care which each patient needs, they can be hospitalized at a different ward out of the requested ward. Figure 

1 shows that the patients who are in red have requested to be hospitalized at ward 1 but due to the lack of 

vacant beds, they were admitted at ward 1 but were hospitalized at ward 2.  
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Fig 1. An example of allocating beds to patients 

   It is assumed that there are two kinds of alliance between the wards: high priority and low priority. The 

wards can share their beds with other requested wards. The objective function of the model is minimizing 

the number of patients in the queue for hospitalization. Each ward has a finite number of beds, which are 

distributed among the finite rooms. The average length of stay of patients at ward and their gender have 

been considered in the present research, 

Sets 

I Set of hospital wards, indexed by i 

T Set of planning horizon, indexed by t 

S 
Set of gender, if the gender of patient is male then 

S=1; otherwise, S=2, indexed by s  

R Set of rooms, indexed by r 

Parameters 

𝑏𝑒𝑑𝑟𝑖 Number of beds in room r at ward i 

𝐿𝑂𝑆𝑖 Length of stay of patients at ward i 

𝑝𝑎𝑡𝑠𝑖𝑡 

Number of patients with gender s at period t that 

visit the clinic, and the physician puts them on the 

queue of ward i 

𝐻𝑃𝑆𝑖𝑗 

A binary matrix showing the feasibility of high 

priority sharing between the wards. If ward i can 

share a bed to ward j and the priority of the sharing 

is high, the corresponding element would be equal 

to 1; otherwise, 0. 

𝐿𝑃𝑆𝑖𝑗 

A binary matrix showing the feasibility of low 

priority sharing between the wards. If ward i can 

share a bed to ward j and the priority of sharing is 

low, the corresponding element would be equal to 

1; otherwise, 0. 

𝑁𝑅𝑖 Total number of rooms at ward i 

𝑀 A big value 

 

 

Room gender:

 Male

Room gender: 

Male

Room gender: 

Male

Room Gender:

Female

Room gender:

Female

Room gender:

Male

Room gender:

Male
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Decision variables 

𝑞𝑠𝑖𝑡́𝑡 

Number of patients with gender s at period t who 

are in queue for hospitalization at ward i and have 

requested at period 𝑡́  

𝑥𝑟𝑠𝑖𝑡 
Number of patients with gender s admitted and 

hospitalized at room i at ward i at period t 

𝑥ℎ𝑟𝑠𝑖𝑗𝑡 

Number of patients with gender s admitted at ward 

i and hospitalized at ward j at room r at period t 

using the high priority relationship between the 

mentioned wards. 

𝑥𝑙𝑟𝑠𝑖𝑗𝑡 

Number of patients with gender s admitted at ward 

i and hospitalized at ward j at room r at period t 

using the low priority relationship between the 

mentioned wards. 

𝑛𝑢𝑚𝑒𝑟𝑠𝑖𝑡́́𝑡 

A binary variable that refers to the state of patients 

who requested service at period 𝑡́́ at ward i at 

period t: it gets the value of 1 if the patients could 

be serviced, otherwise it gets the value of 0. 

𝐻𝑖𝑡 

A binary variable that refers to the usage of high 

priority relationship between the wards. If ward i 

shares at least one bed with other wards the value 

would be equal to 1; otherwise, 0. 

𝐿𝑖𝑡 

A binary variable that refers to the usage of low 

priority relationship between wards. If ward i 

shares at least one bed among other wards the 

value would be equal to 1; otherwise, 0. 

𝐻𝐻𝑖𝑗𝑡 
A binary variable that refers to the high priority 

bed sharing between ward i and j 

𝐿𝐿𝑖𝑗𝑡 
A binary variable that refers to the low priority 

bed sharing between ward i and j 

𝑥𝑠𝑢𝑚𝑠𝑖𝑡 
Number of patients with gender s that admitted at 

ward i at period t 

𝑡𝑒𝑚𝑝𝑥𝑠𝑖𝑡́́𝑡 
An auxiliary free variable which was defined in 

order to calculate  𝑛𝑢𝑚𝑒𝑟𝑠𝑖𝑡́́𝑡.  

𝑟𝑔𝑒𝑛𝑟𝑠𝑖𝑡 

A binary variable that shows the gender of patients 

in each room. If the gender of patients in room r 

at ward i at period t is s, it would be equal to 1; 

otherwise, 0. 

𝑎𝑣𝑏𝑟𝑖𝑡 
Number of available beds at room r at ward i at 

period t 

𝑑𝑖𝑠𝑝𝑟𝑖𝑗𝑡 
Number of discharged patients at period t 

admitted at ward i and hospitalized at room r of 

ward j. 

𝑛𝑢𝑚𝑝𝑟𝑖𝑡 
Number of patients who are hospitalized at room 

r of ward i at period t 

𝑛𝑢𝑚𝑏𝑟𝑖𝑡 

A binary variable that refers to the number of 

patients at each room. If there is at least one 

patient hospitalized at room r of ward i at period t, 

it would be 1; otherwise, 0. 
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𝑎1𝑠𝑖𝑡́́𝑡 An auxiliary variable to calculate  𝑞𝑠𝑖𝑡́́𝑡 

𝑎2𝑠𝑖𝑡́́𝑡 An auxiliary variable to calculate  𝑞𝑠𝑖𝑡́́𝑡 

𝑎3𝑠𝑖𝑡́́𝑡 An auxiliary variable to calculate  𝑞𝑠𝑖𝑡́́𝑡 

𝑎4𝑠𝑖𝑡́́𝑡 An auxiliary variable to calculate  𝑞𝑠𝑖𝑡́́𝑡 

 

min ∑ ∑ ∑ ∑ 𝑞𝑠𝑖𝑡́𝑡

𝑡∈𝑇

𝑡

𝑡́=1𝑖∈𝐼 𝑠∈𝑆

 

𝑛𝑢𝑚𝑝𝑟𝑖𝑡 + 𝑎𝑣𝑏𝑟𝑖𝑡 ≤ 𝑏𝑒𝑑𝑟𝑖 ∀ 𝑟 ∈ 𝑅, 𝑖 ∈ 𝐼, 𝑡 ∈ 𝑇 (1) 

𝑥𝑠𝑢𝑚𝑠𝑖𝑡 = ∑ 𝑥𝑟𝑠𝑖𝑡

𝑟∈𝑅

+ ∑ ∑ 𝑥ℎ𝑟𝑠𝑖𝑗𝑡

𝑗∈𝐼𝑟∈𝑅

+ ∑ ∑ 𝑥𝑙𝑟𝑠𝑖𝑗𝑡

𝑗∈𝐼𝑟∈𝑅

 ∀ 𝑠 ∈ 𝑆, 𝑖 ∈ 𝐼, 𝑡 ∈ 𝑇 (2) 

𝑥𝑟𝑠𝑖𝑡 + ∑ 𝑥ℎ𝑟𝑠𝑗𝑖𝑡

𝑗∈𝐼

+ ∑ 𝑥𝑙𝑟𝑠𝑗𝑖𝑡

𝑗∈𝐼

≤ 𝑀 × 𝑟𝑔𝑒𝑛𝑟𝑠𝑖𝑡 ∀ 𝑟 ∈ 𝑅, 𝑖 ∈ 𝐼, 𝑡 ∈ 𝑇, 𝑠
∈ 𝑆 

(3) 

𝑛𝑢𝑚𝑝𝑟𝑖𝑡 = ∑ ∑ 𝑥𝑟𝑠𝑖𝑡𝑡́́

𝑡−1

𝑡́=1𝑠∈𝑆

+ ∑ ∑ ∑ 𝑥ℎ𝑟𝑠𝑗𝑖𝑡́́

𝑡−1

𝑡́́=1𝑠∈𝑆𝑗∈𝐼

+ ∑ ∑ ∑ 𝑥𝑙𝑟𝑠𝑗𝑖𝑡́́

𝑡−1

𝑡́́=1𝑠∈𝑆𝑗∈𝐼

− ∑ 𝑑𝑖𝑠𝑝𝑟𝑗𝑖𝑡

𝑗∈𝐼

− ∑ ∑ 𝑥𝑟𝑠𝑖𝑡(𝑡́́−𝐿𝑂𝑆𝑖)

𝑡

𝑡́́=1

𝑡́́>𝐿𝑂𝑆𝑖

𝑠∈𝑆

 

∀ 𝑟 ∈ 𝑅, 𝑖 ∈ 𝐼, 𝑡 ∈ 𝑇 (4) 

𝑑𝑖𝑠𝑝𝑟𝑗𝑖𝑡 = ∑ ∑ 𝑥ℎ𝑟𝑠𝑗𝑖(𝑡́́−𝐿𝑂𝑆𝑗)

𝑡

𝑡́́=1

𝑡́́>𝐿𝑂𝑆𝑗

𝑠∈𝑆

+ ∑ ∑ 𝑥𝑙𝑟𝑠𝑗𝑖(𝑡́́−𝐿𝑂𝑆𝑗)

𝑡

𝑡́́=1

𝑡́́>𝐿𝑂𝑆𝑗

𝑠∈𝑆

 
∀ 𝑟 ∈ 𝑅, 𝑖, 𝑗 ∈ 𝐼, 𝑡 ∈ 𝑇 (5) 

𝑛𝑢𝑚𝑏𝑟𝑖𝑡 × 𝑀 ≥ 𝑛𝑢𝑚𝑝𝑟𝑖𝑡 ∀ 𝑟 ∈ 𝑅, 𝑖 ∈ 𝐼, 𝑡 ∈ 𝑇 (6) 

𝑛𝑢𝑚𝑏𝑟𝑖𝑡 ≤ 𝑛𝑢𝑚𝑝𝑟𝑖𝑡 ∀ 𝑟 ∈ 𝑅, 𝑖 ∈ 𝐼, 𝑡 ∈ 𝑇 (7) 

𝑟𝑔𝑒𝑛𝑟𝑠𝑖𝑡 ≤ 𝑟𝑔𝑒𝑛𝑟𝑠𝑖𝑡−1 + 𝑛𝑢𝑚𝑏𝑟𝑖𝑡 − 1 + (1 − 𝑛𝑢𝑚𝑏𝑟𝑖𝑡) × 𝑀 

∀ s ∈ S, 𝑟 ∈ 𝑅, 𝑖 ∈ 𝐼, 𝑡
∈ 𝑇
− {1} 

(8) 

𝑟𝑔𝑒𝑛𝑟𝑠𝑖𝑡 ≥ 𝑟𝑔𝑒𝑛𝑟𝑠𝑖𝑡−1 + 𝑛𝑢𝑚𝑏𝑟𝑖𝑡 − 1 − (1 − 𝑛𝑢𝑚𝑏𝑟𝑖𝑡) × 𝑀 

∀ s ∈ S, 𝑟 ∈ 𝑅, 𝑖 ∈ 𝐼, 𝑡
∈ 𝑇
− {1} 

(9) 

∑ 𝑟𝑔𝑒𝑛𝑟𝑠𝑖𝑡

𝑠∈𝑆

≤ 1 ∀ 𝑟 ∈ 𝑅, 𝑖 ∈ 𝐼, 𝑡 ∈ 𝑇 (10) 

∑ ∑ 𝑟𝑔𝑒𝑛𝑟𝑠𝑖𝑡

𝑟∈𝑅𝑠∈𝑆

≤ 𝑁𝑅𝑖 
∀ 𝑖 ∈ 𝐼, 𝑡 ∈ 𝑇 (11) 

∑ ∑ 𝑥ℎ𝑟𝑠𝑖𝑗𝑡

𝑠∈𝑆𝑟∈𝑅

≤ 𝑀 × 𝐻𝐻𝑖𝑗𝑡 ∀ 𝑖, 𝑗 ∈ 𝐼, 𝑡 ∈ 𝑇 (12) 

∑ ∑ 𝑥𝑙𝑟𝑠𝑖𝑗𝑡

𝑠∈𝑆𝑟∈𝑅

≤ 𝑀 × 𝐿𝐿𝑖𝑗𝑡 ∀ 𝑖, 𝑗 ∈ 𝐼, 𝑡 ∈ 𝑇 (13) 

∑ ∑ 𝑥ℎ𝑟𝑠𝑖𝑗𝑡

𝑠∈𝑆𝑟∈𝑅

≥ 𝐻𝐻𝑖𝑗𝑡 ∀ 𝑖, 𝑗 ∈ 𝐼, 𝑡 ∈ 𝑇 (14) 

∑ ∑ 𝑥𝑙𝑟𝑠𝑖𝑗𝑡

𝑠∈𝑆𝑟∈𝑅

≥ 𝐿𝐿𝑖𝑗𝑡 ∀ 𝑖, 𝑗 ∈ 𝐼, 𝑡 ∈ 𝑇 (15) 

𝐻𝐻𝑖𝑗𝑡 + 𝐿𝐿𝑗𝑖𝑡 ≤ 1 ∀ 𝑖, 𝑗 ∈ 𝐼, 𝑡 ∈ 𝑇 (16) 

𝐿𝐿𝑖𝑗𝑡 + 𝐿𝐿𝑗𝑖𝑡 ≤ 1 ∀ 𝑖, 𝑗 ∈ 𝐼, 𝑡 ∈ 𝑇 (17) 
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𝐻𝐻𝑖𝑗𝑡 + 𝐿𝐿𝑗𝑖𝑡 ≤ 1 ∀ 𝑖, 𝑗 ∈ 𝐼, 𝑡 ∈ 𝑇 (18) 

∑ 𝑥𝑟𝑠𝑖𝑡

𝑠∈𝑆

+ ∑ ∑ 𝑥ℎ𝑟𝑠𝑗𝑖𝑡

𝑠∈𝑆𝑗∈𝐼

+ ∑ ∑ 𝑥𝑙𝑟𝑠𝑗𝑖𝑡

𝑠∈𝑆𝑗∈𝐼

≤ 𝑎𝑣𝑏𝑟𝑖𝑡 ∀ 𝑟 ∈ 𝑅, 𝑖 ∈ 𝐼, 𝑡 ∈ 𝑇 (19) 

𝑡𝑒𝑚𝑝𝑥𝑠𝑖𝑡́́𝑡 = 𝑥𝑠𝑢𝑚𝑠𝑖𝑡 − ∑ 𝑞𝑠𝑖𝑘𝑡−1

𝑡́́

𝑘=1

 

∀ 𝑠 ∈ 𝑆, 𝑖 ∈ 𝐼, 𝑡́́
∈ {1, … , 𝑡}, 𝑡 ∈ 𝑇 

(20) 

𝑡𝑒𝑚𝑝𝑥𝑠𝑖𝑡́́𝑡 ≤ 𝑀 × 𝑛𝑢𝑚𝑒𝑟𝑠𝑖𝑡́́𝑡 ∀ 𝑠 ∈ 𝑆, 𝑖 ∈ 𝐼, 𝑡́́
∈ {1, … , 𝑡}, 𝑡 ∈ 𝑇 

(21) 

𝑀 × (𝑛𝑢𝑚𝑒𝑟𝑠𝑖𝑡́́𝑡 − 1) ≤ 𝑡𝑒𝑚𝑝𝑥𝑠𝑖𝑡́́𝑡 ∀ 𝑠 ∈ 𝑆, 𝑖 ∈ 𝐼, 𝑡́́
∈ {1, … , 𝑡}, 𝑡 ∈ 𝑇 

(22) 

𝑀 × 𝑛𝑢𝑚𝑒𝑟𝑠𝑖𝑡́́𝑡 ≥ 𝑡𝑒𝑚𝑝𝑥𝑠𝑖𝑡́́𝑡 + 1 ∀ 𝑠 ∈ 𝑆, 𝑖 ∈ 𝐼, 𝑡́́
∈ {1, … , 𝑡}, 𝑡 ∈ 𝑇 

(23) 

𝑎1𝑠𝑖𝑡́́𝑡 ≤ 𝑛𝑢𝑚𝑒𝑟𝑠𝑖(𝑡́́−1)𝑡 ∀ 𝑠 ∈ 𝑆, 𝑖 ∈ 𝐼, 𝑡́́
∈ {1, … , 𝑡}, 𝑡 ∈ 𝑇 

(24) 

𝑎1𝑠𝑖𝑡́́𝑡 ≤ 𝑛𝑢𝑚𝑒𝑟𝑠𝑖𝑡́́𝑡 ∀ 𝑠 ∈ 𝑆, 𝑖 ∈ 𝐼, 𝑡́́
∈ {1, … , 𝑡}, 𝑡 ∈ 𝑇 

(25) 

𝑎1𝑠𝑖𝑡́́𝑡 ≥ 𝑛𝑢𝑚𝑒𝑟𝑠𝑖(𝑡́́−1)𝑡 + 𝑛𝑢𝑚𝑒𝑟𝑠𝑖𝑡́́𝑡 − 1 ∀ 𝑠 ∈ 𝑆, 𝑖 ∈ 𝐼, 𝑡́́
∈ {1, … , 𝑡}, 𝑡 ∈ 𝑇 

(26) 

𝑎2𝑠𝑖𝑡́́𝑡 ≤ 𝑛𝑢𝑚𝑒𝑟𝑠𝑖(𝑡́́−1)𝑡 ∀ 𝑠 ∈ 𝑆, 𝑖 ∈ 𝐼, 𝑡́́
∈ {1, … , 𝑡}, 𝑡 ∈ 𝑇 

(27) 

𝑎2𝑠𝑖𝑡́́𝑡 ≤ 1 − 𝑛𝑢𝑚𝑒𝑟𝑠𝑖𝑡́́𝑡 ∀ 𝑠 ∈ 𝑆, 𝑖 ∈ 𝐼, 𝑡́́
∈ {1, … , 𝑡}, 𝑡 ∈ 𝑇 

(28) 

𝑎2𝑠𝑖𝑡́́𝑡 ≥ 𝑛𝑢𝑚𝑒𝑟𝑠𝑖(𝑡́́−1)𝑡 − 𝑛𝑢𝑚𝑒𝑟𝑠𝑖𝑡́́𝑡 ∀ 𝑠 ∈ 𝑆, 𝑖 ∈ 𝐼, 𝑡́́
∈ {1, … , 𝑡}, 𝑡 ∈ 𝑇 

(29) 

𝑎3𝑠𝑖𝑡́́𝑡 ≤ 𝑀 × 𝑎2𝑠𝑖𝑡́́𝑡 ∀ 𝑠 ∈ 𝑆, 𝑖 ∈ 𝐼, 𝑡́́
∈ {1, … , 𝑡}, 𝑡 ∈ 𝑇 

(30) 

𝑎3𝑠𝑖𝑡́́𝑡 ≥ ∑ 𝑞𝑠𝑖𝑘(𝑡−1)

𝑡́́

𝑘=1

+ 𝑀 × (𝑎2𝑠𝑖𝑡́́𝑡 − 1) 

∀ 𝑠 ∈ 𝑆, 𝑖 ∈ 𝐼, 𝑡́́
∈ {1, … , 𝑡}, 𝑡 ∈ 𝑇 

(31) 

𝑎3𝑠𝑖𝑡́́𝑡 ≤ ∑ 𝑞𝑠𝑖𝑘(𝑡−1)

𝑡́́

𝑘=1

 

∀ 𝑠 ∈ 𝑆, 𝑖 ∈ 𝐼, 𝑡́́
∈ {1, … , 𝑡}, 𝑡 ∈ 𝑇 

(32) 

𝑎4𝑠𝑖𝑡́́𝑡 ≤ 𝑀 × 𝑎2𝑠𝑖𝑡́́𝑡 ∀ 𝑠 ∈ 𝑆, 𝑖 ∈ 𝐼, 𝑡́́
∈ {1, … , 𝑡}, 𝑡 ∈ 𝑇 

(33) 

𝑎4𝑠𝑖𝑡́́𝑡 ≥ 𝑥𝑠𝑢𝑚𝑠𝑖𝑡 + 𝑀 × (𝑎2𝑠𝑖𝑡́́𝑡 − 1) ∀ 𝑠 ∈ 𝑆, 𝑖 ∈ 𝐼, 𝑡́́
∈ {1, … , 𝑡}, 𝑡 ∈ 𝑇 

(34) 

𝑎4𝑠𝑖𝑡́́𝑡 ≤ 𝑥𝑠𝑢𝑚𝑠𝑖𝑡 ∀ 𝑠 ∈ 𝑆, 𝑖 ∈ 𝐼, 𝑡́́
∈ {1, … , 𝑡}, 𝑡 ∈ 𝑇 

(35) 

𝑞𝑠𝑖𝑘𝑡 = 𝑝𝑎𝑡𝑠𝑖𝑡 × (1 − 𝑛𝑢𝑚𝑒𝑟𝑠𝑖(𝑡́́−1)𝑡 − 𝑛𝑢𝑚𝑒𝑟𝑠𝑖𝑡́́𝑡 + 𝑎1𝑠𝑖𝑡́́𝑡) + 𝑎3𝑠𝑖𝑡́́𝑡

− 𝑎4𝑠𝑖𝑡́́𝑡 

∀ 𝑠 ∈ 𝑆, 𝑖 ∈ 𝐼, 𝑡́́
∈ {1, … , 𝑡}, 𝑡 ∈ 𝑇 

(36) 

∑ 𝑥ℎ𝑟𝑠𝑖𝑗𝑡

𝑠∈𝑆

≤ 𝐻𝑃𝑆𝑖𝑗 × 𝑀 ∀ 𝑖, 𝑗 ∈ 𝐼, 𝑟 ∈ 𝑅, 𝑡 ∈ 𝑇 (37) 

∑ 𝑥𝑙𝑟𝑠𝑖𝑗𝑡

𝑠∈𝑆

≤ 𝐿𝑃𝑆𝑖𝑗 × 𝑀 ∀ 𝑖, 𝑗 ∈ 𝐼, 𝑟 ∈ 𝑅, 𝑡 ∈ 𝑇 (38) 
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∑ ∑ ∑ 𝑥ℎ𝑟𝑠𝑖𝑗𝑡

𝑠∈𝑆𝑗∈𝐼𝑟∈𝑅

≤ 𝑀 × 𝐻𝑖𝑡 ∀ 𝑖 ∈ 𝐼, 𝑟 ∈ 𝑅, 𝑡 ∈ 𝑇 (39) 

∑ ∑ ∑ 𝑥𝑙𝑟𝑠𝑖𝑗𝑡

𝑠∈𝑆𝑗∈𝐼𝑟∈𝑅

≤ 𝑀 × 𝐿𝑖𝑡 ∀ 𝑖 ∈ 𝐼, 𝑟 ∈ 𝑅, 𝑡 ∈ 𝑇 (40) 

∑ ∑ ∑ 𝑥ℎ𝑟𝑠𝑖𝑗𝑡

𝑠∈𝑆𝑗∈𝐼𝑟∈𝑅

≥ 𝐻𝑖𝑡 ∀ 𝑖 ∈ 𝐼, 𝑟 ∈ 𝑅, 𝑡 ∈ 𝑇 (41) 

∑ ∑ ∑ 𝑥𝑙𝑟𝑠𝑖𝑗𝑡

𝑠∈𝑆𝑗∈𝐼𝑟∈𝑅

≥ 𝐿𝑖𝑡 ∀ 𝑖 ∈ 𝐼, 𝑟 ∈ 𝑅, 𝑡 ∈ 𝑇 (42) 

𝐿𝑖𝑡 ≤ 𝐻𝑖𝑡 ∀ 𝑖 ∈ 𝐼, 𝑡 ∈ 𝑇 (43) 

𝑞𝑠𝑖𝑡𝑡−1 = 𝑝𝑎𝑡𝑠𝑖𝑡 ∀ 𝑖 ∈ 𝐼, 𝑠 ∈ 𝑆, 𝑡 ∈ 𝑇 (44) 

𝑛𝑢𝑚𝑒𝑟𝑠𝑖0𝑡 = 1 
∀ 𝑖 ∈ 𝐼, 𝑠 ∈ 𝑆, 𝑡 ∈ 𝑇, 𝑟

∈ 𝑅 

(45) 

𝑥ℎ𝑟𝑠𝑖𝑖𝑡 = 0 
∀ 𝑖 ∈ 𝐼, 𝑠 ∈ 𝑆, 𝑡 ∈ 𝑇, 𝑟

∈ 𝑅 

(46) 

𝑥𝑙𝑟𝑠𝑖𝑖𝑡 = 0 
∀ 𝑖 ∈ 𝐼, 𝑠 ∈ 𝑆, 𝑡 ∈ 𝑇, 𝑟

∈ 𝑅 

(47) 

𝑞𝑠𝑖𝑡́𝑡 ≥ 0, 𝑥𝑟𝑠𝑖𝑡 ≥ 0, 𝑥ℎ𝑟𝑠𝑖𝑗𝑡 ≥ 0, 𝑥𝑙𝑟𝑠𝑖𝑗𝑡 ≥ 0, 𝑥𝑠𝑢𝑚𝑠𝑖𝑡 ≥ 0, 𝑎𝑣𝑏𝑟𝑖𝑡 ≥

0, 𝑑𝑖𝑠𝑝𝑟𝑖𝑗𝑡 ≥ 0, 𝑛𝑢𝑚𝑝𝑟𝑖𝑡 ≥ 0, 𝑎3𝑠𝑖𝑡́́𝑡 ≥ 0, 𝑎4𝑠𝑖𝑡́́𝑡 ≥ 0, 𝑛𝑢𝑚𝑒𝑟𝑠𝑖𝑡́́𝑡 ∈

{0,1},  𝐻𝑖𝑡 ∈ {0,1}, 𝐿𝑖𝑡 ∈ {0,1}, 𝐻𝐻𝑖𝑗𝑡 ∈ {0,1}, 𝐿𝐿𝑖𝑗𝑡 ∈ {0,1}, 𝑟𝑔𝑒𝑛𝑟𝑠𝑖𝑡 ∈

{0,1}, 𝑛𝑢𝑚𝑏𝑟𝑖𝑡 ∈ {0,1}, 𝑎1𝑠𝑖𝑡́́𝑡 ∈ {0,1}, 𝑎2𝑠𝑖𝑡́́𝑡 ∈ {0,1} 

∀ 𝑠 ∈ 𝑆, 𝑖, 𝑗 ∈ 𝐼, 𝑡́́
∈ {1, … , 𝑡}, 𝑡 ∈ 𝑇, 𝑟
∈ 𝑅 

(48) 

 

   Objective function tries to minimize the total number of patients in queue. Constraint 1 ensures that 

summation of the occupied and unoccupied beds at each room is less than the total number of beds. 

Constraint 2 calculates the total number of admitted patients at each ward at each period. Constraint 3 

ensures that the gender of the patients hospitalized at each room is the same as the gender of the room. 

Constraint 4 calculates the number of patients hospitalized at each room at each period. Constraint 5 

calculates the number of discharged patients whose admitted and hospitalized wards are different at each 

period. Constraints 6 and 7 transform the number of patients hospitalized at each room to a binary variable. 

Constraints 8 and 9 determine the gender of the room at each period; if the entire beds of a room are vacant 

at the beginning of a period, these constraints allow that the gender of the room is chosen without 

considering the gender of the room at the previous period; otherwise the gender of the room must be the 

same as the previous period. Constraint 10 ensures that a room has only one gender. Constraint 11 ensures 

that the number of rooms which can hospitalize patients is less than the total number of hospital rooms. 

Constraints 12 - 15 transform the variables related to the bed sharing among wards to the corresponding 

binary variables. Constraints 16 - 18 indicate if a ward shares its beds with other wards whether uses high 

or low priority relationships, sharing in the reverse order cannot be done. Constraint 19 ensures that the 

total number of hospitalized patients at each room must be less than the total number of available beds. 

Constraints 20 - 36 calculates the number of patients who are in queue. Constraints 37 and 38 ensure that 

the sharing between wards happens if the corresponded elements in relationships matrices are equal to one. 

Constraints 39 to 42 transform the sharing variables to corresponding binary variables. Constraint 43 

indicates that if the model uses high priority sharing then the low priority is possible too, but if the high 

priority relationship is not possible, the model could not use low priority relationship. Constraint 44 adds 

the demand of each gender at each ward at each period to the end of the corresponding number of patients 

in queue at the previous period. Constraint 45 adds one at the beginning of the auxiliary binary variable to 

calculate the number of patients in queue. Constraints 46 and 47 ensure that sharing cannot be done among 

the rooms of a same ward. Constraint 48 is the general constraint and indicates the upper and lower bounds 

of the variables. 
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4-Numerical results 
   In order to investigate the efficiency of the proposed strategy to share beds among hospital wards, 21 

random problems for an assumed hospital were generated and solved under two different strategies. The 

first strategy refers to a hospital whose beds can be shared among wards and the other one related to a 

hospital with fixed number of beds at each ward which can be assigned to the patients whom were 

hospitalized at that wards. Test problems were generated with different number of wards, rooms and period 

and input parameter of the problem such as number of patients are generated randomly using uniform 

distribution.  As can be seen in table 1Table 1, the problems under sharing strategy have better objective 

function than the problems which the respected strategy was not used but the running times are greater due 

to the complexity of the model.  

  Based on the result, it can be said that by increasing the input patients in the hospital, the number of 

patients who are in queue increases. Each hospital has a bed management procedure to assign patients to 

the beds. Based on the reason which cause patients to refer, the hospital determines a ward to hospitalize 

that patient. But if that ward can’t admit more patients, due to the capacity, the admitted patients must 

remain in the hospital until at least one patient discharge from that ward. By increasing the number of 

admitted patients, the waiting time becomes longer and may cause overcrowding issues at the hospital. 

Therefore, a strategy proposed in this research in order to cope with the conditions which the demand for 

hospitalization is increased. As mentioned, the hospital assign the patients to the wards based on reason for 

referral. It’s proposed that each hospital determines a ward as secondary ward for reason for referral. For 

example, a patient come to the hospital with heart disease, the ward 1 is primary ward and ward 2 is 

secondary ward. In other word, the patient is assigned to the ward 1, if the patient can’t be admitted at ward 

1, the bed manager can admit patient at ward 2 which is the secondary ward for his/her disease. If ward 2 

has no capacity, the patient remains in the queue until a patient from ward 1 or ward 2 is discharged.  In 

addition, figure 2 provides a guideline to use the proposed model in a hospital.  

 

Determine the primary 

ward for each disease

Determine the secondary 

ward for each disease 

Collect all request for 

hospitalization in the 

current period with their 

gendersAt the beginning of time period

Run the proposed model 

Prepare the primary and 

secondary wards for 

admitting patients

Determine the wards, rooms, 

main reason for referral to the 

hospital and average length of 

stay of patient for each reason. 

Next period?

Yes

Admit patient based on 

the result of the model at 

primary and secondary 

wards

 

Fig 2. Flow-chart of implementing the proposed model in a hospital 

   It also was shown in the table 1 that Cplex could not solve the problem under sharing strategy in the 1-

hour time limit. Therefore, a solution method based on the Lagrangian relaxation is proposed to solve the 

larger problem in reasonable time.  
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Table 1. Configuration of the assumed hospital 

Num Ward Room Period LOS Patients 
Under sharing strategy Without sharing strategy 

OFV Time(Seconds) Gap% OFV Time(Seconds) Gap% 

1 3 3 3 [1,3,2] (1,8)* 48 0.50 0 52 0.21 0 

2 3 3 3 [1,3,2] (1,10) 71 1.07 0 74 0.14 0 

3 3 3 3 [1,3,2] (1,12) 146 0.84 0 175 0.2 0 

4 3 3 4 [1,3,2] (1,8) 73 2.84 0 151 0.35 0 

5 3 3 4 [1,3,2] (1,10) 75 0.52 0 134 0.28 0 

6 3 3 4 [1,3,2] (1,12) 118 11.73 0 179 0.27 0 

7 4 3 3 [1,3,2,3] (1,8) 71 0.59 0 80 0.22 0 

8 4 3 3 [1,3,2,3] (1,10) 75 0.52 0 160 0.25 0 

9 4 3 3 [1,3,2,3] (1,12) 107 0.62 0 179 0.27 0 

10 4 3 4 [1,3,2,3] (1,8) 96 0.87 0 164 0.44 0 

11 4 3 4 [1,3,2,3] (1,10) 128 2.68 0 212 0.37 0 

12 4 3 4 [1,3,2,3] (1,12) 93 1.22 0 205 0.48 0 

13 4 3 5 [1,3,2,3] (1,8) 333 1h** 3.16 287 1h** 10.88 

14 4 3 5 [1,3,2,3] (1,10) 314 1h** 15.61 342 239.04 0 

15 4 3 5 [1,3,2,3] (1,12) 345 1h** 20.48 399 2.16 0 

16 4 4 5 [1,3,2,3] (1,8) 163 1h** 3.07 168 4.64 0 

17 4 4 5 [1,3,2,3] (1,10) 259 1h** 17.16 281 4.69 0 

18 4 4 5 [1,3,2,3] (1,12) 445 1h** 14.36 448 4.35 0 

19 4 3 7 [1,3,2,3] (1,8) 471 1h** 21.73 487 1h** 12.25 

20 4 3 7 [1,3,2,3] (1,10) 701 1h** 23.00 726 1h** 8.33 

21 4 3 7 [1,3,2,3] (1,12) 761 1h** 22.82 846 1h** 11.12 

* Uniform distribution was used to generate input parameter. 

** Cplex could not reach the optimal solution in h1- hour time limit. 

 

5-Solution method  

5-1-Lagrangian relaxation 
   Lagrangian relaxation was presented in the 1970s and is a useful approach for solving the complex 

optimization problems and has been used in health care optimizations (Fisher, 1985). The idea of this 

technique is to separate the constraints from problem between “easy” and “hard” constraints, and then add 

the “hard” constraints to the objective function, with each constraint multiplied by a Lagrangian multiplier. 

The new problem becomes much easier to solve and has some nice properties that help solve the original 

problem. Two properties that help solve the original problem. Two properties are particularly helpful: 

- Lagrangian relaxation provides good – quality upper bounds (in a maximization problem). The 

bounds from this method better than those resulting from linear relaxation.  

- While searching upper bounds, there are several ways to obtain feasible, high quality solutions. 

   Zhou et al., (2016) and Augusto et al., (2010) are two examples which used Lagrangian relaxation to use 

hospital resources efficiently. Zhou et al., (2016) used Lagrangian relaxation to optimize the schedule of 

surgery room. They considered three stages consisting preoperative, operative and post-operative. The 

model tries to allocate the resources to the patients during the respected stages. Augusto et al., (2010) 

provided an optimal schedule of operations. They also tried to optimize the allocation of the resources to 

the patients. Both of the mentioned studies relaxed the capacity constraints to solve the model by 

Lagrangian relaxation approach. 

5-2-Lower bound 
   Constraints 1, 8 and 9 are relaxed to make the problem simpler, and 𝑢𝑟𝑖𝑡  , 𝑢1𝑟𝑠𝑖𝑡  , 𝑢2𝑟𝑠𝑖𝑡 are added as 

Lagrangian multipliers to these constraints, respectively to ensure that the solutions are not too far from the 

feasible ones. Therefore, Constraints 1, 8 and 9 will be deleted from the set of constraints and the following 

expressions will be added to the objective function: 
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∑ ∑ ∑ 𝑢𝑟𝑖𝑡(𝑎𝑣𝑏𝑟𝑖𝑡 + 𝑛𝑢𝑚𝑝𝑟𝑖𝑡 − 𝑏𝑟𝑖)

𝑡∈𝑇𝑖∈𝐼𝑟∈𝑅

 
(49) 

∑ ∑ ∑ ∑ 𝑢1𝑟𝑠𝑖𝑡

𝑠∈𝑆

(𝑟𝑔𝑒𝑛𝑟𝑠𝑖𝑡−𝑟𝑔𝑒𝑛𝑟𝑠𝑖𝑡−1 − 𝑛𝑢𝑚𝑏𝑟𝑖𝑡 + 1 − (1 − 𝑛𝑢𝑚𝑏𝑟𝑖𝑡) × 𝑀)

𝑡∈𝑇−{1}𝑖∈𝐼𝑟∈𝑅

 
(50) 

∑ ∑ ∑ ∑ 𝑢2𝑟𝑠𝑖𝑡

𝑠∈𝑆

(𝑟𝑔𝑒𝑛𝑟𝑠𝑖𝑡−1 − 𝑟𝑔𝑒𝑛𝑟𝑠𝑖𝑡 + 𝑛𝑢𝑚𝑏𝑟𝑖𝑡 − 1 − (1 − 𝑛𝑢𝑚𝑏𝑟𝑖𝑡) × 𝑀)

𝑡∈𝑇−{1}𝑖∈𝐼𝑟∈𝑅

 
(51) 

 

   The sub – gradient method was used in order to solve the Lagrangian dual problem (Fisher, 1985). The 

initial values of the multipliers are considered zero and after solving the Lagrangian relaxation problem and 

using the sub gradient method, the multipliers are updated. Step sizes are used to update the value of the 

multipliers, and norm is used to calculate the step size. Norms and step sizes in iteration 𝑘 are, calculated 

respectively as follows:  

𝑛𝑜𝑟𝑚1
𝑘 = ∑ ∑ ∑(𝑎𝑣𝑏𝑟𝑖𝑡 + 𝑛𝑢𝑚𝑝𝑟𝑖𝑡 − 𝑏𝑟𝑖)2

𝑡∈𝑇𝑖∈𝐼𝑟∈𝑅

 
(52) 

𝑛𝑜𝑟𝑚2
𝑘 = ∑ ∑ ∑ ∑(𝑟𝑔𝑒𝑛𝑟𝑠𝑖𝑡−𝑟𝑔𝑒𝑛𝑟𝑠𝑖𝑡−1 − 𝑛𝑢𝑚𝑏𝑟𝑖𝑡 + 1 − (1 − 𝑛𝑢𝑚𝑏𝑟𝑖𝑡) × 𝑀)2

𝑠∈𝑆𝑡∈𝑇−{1}𝑖∈𝐼𝑟∈𝑅

+ ∑ ∑ ∑ ∑(𝑟𝑔𝑒𝑛𝑟𝑠𝑖𝑡−1 − 𝑟𝑔𝑒𝑛𝑟𝑠𝑖𝑡 + 𝑛𝑢𝑚𝑏𝑟𝑖𝑡 − 1 − (1 − 𝑛𝑢𝑚𝑏𝑟𝑖𝑡)

𝑠∈𝑆𝑡∈𝑇−{1}𝑖∈𝐼𝑟∈𝑅

× 𝑀)2 

(53) 

Therefore, step sizes and Lagrangian multipliers in iteration 𝑘 can be, respectively calculated as follows: 

𝜇1
𝑘 = 𝜃𝑘

𝑈𝐵𝑘 − 𝐿𝐵𝑘

𝑛𝑜𝑟𝑚1
𝑘  

(54) 

𝜇2
𝑘 = 𝜃𝑘

𝑈𝐵𝑘 − 𝐿𝐵𝑘

𝑛𝑜𝑟𝑚2
𝑘  

(55) 

𝑢𝑟𝑖𝑡
𝑘+1 = 𝑚𝑎𝑥{𝑢𝑟𝑖𝑡

𝑘 + 𝜇1
𝑘(𝑎𝑣𝑏𝑟𝑖𝑡 + 𝑛𝑢𝑚𝑝𝑟𝑖𝑡 − 𝑏𝑟𝑖), 0} (56) 

𝑢1𝑟𝑠𝑖𝑡
𝑘+1 = 𝑚𝑎𝑥{𝑢1𝑟𝑠𝑖𝑡

𝑘 + 𝜇2
𝑘(𝑟𝑔𝑒𝑛𝑟𝑠𝑖𝑡−𝑟𝑔𝑒𝑛𝑟𝑠𝑖𝑡−1 − 𝑛𝑢𝑚𝑏𝑟𝑖𝑡 + 1 − (1 − 𝑛𝑢𝑚𝑏𝑟𝑖𝑡) × 𝑀), 0} (57) 

𝑢2𝑟𝑠𝑖𝑡
𝑘+1 = 𝑚𝑎𝑥{𝑢2𝑟𝑠𝑖𝑡

𝑘 + 𝜇2
𝑘(𝑟𝑔𝑒𝑛𝑟𝑠𝑖𝑡−1 − 𝑟𝑔𝑒𝑛𝑟𝑠𝑖𝑡 + 𝑛𝑢𝑚𝑏𝑟𝑖𝑡 − 1 − (1 − 𝑛𝑢𝑚𝑏𝑟𝑖𝑡) × 𝑀), 0} (58) 

 

   Where, 𝑈𝐵𝑘 and 𝐿𝐵𝑘 are the best upper bound found so far and the calculated Lagrangian function, 

respectively, and 𝜃𝑘is a constant and its initial value is 1. If the value of the lower bound does not improve 

for m consecutive iterations the value of 𝜃𝑘 will be halved. Figure 3  illustrates the flow chart of the proposed 

algorithm.  

5-3-Upper bound 
   The other factor affecting the efficiency of the proposed algorithm is upper bound. In the present paper, 

a heuristic method is used to generate upper bound for the algorithm. It is obvious that the solution of the 

relaxed problem is not feasible. So, at each iteration, the solution of the relaxed problem is used to generate 

an upper bound. A relaxed solution may have two possible violations from a feasible solution. The first is 

that the gender of the room may change even though the whole patients have not been discharged at the end 

of the previous period. The second possible violation is that the hospitalized patients are more than the total 

number of beds at each room. Therefore, a three-stage algorithm proposed to generate a feasible solution. 

The proposed heuristic method checks the gender of the rooms from the first period. At each period, the 

algorithm checks the gender of the patients hospitalized at the current period and those hospitalized at the 

previous periods. If the gender of the room is not the same as the previous periods and some patients, 

hospitalized at the previous periods, have not been discharged so far, the algorithm changes the gender of 
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the room and make all of the patients hospitalized at the current period equal to zero. The second stage of 

the proposed method checks the number of patients hospitalized at each room. If Constraint 1 is violated, 

the algorithm will reduce the number of hospitalized patients until it does not violate the related constraint. 

The final stage of the proposed algorithm checks the unoccupied beds at each room. If unoccupied beds 

could be found in a room, the algorithm checks the other hospitalized patients; if there is at least one patient 

hospitalized at the current period, the algorithm increases the number of hospitalized patient to the 

minimum value of the patients who are in queue and the number of unoccupied beds. Otherwise, it checks 

the length of the queue for other hospital wards and chooses the longest queue and hospitalize them at the 

room until it does not violate other constraints. 

5-4-Stopping criteria 
  Three different criteria were used to terminate the algorithm. The first criterion is running 200 iterations, 

the second criterion refers to when the step size become smaller than 𝜀, and the third one is the gap between 

the upper bound and the lower bound as follows:  

𝐺𝑎𝑝 =
𝑈𝐵𝑘 − 𝐿𝐵𝑘

𝑈𝐵𝑘
< 𝛾 

 

(59) 

The algorithm will stop if at least one of the termination criterion is met. 

6-Computational results 
   In order to evaluate the proposed algorithm, 26 random samples were generated. The test problems were 

solved by the Cplex solver. The Lagrangian relaxation algorithm was coded by the MATLAB  2017 linked 

with the Cplex Solver. A Core(TM) i7-2600k 3.40 GHz, 8 GB RAM was used for the calculations. The 

configuration of the assumed hospital consisting of the number of wards, the number of beds in each room 

and the length of stay at each ward is available in table 2. The results of running the test problems by two 

mentioned soft wares are shown in table 3. It is worth noting that an hour time limit was set on the running 

time of solving the main problems by the Cplex. Other parameters consisting of 𝛾, 𝑚 and 𝜀 were considered 

as 0.05, 5 and 0.1, respectively. Figure 4 and figure 5 show the trend of changes in lower bound, upper 

bound and step sizes. 
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Fig 3. Flow-chart of the proposed Lagrangian based heuristic algorithm 
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Table 2. Configuration of the assumed hospital 

Number of wards Number of rooms 
Length of stay 

𝐿𝑂𝑆𝑖  

Number of beds 

𝑏𝑒𝑑𝑟𝑖 

3 2 [1,3,2] 
3 2 3
4 3 1

 

3 3 [1,3,2] 
4 4 2
4
1

3
1

3
4

 

4 2 [1,3,2,2] 
4 4 2 2
4 3 3 3

 

4 3 [1,3,2,2] 
4 4 2 2
4
1

3
1

3
4

3
4

 

 

Table 3. Results of random samples 

Sample 

Num. 

W
ard

 

R
o

o
m

 

P
erio

d
 

Number of 

patients 

Cplex Lagrangian relaxation 

OFV Time(Seconds) UB LB Time(seconds) Gap% 

1 3 2 3 (1,8)* 100 1.16 107 98.17 193.487 8.25% 

2 3 2 3 (1,10) 112 0.61 113 111.03 144.62 1.74% 

3 3 2 3 (1,12) 164 0.63 174 163.4 239.8 6.09% 

4 3 2 3 (1,14) 184 0.67 198 182.69 311.45 7.73% 

5 3 3 3 (1,8) 60 2.03 71 58.111 224.32 18.15% 

6 3 3 3 (1,10) 93 0.72 98 90.95 45.89 7.19% 

7 3 3 3 (1,12) 110 1.02 120 108.2343 97.004 9.80% 

8 3 3 3 (1,14) 312 25.94 328 309.61 942.72 5.61% 

9 3 2 4 (1,8) 124 14.08 135 122.36 727.07 9.36% 

10 3 2 4 (1,10) 205 7.28 223 200.81 832.7 9.95% 

11 3 2 4 (1,12) 271 7.63 288 267.31 752.25 7.18% 

12 3 2 4 (1,14) 312 4.13 335 308.52 831.05 7.90% 

13 3 2 5 (1,8) 157 470.9 181 155.33 1778.04 14.18% 

14 3 2 5 (1,10) 282 102.25 316 280.63 910.95 11.19% 

15 3 2 5 (1,12) 369 113.76 404 365.19 1120.82 9.61% 

16 3 2 5 (1,14) 420 250.5 461 418.56 1158.49 9.21% 

17 3 3 5 (1,8) 215 1h** 249 213.1 1123.24 14.42% 

18 3 3 5 (1,10) 134 1h 152 130.78 1662.02 13.96% 

19 3 3 5 (1,12) 333 2619.4 382 323.75 1244.14 15.25% 

20 3 3 5 (1,14) 343 1772.8 381 342.03 1431.11 10.23% 

21 4 2 5 (1,8) 220 1h 236 217.78 2019.44 7.72% 

22 4 2 5 (1,10) 369 1h 383 364.51 1212.23 4.83% 

23 4 2 5 (1,12) 400 1h 438 398.33 1681.37 9.06% 

24 4 2 5 (1,14) 407 1h 449 401.67 1743.65 10.54% 

25 4 3 5 (1,8) 175 1h 195 173.85 2346.14 10.85% 
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Sample 

Num. 

W
ard

 

R
o

o
m

 

P
erio

d
 

Number of 

patients 

Cplex Lagrangian relaxation 

OFV Time(Seconds) UB LB Time(seconds) Gap% 

26 4 3 5 (1,10) 301 1h 330 295.75 1984.79 10.38% 

27 4 3 5 (1,12) 420 1h 466 414.5 2519.7 11.05% 

28 4 3 5 (1,14) 575 1h 621 567.73 1795.48 8.58% 

* Numbers in the parentheses show the lower bound and upper bound for uniform distribution 

** The best solution that found by the Cplex under 60 minutes. 

 

 

 
Fig 4. Lower bound and upper bound trends for 

sample number 28 

 
Fig 5. Step sizes trends for sample number 6 

 

 

Fig 6. Comparing the run time needed by the Cplex and Lagrangian relaxation for solving the test problems 
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Fig 7. Comparing the objective function obtained by the Cplex and with lower and upper bounds given by 

Lagrangian relaxation algorithm  

 

7-Conclusion and directions for further researches 
   In this paper, collaboration between hospital wards as a strategy for improving the hospital resilience was 

investigated. The model allocates patients to the hospital wards considering the patients’ gender, destination 

ward, length of stay and the room of the wards. The model aims at minimizing the total number patients in 

a queue. Under the disruptions, the demand for receiving healthcare at hospitals increases. Therefore a 

strategy is needed for improve resiliency of the hospital against this issue. The collaboration between 

hospital wards, considered as strategy to cope with the surge of demands. The results show that the proposed 

strategy can improve the waiting time of the patients at the hospital compare with the situation which the 

hospital don’t share beds between wards.  

   Since Lagrangian relaxation approaches have been successfully used to solve different problems, a 

Lagrangian-based heuristic was developed to solve the proposed model. Two groups of constraints 

consisting of gender of room constraints and capacity of room were relaxed in order to make the problem 

simpler. A lower bound was obtained by solving the relaxed model. Due to the infeasibility of the solution 

of relaxed model, a heuristic method was used to make the solution feasible and also consider it as an upper 

bound for the main problem. If the gap between the mentioned bounds is less than the tolerance or the size 

of the norm becomes smaller than the pre specified limit, the algorithm will stop; otherwise the Lagrange 

multipliers are updated until at least one of the stopping criteria is met. The computational results show that 

the proposed algorithm is able to reach a near optimal solution to the problem.  
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   Future works can add the operating rooms to the proposed model and develop an integrated model. It is 

an interesting subject to propose an integrated model that be able to consider the operating room together 

with the hospital rooms.  
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