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Abstract 
This paper studies a name-your-own-price (NYOP) mechanism in which the 

retailer allows buyers to participate in the pricing process by submitting bids. 

Buyers can place both joint and individual bids to purchase products either as a 

bundle or individually. The retailer utilizes NYOP and posted-price channels 

simultaneously. The focus of this paper is to assess the impact of adding the posted-

price channel and bundling option on buyer behavior and retailer profit. The paper 

develops a two-stage model where the first stage involves the buyer’s decision on 

participating in NYOP. Moreover, buyers can choose between bidding for a bundle 

or a single item. Decisions in the second stage depend on the outcome of the first 

stage. Four distinct purchasing scenarios are formulated to outline the potential 

ways that buyers can use to purchase products. Furthermore, the buyers’ learning 

effect on their bidding strategy is considered. A dynamic programming approach 

with backward induction is employed to solve the problem. Moreover, the 

concavity analysis is used to obtain the solution of each nonlinear subproblem. 

Then, a solution algorithm based on mathematical analysis is proposed. Results 

reveal that the frictional costs of the first period have a greater impact on the buyer 

utility than those of the second period. Moreover, applying the NYOP alongside 

the posted-price can enhance the retailer’s profit. In particular, the retailer can use 

the NYOP and bundling mechanisms as encouraging tools to attract buyers and 

increase his profit. Thus, NYOP is a very effective instrument for market 

penetration. 

Keywords: Participative pricing, Name-your-own-price, Bundling, Dynamic 

programming, Convex optimization, Non-linear programming. 

 

1- Introduction 
  Nowadays, since competition is extended, sellers have to apply new and efficient marketing methods and 

pricing strategies to meet the customers’ needs more efficiently and surpass rivals. Convenient access to 

the Internet and the emergence of new pricing mechanisms have led many sellers to use online and offline 

channels simultaneously. Selling through online channels helps the seller to reach out to a broader set of 

buyers. Hence, online purchases have a vital role in retail markets.  

 The Internet enhanced the ability of the interaction between buyers and retailers and deeply changed 

pricing strategies. Opaque selling is a mechanism in which the retailer conceals product characteristics (e.g.,  
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exact location and hotel name in case of hotel reservation) from buyers until the transaction is completed 

(Feng et al. 2019; Q. Li et al. 2020).  

Priceline was the first retailer that applied opaque selling in the hospitality industry and utilized an 

innovative pricing strategy, name-your-own-price (NYOP) auction. 

 NYOP is a dynamic pricing mechanism where sellers let buyers participate in the pricing process by 

submitting bids. Different from traditional pricing, NYOP gives customers high control over the final price.  

 Under this mechanism, the retailer considers a hidden threshold price and buyers bid based on their 

knowledge. If the buyer’s bid exceeds the threshold, she receives the product and pays the submitted offer 

(Spann et al. 2018; Wagner and Pacheco 2020). This mechanism is used by a wide variety of retailers and 

industries to sell goods and services, such as selling event tickets (ScoreBig), electronics (Greentoe), 

software (Ashampoo), and different types of products on eBay’s Best Offer (Zeithammer et al. 2019).  

 The structure of the NYOP can affect buyer behavior and seller profit. For example, the number of 

allowable bids is one of the factors that change buyers’ and sellers’ profit under the NYOP. In the single-

bid model, the retailer allows individuals to place only a bid through the NYOP channel, but the repeat-

bidding model lets them rebid if their previous bid failed. Though some NYOP retailers such as Priceline 

restrict buyers to single-bid, they can rebid in the German one (Amaldoss and Jain 2008). When repeat-

bidding is allowed, the wise and patient buyers can obtain the threshold via small increments in their bids. 

Therefore, considering frictional cost, which is disutility that buyers experience during the bidding process 

such as time, monetary fee, experience, mental effort to obtain optimal offers, etc. is crucial. The vendor 

can control frictional costs by manipulating the attribute of the NYOP mechanism. Thus, he should balance 

between the number of the allowable bid and losing the buyer if her previous bid does not meet the threshold 

price (Joo et al. 2012).  

 Though most of the NYOP retailers supply more than one product, most of the papers restrict the bidding 

process to a single item. For instance, in the hospitality industry, many retailers such as Priceline sell airline 

tickets, hotel rooms, and car rentals. Moreover, many of the passengers may need more than one category 

of these products (for example, airline ticket and hotel room) or more than one item of the specific category 

(for example, two airline tickets). some retailers such as Ashampoo sell their products as a bundle and some 

of them like Priceline, Greentoe, etc., also have the potential to sell items in bundles. Hence, considering 

the bundling strategy can be attractive to buyers and affect the profitability of the NYOP mechanism.  

 This paper investigates the theoretical and managerial implications of bundling policy in the NYOP 

mechanism where repeat-bidding is allowed. Moreover, this is the first work that considers the profitability 

of applying NYOP with a bundling option parallel to posted-price channels. The buyer decides whether to 

join the NYOP or the posted-price channel, if she decides to place bids, she can choose to bid for a single 

item or the bundle. Hence, this paper assesses the impact of various selling mechanisms on the buyers’ 

bidding strategy. Furthermore, the profitability of the retailer is investigated. In other words, this paper aims 

to find how bundling pricing affects buyers’ bidding strategy in NYOP? When do buyers prefer to bid 

through NYOP rather than buy from the posted-price? Whether applying NYOP is profitable for the 

retailer? What is the effect of frictional costs on buyer behavior? 

 The paper has the following structure: Section 2 reviews the related literature. Section 3 describes the 

mathematical models and solution procedures. Section 4 develops a solution algorithm. Section 5 conducts 

several sensitivity analyses. Finally, Section 6 concludes the paper and recommends some areas for future 

studies. 
 

2- Related literature 
   This study is closely related to the literature on bundling, NYOP, kind of participating pricing 

mechanisms, and opaque channels. 

 The pricing policy is a powerful tool for retailers to sell products that has been studied based on different 

assumptions in a considerable number of studies. Bundling and new pricing methods as operational tools 

can affect buyers purchasing behavior (Cao et al. 2019). Best Buy used the bundling strategy to sell the 

extra inventory of Apple products and bundled the products with gift cards to increase sales (Cao et al. 

2019). One of the applications of bundling and NYOP is in the transportation and tourism industry. Airline 
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tickets for travel from Chicago to Miami are bundled with returns from Miami to Chicago. Moreover, these 

tickets can be sold as a bundle with a hotel and a car rental (Vamosiu 2018). 

 Cao et al. (2019) considered the influence of retail bundling on a supply chain where the retailer ordered 

the product before demand uncertainty was resolved. The retailer could sell the item alone or as a bundle 

with a secondary product. They showed that the retailer could take advantage of bundling by mitigating the 

demand uncertainty. Jena and Ghadge (2022) investigated product bundling in a duopoly supply chain, 

including two manufacturers and a single retailer with different power-balance and advertising efforts. Lin 

et al. (2020) studied pricing and bundling of two-competing platforms and investigated the effect of the 

installed base, mixed-bundling, and competition. Hemmati et al. (2021) studied bundling for 

complementary products in a two-stage supply chain under a consignment stock agreement. They showed 

that the firms benefit from economies of scale under bundling. Chen et al. (2021) considered the effect of 

the degree of product interrelatedness on the supply chain members’ decisions, including mixed-bundling, 

partial mixed-bundling, and pure bundling strategies. Bucarey et al. (2021) developed pricing problems and 

algorithms for single-minded buyer behavior with the bundle where the buyer only bought the bundle if 

and only if its total price was less than the budget.  

 In the NYOP literature, most researchers considered a single item. Gupta and Abbas (2008) studied 

multiple substitution products where rebidding is allowed. They analyzed the model from the buyer 

perspective and derived an upper bound for the customer’s gain. Amaldoss and Jain (2008) proposed a 

single-bid model for multiple items where the buyers have three bidding strategies: 1) single bidding in 

which buyers bids individually for each item, 2) joint bidding where buyers can submit a joint bid for a 

package of items, and 3) mixed bidding that lets buyers use both previous bidding strategies. He showed 

some buyers offer more in the joint bidding format, so the firms’ profit can increase. Moreover, joint bidding 

can be more profitable than mixed bidding. Furthermore, he expressed that joint bidding decreases the 

probability of a mismatch between bid and threshold. Sabbaghnia et al. (2022) studied NYOP considering 

social responsibility in which firms donate to enhance business image, and customers can donate through a 

modified NYOP scheme. They showed that this scheme increases consumer participation and total profit. 

 Many NYOP retailers such as Priceline restrict bidders to a single-bid. However, the customers could 

submit a second offer using a different username and credit card. The retailer considers charging fees for 

any new bid to prevent buyers from obtaining the threshold price by incrementing their offer in small steps 

Bernhardt and Spann (2010). Several works have studied the repeat-bidding phenomenon in which buyers 

bid on a single item. Although most of the works that allow the buyers to rebid expressed that it is more 

profitable than single-bid, Fay (2009) showed that firms could have more gain by restricting customers to 

single-bid. In other words, the design of the optimal NYOP mechanism and the profitability of this strategy 

is still an open question. Although most researchers assume a fixed threshold, Hinz et al. (2011) suggested 

an adaptive and transparent threshold through a repeat-bidding setting can increase seller profit. 

 Fay (2004) considered a partial-double-bid scenario and found repeat-bidding may be more profitable 

than single-bid for the firm under some conditions. Hann and Terwiesch (2003) studied frictional costs 

where buyers are allowed to rebid and tried to obtain the bidding strategy, which maximizes the profit using 

a dynamic programming approach. Spann et al. (2004) compared the single-bid scenario with repeat-

bidding and analyzed the effect of willingness-to-pay and frictional costs on the buyers’ bidding strategy. 

Spann and Tellis (2006) analyzed buyers’ behavior where the retailer let buyers rebid and examined whether 

buyers treat rational. Joo et al. (2012) focused on the impact of the buyers’ bidding pattern on their gain in 

the presence of posted-price retailers. The results indicated that the time of bidding and the shape of the bid 

function are factors affecting the buyer’s gain. Liu et al. (2016) considered the impact of information on 

buyers’ expectations and willingness-to-pay where buyers allow rebidding. The results showed both buyers’ 

experience and environmental information could affect buyers’ bidding strategy. Levina et al. (2015) 

assumed buyers are allowed to submit a limited number of bids and studied the effect of buyers’ 

collaboration on social networks. 

 Though most of the researchers considered NYOP as the only sales channel, selling through the NYOP 

in the presence of posted-price is another stream studied in the literature. Fay (2009) studied a competitive 

environment and showed NYOP could dominate posted-price. Moreover, he showed prohibiting repeat-
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bidding may make more gains for the retailer. Shapiro (2011) analyzed the profitability of adding a posted-

price channel to the NYOP where buyers are risk-averse. Huang et al. (2017) studied an environment in 

which sellers decide whether to use a direct channel or an NYOP channel of a third party. R. R. Chen et al. 

(2014) developed a two-period model to investigate the impact of different selling strategies through opaque 

channels on two competing service providers. They studied the effect of capacity constraint on the pricing 

strategies and showed that posted-price is more beneficial for a provider, while the buyers can get more 

gain through NYOP. Anderson and Xie (2014) focused on a retailer using NYOP, posted-price, and 

traditional channels to analyze the impact of opaque selling in market segmentation. Li et al. (2016) 

investigated a closed-loop supply chain containing remanufacturing and pricing. Nosoohi (2022) studied 

transparent NYOP and posted-price channels for vertically differentiated products in which the quality level 

is considered. 

 Feng et al. (2018) proposed a collaborative game in which two providers service to leisure and business 

customers. They compared the profitability of applying traditional single-channel, traditional and posted-

price channels, and traditional and NYOP channels. They found dual-channel has advantages over single-

channel. Zeithammer et al. (2019) considered a dual-channel model and used incentive-compatible 

experiments to analyze the effect of friction costs on buyer behavior and buyer entry. Whereas the above 

papers restrict buyers to single-bid, Cai et al. (2009) studied different combinations of single-bid, double-

bid, single-channel, dual-channel, where the capacity could be limited. The results showed that the double-

bid case can dominate the single-bid in both the single-channel and dual-channel. 

2-1- Research gap 
 Previous studies considered the NYOP mechanism from two aspects; 1) the behavior and bidding 

strategies of buyers, 2) the optimal design and the profitability for retailers. The current paper follows the 

first stream and studies the optimal customers’ bidding strategy literature (Abbas and Hann (2010), Joo et 

al. (2012), Hann and Terwiesch (2003), Spann et al. (2004), Bernhardt and Spann (2010)). Table 1 

summarizes the most relevant studies to the current paper and highlights the position of the paper in the 

literature. 

 
Table 1. A summary of the related literature 

Authors Year NYOP Posted-

price 

Re-

bidding 

Multiple 

products 

Bundling Dual 

channel 

Amaldoss and Jain  2008  - -   - 

Gupta and Abbas  2008  -   - - 

Cai et al.  2009    - -  

Hinz et al.  2011  -  - - - 

 Li et al. 2016   - - -  

Huang et al. 2017   - - -  

Feng et al. 2018   - - -  

Zeithammer et al.  2019   - - -  

Cao et al.  2019 -  -   - 

Chen et al.  2021 -  -   - 

Lin et al. 2020 -  -    

Hemmati et al. 2021 -  -   - 

Bucarey et al.  2021 -  -   - 

Sabbaghnia et al.  2022   - - - - 

Jena and Ghadge  2022 -  -   - 

Nosoohi 2022   -  -  

Hemmati et al. 2023  - -   - 

This study 2023       

 

 Table 1 shows that most papers that studied bundling considered it as a promotion tool used by retailers 

to attract more customers and considered a posted-price mechanism in which the retailer sets the final price. 

However, in the current paper, the buyers set the final price by submitting bids. Amaldoss and Jain (2008) 
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is the only paper that studied bundling under NYOP. However, they limited customers to a single bid and 

considered a single NYOP channel. According to the literature and policies used by NYOP retailers such 

as Ashampoo and Priceline (a hospitality retailer), bundling and rebidding are two main features of the 

NYOP mechanism. Moreover, in practice, customers always have outside options and can purchase 

products from posted-price channels. Furthermore, most papers that examine NYOP along with posted-

price only considered a single item and limited the customers to a single bid (Zeithammer et al. 2019; 

Nosoohi 2022; Sabbaghnia et al. 2022). Hemmati et al. (2023) examined bundling of two products in an 

NYOP channel where customers are restricted to a single bid. 

 Thus, the current paper seeks to contribute to the related literature in two important ways. First, the 

previous study limited the buyers to a single bid for the bundle. We developed and numerically tested the 

model where repeated bidding is possible, and the customers can choose between a single item and bundle 

in each stage. Second, bidding for the bundle through the NYOP channel is considered where the buyer can 

purchase from posted-price channels simultaneously. Furthermore, we drive closed-form solutions, develop 

an algorithm to determine buyers’ optimal bids, and propose several managerial insights. 

3- Problem definition and mathematical model 
   A market in which the retailer sells two products through NYOP and posted-price channels 

simultaneously is considered. The behavior of buyers who learn about her needs relatively close to the date 

of the service is modeled. Buyers know the retailer announces the result of their bid with a delay. Hence, 

they can bid up to twice and there is a risk of not receiving the goods. The waiting time and the other 

disutility that the buyer may experience when using the NYOP are considered as a frictional cost. Therefore, 

a two-period environment which is in line with other researchers (Cai et al. 2009; Caldentey and Vulcano 

2007; Etzion et al. 2006) is studied, so that the buyer first places bid in the NYOP channel and if her bid is 

rejected she can join the posted-price channel or submit another bid. 

The buyer wants to book two items, for example, an airline ticket and a hotel room. She can purchase the 

items as a bundle or individual. In the first period, she specifies whether she wants to place a joint bid or a 

single bid. She prefers to buy both items or nothing. In other words, from the buyer’s point of view, the 

value of buying one item is negative, whereas the value of buying nothing is zero, and the value of buying 

both items is positive. For better intuition, If a buyer can book a hotel room without buying an airline ticket, 

she can not travel and gains negative value. Hence, the buyer does not select the purchasing options leading 

to obtaining one product at the end of two periods. Thus, the decisions that the buyer may make are as 

follows: 

Case 1: In the first period, join the NYOP, bid for the bundle and then submit another bid for the bundle 

if the first bid is rejected. 

Case 2: In the first period, bid for the bundle through the NYOP channel and then buy from the posted-

price channel if she fails. 

Case 3: In the first period, bid for a single item and then two items are bought from the posted-price 

channel if the first bid is rejected; otherwise, purchase a single item from the posted-price channel. 

Case 4: Buy from the posted-price channel in both periods. 

Please note that other cases that the buyer may obtain only one product are not profitable for her; hence 

she never chooses them.  

The buyer does not know the exact value of the threshold set by the retailer and she does not have any 

knowledge about the retailer’s decisions making process. However, she knows that the retailer draws the 

threshold price for a single item from a random distribution and believes that the threshold is uniformly 

distributed over the normalized interval [0,1] (Anderson and Xie 2014; Abbas and Hann 2010; Hann and 

Terwiesch 2003; Fay 2009; Amaldoss and Jain 2008; Spann et al. 2004; Bernhardt and Spann 2010). 

Moreover, similar to Fay (2009), we assume the willingness-to-pay for each buyer is 1 for one unit of 

product. Considering a common willingness-to-pay simplifies the analysis and does not ruin the generality 

of the problem.  

The notation used in the proposed model is as follows: 
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k Period index, 0,1k    

WTPi Buyer’s willingness-to-pay for the individual item  

WTPj Buyer’s willingness-to-pay for the bundle 

kP   A random buyer’s bid at period k 

T The threshold price 

B   Price of the item through the posted-price channel 

kc   
Buyer’s frictional costs at period k 

 

Case 1  

When the buyer bid for a bundle, the joint distribution of the buyer’s belief is triangular. The probability 

density function of a symmetric triangular distribution, which is the sum of two independent Uniform 

random variables on  ,a b is considered. Thus, the expected utility of buyer who can submit a maximum 

of two bids and decided to bid for a bundle is: 

0 1

0 0 0 0 1 1 0 1
,

max ( ) ( ) [1 ( )][( ) ( ) ]
bN j j

P P

u WTP P p P T c p P T WTP P p P T T P c            (1) 

 The buyer learns about the threshold during the bidding process and updates her belief about the threshold 

price. In other words, the buyer learns from the failure that the threshold price is more than her offer. The 

Bayesian rule is used to update the buyer’s belief and obtain the success probabilities. The above Bellman 

equation is solved according to the range of possible bids in each stage. The rational buyer never bid more 

than 2b for the bundle. Figure 1 shows these ranges. 

 

 
 

Fig 1. The possible ranges for the bids in each period in case1 

 

Taking 
2

2

( )

y a
M

b a





 and

2

2

( )

b y
N

b a





. Hence, the maximum value of equation (1) can be obtained by 

solving 0 1 2max(0, , , )bN bN bN bNu u u u , where   

0 0 1

0 1

0 0

2

0 0 0 1 1
,

2 2

max ( ) (1 )[( )( ( )) ]

P P P a b b

bN j j
P P

a a P P a b

u WTP P Mdy c Mdy WTP P Mdy Mdy Ndy c





             
(2) 

0 0 1

0 1

0 0

2

1 0 0 1 1
,

2 2

max ( ) (1 )[( )( ( )) ]

P P Pa b a b b

bN j j
P P

a a P a b P a b

u WTP P Mdy c Mdy WTP P Mdy Ndy Mdy Ndy c

 

 

               
(3) 

0 1

0 1

0 0 0

2 2

2 0 0 1 1
,

2

max ( )( ) [( )( ( )) ]

P Pa b b b

bN j j
P P

a a b P P P

u WTP P Mdy Ndy c Ndy WTP P Ndy Ndy c





            
(4) 

 As noted earlier, the Uniform threshold distribution over the normalized interval [0,1] is considered, i.e., 

𝑎 =  0 and 𝑏 =  1, and the distribution of the buyer’s belief is triangular, over [0,2]. Parameters 𝑢𝑏𝑁0
, 𝑢𝑏𝑁1
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, and 𝑢𝑏𝑁2
 indicate the buyer’s expected utility in cases 1.a, 1.b, and 1.c respectively. In Case 1.a the buyer 

bids less than 𝑎 + 𝑏 = 1 in both periods (𝑃0 ≤ 1 and 𝑃1 ≤ 1). In Case 1.b she bids less than 𝑎 + 𝑏 = 1 in 

the first period, and more than 1a b   in the second period (𝑃0 ≤ 1 and 𝑃1 > 1); in case 1.c bids more 

than 𝑎 + 𝑏 = 1 in both periods (𝑃0 > 1and 𝑃1 > 1). Figure 1 depicts the cases.  Backward induction to 

recursively evaluate equations (2), (3), and (4) is applied.  

Proposition 3.1. In Case 1.a where the buyer can bid less than 1 for the bundle in both periods, the optimal 

bidding strategy is 𝑃1 =  1 and 𝑃0 = 𝑚𝑖𝑛 (1,
2(𝑐1+1)

3
) . 

Proof: See Appendix A for further details. 

 

Proposition 3.2. In Case 1.b where the buyer bids less than 1 in the first period and more than 1 in the 

second period for the bundle, the optimal offer in the second period is 
2

1 0
2 3 6 3P P    . In this case, 

the optimal solution in the first period is 𝑃0 = 1 if 
1

2 186 6c      and 
1,0

3

0
min( ,1)

bN

P r  if

1
0 2 186 6c     . 

 

Proof: See Appendix B for further details. 

 

Proposition 3.3. In Case 1.c) The buyer bids more than 1 for the bundle in both periods, and the optimal 

solution is 
1 0

2 3( 2) 3P P   , where
2 2

0
max(1, 2 2 3 9 93 36 3 92 3 414 23)P c c c c       . 

Proof: See Appendix C for further details. 

In Case 1, the retailer’s expected utility is: 

0 0 0 1 0 1
( ) [1 ( )][ ( ) ]

rN
u p P T P p P T p P T T P P        

(5) 

Hence, according to the buyer’s bid, the retailer’s expected utility is equal to one of the following equations: 

 
0 1

0

0 0 1

2

P P

rN

a P

u P Mdy P Mdy    

(6) 

0 1

0

1 0 1

2

( )

P Pa b

rN

a P a b

u P Mdy P Mdy Ndy





      

(7) 

0 1

0

2 0 1

2

( )

P Pa b

rN

a a b P

u P Mdy Ndy P Ndy





      

(8) 

Case 2 

At first, the buyer places a bid for the bundle; if the bid is rejected, the buyer abandons the NYOP auction 

and buys both items from the posted-price. There are no frictional costs to buy from a posted-price channel. 

Moreover, purchase from the posted-price is optimal if 𝐵 ≤ 𝑊𝑇𝑃. Hence, the buyer’s expected utility is: 

 

0 1

0 0 0 0
,

max ( ) ( ) 2[1 ( )]( )
bNp j i

P P

u WTP P p P T c p P T WTP B         (9) 

 

Same to Case1, the range of possible offers in the first period is considered. Hence, in the first period, the 

buyer bids less than 𝑎 + 𝑏 = 1 in Case 2.a, and she bids more than 𝑎 + 𝑏 = 1 in case 2.b. Figure 2 illustrates 

the cases.   
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Fig 2. The possible ranges for the bids in case 2 

 

Thus, the maximum value of equation (9) is obtained finding the optimal solution of 𝑢𝑏𝑁𝑝 =

𝑚𝑎𝑥( 0, 𝑢𝑏𝑁𝑝0, 𝑢𝑏𝑁𝑝1), where 

0 0

0 1

0 0 0
,

2 2

max ( ) 2(1 )( )

P P

bNp j i
P P

a a

u WTP P Mdy c Mdy WTP B a        
(10) 

0

0 1

0

2

1 0 0
,

2

max ( )( ) 2( )

Pa b b

bNp j i
P P

a a b P

u WTP P Mdy Ndy c WTP B Ndy





         
(11) 

Proposition 3.4. In Case 2.a where the buyer submits a bid that is less than 1 for the bundle in the first 

period if the bid fails to meet the threshold, she purchases items at a posted-price B, and the optimal offer 

is 
0

min(1,4 3)P B . 

Proof: See Appendix D for further details. 

 

Proposition 3.5. In Case 2.b, where the buyer bids more than 1 for the bundle in the first period and 

purchases items at a posted-price B if she fails, the optimal offer is 2

0
max(1, (2 4 2 ( 1) 1.5) 3)P B B      

 

Proof: See Appendix E for further details. 

 

   When the buyer’s offer does not meet the threshold, the buyers purchase from the posted-price channel. 

Hence, the retailer’s expected gain is: 

 

0 0 0
( ) 2 (1 ( ))

rNp
u P p P T B p P T      (12) 

 

Thus, according to the buyer’s bid, the expected utility of the retailer as follows: 
0 0

0 0

2 2

2 (1 )

P P

rNp

a a

u P Mdy B Mdy     
(13) 

0

0

2

1 0

2

( ) 2

Pa b b

rNp

a a b P

u P Mdy Ndy B Ndy





      

(14) 

Case 3 

The buyer initially bids for a single item in the first period and then purchases at posted-price. If the first 

bid is rejected, the buyer purchases two items at the posted-price; otherwise, she purchases an item. As 

noted earlier, when the buyer bids for a single item, the distribution of the buyer’s belief is Uniform. Hence, 

the buyer’s expected utility is: 

0

0 0 0

2 0 0
max ( ) ( ) 2( )

bNp i i i
P

P a P a b P
u WTP P c WTP B WTP B

b a b a b a

  
      

  
 

(15) 
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Proposition 3.6. The buyer’s optimal bid of case 3 in which the buyer bid for a single item and then 

purchases from posted-price is 𝑃0 =
𝐵

2
. 

 

Proof: See Appendix F for further details. 

According to the buyer’s bid, the retailer’s expected utility is: 

0 0 0

2 0
2

rNp

P a P a b P
u P B B

b a b a b a

  
  

  
 

(16) 

Case 4 

The buyer does not participate in NYOP and buys both items at posted-price. Thus, the buyer’s expected 

utility is: 

2( )
bp i

u WTP B   (17) 

In this case, the retailer’s expected utility is: 

2
rp

u B  (18) 

According to the proposed propositions and mathematical proof in appendices, the following algorithm is 

applied to find the optimal case applied by the buyer to purchase the product. 
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4- Numerical experiments 
   This section conducts numerical experiments. The algorithm’s solutions are compared to the solutions of 

subproblems obtained via GAMS 24.9.1. Remark that only one of the subproblems can occur at a time 

(owing to the customer’s single choice), and a rational buyer selects the option that maximizes her profit. 

Consequently, the maximum solution of the subproblems achieved through GAMS can be compared with 

Step 1: Set 𝑎 =  0, 𝑏 =  1, 𝑊𝑇𝑃𝑖 = 1, and 𝑊𝑇𝑃𝑗 = 2 . 

Step 2: Set 𝑃0 = 𝑚𝑖𝑛 (1,
2(𝑐1+1)

3
)  and 𝑃1 = 1. Find the value of the 𝑢𝑏𝑁0

 and 𝑢𝑟𝑁0 applying equations 

(2) and (6). 

Step 3: If 1
2 186 6c     set 𝑃0 = 1, otherwise, set 𝑃0 = 𝑚𝑖𝑛( 𝑟𝑏𝑁1,0

3 , 1). Set 
2

1 0
2 3 6 3P P     

and calculate 𝑢𝑏𝑁1
 and 𝑢𝑟𝑁1 utilizing equations. (3) and (7). 

Step 4: Set 
2 2

0
max(1, 2 2 3 9 93 36 3 92 3 414 23)P c c c c        and 1 0

2 3( 2) 3P P    

then find the value of 2bNu  and 2rNu  applying equations (4) and (8). 

Step 5: Find 𝑢𝑏𝑁
𝑜𝑝𝑡

= max( 𝑢𝑏𝑁0, 𝑢𝑏𝑁1, 𝑢𝑏𝑁2)  . If 𝑢𝑏𝑁
𝑜𝑝𝑡

= 𝑢𝑏𝑁0 set 𝑃0
𝑏𝑁 = 𝑚𝑖𝑛 (1,

(2𝑐1+2)

3
), 𝑃1

𝑏𝑁 = 1 

and 0

opt

rN rNu u . If 1

opt

bN bNu u  set 0

bNP  equal to 0P  obtained in Step 3, 
2

1 02 3 6 3bNP P     and 

𝑢𝑟𝑁
𝑜𝑝𝑡

= 𝑢𝑟𝑁1. Otherwise, set 1 02 3( 2) 3bNP P   , 

2 2

0 max(1,2 2 3 9 93 36 3 92 3 414 23)bNP c c c c        , and 𝑢𝑟𝑁
𝑜𝑝𝑡

= 𝑢𝑟𝑁2 . 

Step 6: Set 𝑃0 = 𝑚𝑖𝑛( 1,
4𝐵

3
) and calculate 𝑢𝑏𝑁𝑝0

 and 𝑢𝑟𝑁𝑝0
 using equations. (10) and (13).  

Step 7: Set 
2

0
max(1, (2 4 2 ( 1) 1.5) 3)P B B       and calculate 𝑢𝑏𝑁𝑝1

  and 𝑢𝑟𝑁𝑝1
 applying 

equations (11) and (14). 

Step 8:  Set 𝑃0 =
𝐵

2
 and calculate 𝑢𝑏𝑁𝑝2

 and 𝑢𝑟𝑁𝑝2
utilizing equations (15) and (16). 

Step9: Find 𝑢𝑏𝑁𝑝
𝑜𝑝𝑡

= max( 𝑢𝑏𝑁𝑝0, 𝑢𝑏𝑁𝑝1, 𝑢𝑏𝑁𝑝2
). If 𝑢𝑏𝑁𝑝

𝑜𝑝𝑡
= 𝑢𝑏𝑁𝑝0

 set 𝑃0
𝑏𝑁𝑃 = 𝑚𝑖𝑛( 1,

4𝐵

3
) and 

𝑢𝑟𝑁𝑝
𝑜𝑝𝑡

= 𝑢𝑟𝑁𝑝0
. If 𝑢𝑏𝑁𝑝

𝑜𝑝𝑡
= 𝑢𝑏𝑁𝑝1

 set 
2

0
max(1, (2 4 2 ( 1) 1.5) 3)P B B      and 𝑢𝑟𝑁𝑝

𝑜𝑝𝑡
= 𝑢𝑟𝑁𝑝1

; 

Otherwise, set 𝑃0 =
𝐵

2
 and 𝑢𝑟𝑁𝑝

𝑜𝑝𝑡
= 𝑢𝑟𝑁𝑝2

. 

Step 10: Calculate ubp and urp using equations (17) and (18). 

Step 11: Find 𝑢𝑏
𝑜𝑝𝑡

= max( 𝑢𝑏𝑁
𝑜𝑝𝑡

, 𝑢𝑏𝑁𝑝
𝑜𝑝𝑡

, 𝑢𝑏𝑝). If 𝑢𝑏
𝑜𝑝𝑡

= 𝑢𝑏𝑁
𝑜𝑝𝑡

 set 𝑃0
∗ = 𝑃0

𝑏𝑁, 𝑃1
∗ = 𝑃1

𝑏𝑁and 𝑢𝑟 = 𝑢𝑟𝑁
𝑜𝑝𝑡

. 

If 𝑢𝑏
𝑜𝑝𝑡

= 𝑢𝑏𝑁𝑝
𝑜𝑝𝑡

 set 𝑃0
∗ = 𝑃0

𝑏𝑁𝑝 and  𝑢𝑟 = 𝑢𝑟𝑁𝑝
𝑜𝑝𝑡

. Otherwise, set 𝑢𝑟 = 𝑢𝑟𝑝
𝑜𝑝𝑡

. 
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the solution generated by the developed algorithm. The algorithm relies on the mathematical characteristics 

of the model and utilizes calculated closed-form solutions. It enhances time efficiency compared to GAMS. 

 The parameters of the problem are taken according to Fay (2009). The model undergoes validation 

through sensitivity analysis and comparison with benchmark cases. The problem is executed with various 

parameter values to ensure logical solutions are produced by the model and to analyze both buyer's and 

vendor's behavior. 

 Here, the impact of bidding for a bundle and applying the NYOP parallel to the posted-price are studied. 

In other words, the goal of these experiments is to examine whether it is beneficial for the buyers if they 

have the option to buy a bundle? When they prefer to purchase from the NYOP channel versus the posted-

price channel? Is it profitable for the retailer to provide an NYOP along with a posted-price?  
At first, the behavior of the buyer is studied where a monopoly retailer sells items only at NYOP. Hence, 

the buyer submits a bid for the bundle in each period (cases 1.a, 1.b, and 1.c). Table 2 shows the effect of 

frictional costs on the buyer’s bidding behavior. 

 
Table 2. Buyer’s bidding strategy and her utility in Case 1 

 𝑃1
∗ 𝑃0

∗  𝑈𝑏  𝑐1  𝑐0   𝑃1
∗ 𝑃0

∗  𝑈𝑏  𝑐1  𝑐0   𝑃1
∗  𝑃0

∗  𝑈𝑏  𝑐1  𝑐0  

          1.38  0.92 0.70 0.00  

 

 

 

 

0 

     1.41 0.97 0.62 0.05  

 

 

 

0.05 

1.41  0.97 0.67 0.05 

1.43 1.01 0.54 0.10  

 

 

0.1 

1.43 1.01 0.59 0.10 1.43  1.01 0.64 0.10 

1.44 1.04 0.52 0.15 1.44 1.04 0.57 0.15 1.44  1.04 0.62 0.15 

1.46 1.06 0.50 0.20 1.46 1.06 0.55 0.20 1.46  1.06 0.60 0.20 

1.47 1.09 0.47 0.25 1.47 1.09 0.52 0.25 1.47  1.09 0.57 0.25 

1.49 1.11 0.45 0.30 1.49 1.11 0.50 0.30 1.49  1.11 0.55 0.30 

1.50 1.13 0.44 0.35 1.50 1.13 0.49 0.35 1.50  1.13 0.54 0.35 

1.51 1.15 0.42 0.40 1.51 1.15 0.47 0.40 1.51  1.15 0.52 0.40 

1.52 1.17 0.40 0.45 1.52 1.17 0.45 0.45 1.52  1.17 0.50 0.45 

1.54 1.20 0.38 0.50 1.54 1.20 0.43 0.50 1.54  1.20 0.48 0.50 

 

 From table 2 it is obvious that buyers with higher frictional costs obtain lower utility. Moreover, the 

frictional costs of the first period have a greater effect on the buyer’s utility than that of in the second period. 

When 𝑐0 increases by 0.05, for the same 𝑐1, the utility decreases by 0.05. However, when 𝑐1 increases by 

0.05, for the same 𝑐0, the utility decreases at most 0.03. It is due to that buyers always incur frictional costs 

in the first period but they incur these costs in the second period if their first bid is rejected. Furthermore, 

the frictional costs in the first period do not affect submitted bids in both periods. However, these costs in 

the second period influence the offers in both periods. In particular, as the buyer’s frictional costs of the 

second period increase, the submitted bid increases.  

 When the buyer’s frictional costs of the second period are low (𝑐1 < 0.1), the buyers choose Case 1.b and 

bid less than 1 in the first period and more than 1 in the second period. An increase in the buyer’s frictional 

costs of the second period (𝑐1 ≥ 0.1), leads the buyer to choose Case 1.c in which she can gain more by 

bidding greater than 1 in both periods. Moreover, the buyer never uses Case 1.a. Thus, the variation in 

frictional costs is an instrument to segment customers.  

 Table 3 indicates the maximum buyer’s utility and her optimal bidding strategy where she can purchase 

from both NYOP and posted-price channels. 
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Table 3. Bidding strategy and buyer’s and retailer’s utilities 

  𝑐1  Parameters 

 0.2  0.1 

𝑢𝑟 Optimal policy 𝑃1
∗

 
𝑃0

∗  𝑢𝑏   𝑢𝑟  Optimal policy 𝑃1
∗

 
𝑃0

∗  𝑢𝑏  𝐵  𝑐0  

1.02 Case 1 1.46 1.06 0.60  0.98 Case 1 1.43 1.01 0.64 1.00  

 

 

 

 

0 

 

 

 

 

 

 

 

1.02 Case 1 1.46 1.06 0.60  0.98 Case 1 1.43 1.01 0.64 0.95 

1.38 Case 2 - 1.11 0.62  0.98 Case 1 1.43 1.01 0.64 0.90 

1.34 Case 2 - 1.08 0.66  1.34 Case 2 - 1.08 0.66 0.85 

1.30 Case 2 - 1.04 0.70  1.30 Case 2 - 1.04 0.70 0.80 

1.25 Case 2 - 1.00 0.75  1.25 Case 2 - 1.00 0.75 0.75 

1.20 Case 2 - 0.93 0.80  1.20 Case 2 - 0.93 0.80 0.70 

1.14 Case 2 - 0.87 0.86  1.14 Case 2 - 0.87 0.86 0.65 

1.07 Case 2 - 0.80 0.93  1.07 Case 2 - 0.80 0.93 0.60 

1.00 Case 2 - 0.73 1.00  1.00 Case 2 - 0.73 1.00 0.55 

0.93 Case 2 - 0.67 1.07  0.93 Case 2 - 0.67 1.07 0.50 

0.85 Case 2 - 0.60 1.15  0.85 Case 2 - 0.60 1.15 0.45 

0.76 Case 3 - 0.20 1.24  0.76 Case 3 - 0.20 1.24 0.40 

1.02 Case 1 1.46 1.06 0.55  0.98 Case 1 1.43 1.01 0.59 1.00  

 

 

 

 

 

0.05 

 

 

1.02 Case 1 1.46 1.06 0.55  0.98 Case 1 1.43 1.01 0.59 0.95 

1.38 Case 2 - 1.11 0.57  0.98 Case 1 1.43 1.01 0.59 0.90 

1.34 Case 2 - 1.08 0.61  1.34 Case 2 - 1.08 0.61 0.85 

1.30 Case 2 - 1.04 0.65  1.30 Case 2 - 1.04 0.65 0.80 

1.25 Case 2 - 1.00 0.70  1.25 Case 2 - 1.00 0.70 0.75 

1.20 Case 2 - 0.93 0.75  1.20 Case 2 - 0.93 0.75 0.70 

1.14 Case 2 - 0.87 0.81  1.14 Case 2 - 0.87 0.81 0.65 

1.07 Case 2 - 0.80 0.88  1.07 Case 2 - 0.80 0.88 0.60 

1.00 Case 2 - 0.73 0.95  1.00 Case 2 - 0.73 0.95 0.55 

0.93 Case 2 - 0.67 1.02  0.93 Case 2 - 0.67 1.02 0.50 

0.85 Case 2 - 0.60 1.10  0.85 Case 2 - 0.60 1.10 0.45 

0.80 Case 4 - - 1.20  0.80 Case 4 - - 1.20 0.40 

1.02 Case 1 1.46 1.06 0.50  0.98 Case 1 1.43 1.01 0.54 1.00  

 

 

 

 

 

0.1 

1.02 Case 1 1.46 1.06 0.50  0.98 Case 1 1.43 1.01 0.54 0.95 

1.38 Case 2 - 1.11 0.52  0.98 Case 1 1.43 1.01 0.54 0.90 

1.34 Case 2 - 1.08 0.56  1.34 Case 2 - 1.08 0.56 0.85 

1.30 Case 2 - 1.04 0.60  1.30 Case 2 - 1.04 0.60 0.80 

1.25 Case 2 - 1.00 0.65  1.25 Case 2 - 1.00 0.65 0.75 

1.20 Case 2 - 0.93 0.70  1.20 Case 2 - 0.93 0.70 0.70 

1.14 Case 2 - 0.87 0.76  1.14 Case 2 - 0.87 0.76 0.65 

1.07 Case 2 - 0.80 0.83  1.07 Case 2 - 0.80 0.83 0.60 

1.10 Case 4 - - 0.90  1.10 Case 4 - - 0.90 0.55 

1.00 Case 4 - - 1.00  1.00 Case 4 - - 1.00 0.50 

0.90 Case 4 - - 1.10  0.90 Case 4 - - 1.10 0.45 

0.80 Case 4 - - 1.20  0.80 Case 4 - - 1.20 0.40 

 Results show that the posted-price can influence the number of buyers bidding at NYOP. As table 3 

shows, when 𝐵 > 0.85, buyers bid more than 1 in both periods (Case 1.c). However, when 𝐵 ≤ 0.85, 

buyers prefer to buy from the posted-price at least in one period (Cases 2, 3, and 4). Figure 3 shows as B 

increases, the buyer obtains less surplus. In particular, when B  decreases from 1 to 0.4, the buyer’s utility 

increases by about 100 percent. Hence, the posted-price significantly affects buyer behavior and her 

decision on whether to place a bid at NYOP. 
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Fig 3. Effect of posted-price and frictional costs on the buyer’s utility 

 It is obvious from figure 3, the buyers with high frictional costs obtain less profit. Hence, buyers with low 

frictional costs have more incentive to participate in NYOP. Additionally, figure 3 shows, when 𝐵 ≤ 0.85, 

variations in 𝑐1, which is the frictional cost of the second period, do not affect the buyer’s bidding strategy 

and utility. It is due to when B is not very high, the buyer prefers to purchase from the posted-price channel 

and does not submit bids in both periods (Cases 2, 3, and 4).  However, frictional costs of the first period 

(𝑐0) can affect buyers’ decisions about bid at NYOP. In particular, table 3 shows when 𝑐0 = 0, for all values 

of B , buyers bid at NYOP at least in one period, but increase in 𝑐0 causes buyers to just purchase from 

posted-price. Therefore, the buyer manages the trade-off between posted-price and frictional costs to 

maximize her surplus. In particular, the NYOP targets buyers with low frictional costs and high posted-

prices, and the posted-price channel targets the buyers with high frictional costs and low posted-prices. 

 Figure 4 and table 3 show the buyer’s optimal offer in the first period in Cases 1, 2, and 3. With an 

increase in B, initially, P0 increases and then would be constant. At first, 𝑃0 is very low (𝑃0 = 0.2 ). It is 

due to when 𝐵 = 0.4 and the buyer has no frictional costs to place a bid (𝑐0 = 0), she prefers to use Case 

3, and bids for a single item in the first period and then purchases from the posted-price channel. With an 

increase in B, the buyer’s bidding strategy changes and the bid significantly increases (0.6 ≤ 𝑃0 ≤ 1.08). 

In this situation, the buyer uses case 2, and bids for the bundle in the first period; purchases from the posted-

price channel if the bid is rejected.  

 

 

Fig 4. Effect of posted-price on the buyer’s bid in the first period 
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 Figure 4 indicates when 𝐵 ≤ 0.85 as B increases, the amount of bids increases. However, when 𝐵 >
0.85, the bid first decreases and then would be constant. It is due to when 𝐵 ≥ 0.9, the buyer prefers to 

place a bid in both periods. Hence, the buyer submits a lower bid in the first period because she has the 

chance to submit a greater bid in the second period. Hence, posted-prices have a significant effect on the 

buyer’s offer and the design of offering rules. Furthermore, 𝐵 may dramatically influence the retailer’s 

utility.  

   Figure 5 and table 3 show that when B increases, initially the retailer’s utility increases and then decreases. 

It is due to when B is low, it is more profitable for the buyer to buy from posted-price. With an increase in 

B, the margin obtained through the posted-price channel increases. Moreover, when 𝑐0 = 0.05, for 𝐵 ≥
0.45 at least in one period, buyers are persuaded to purchase from the NYOP retailer; where they can buy 

items at a price lower than the posted-price. Hence, applying NYOP helps the retailer to attract more buyers 

and enhances his profit.  When 𝑐0 = 0.1, the purchasing policy change happens at 𝐵 = 0.6 and shows 

increase in the fractional cost of the first period can affect the buyer’s tendency to only use posted-prices. 

However, the frictional cost of the second period does not affect her tendency. When 𝐵 > 0.85, there is a 

reduction in the retailer’s profit. It is due to that buyers select NYOP in both periods. Hence, bids of some 

buyers fail to meet the threshold and they can not purchase the product at all.  

 

 

 
Fig 5. Effect of posted-price on the retailer’s utility 

 

 It is obvious from table 3 and figure 5 the retailer can obtain more profit when the value of posted-price 

is such that the buyer decides to submit a bid for a bundle in the first stage and then purchase from posted-

price. Thus, setting the appropriate posted-price can make the maximum profit for the retailer. Furthermore, 

the retailer can obtain more profit by manipulating the frictional costs. Moreover, the results show selling 

items only through NYOP, especially when the rivals can sell items through posted-price, is not a profitable 

strategy for the retailer. In this situation, the retailer only can make money when the rivals set posted-prices 

high enough. Our finding supports Cai et al. (2009) results and indicates it is better for NYOP retailers to 

have posted-price channels. Furthermore, this is in line with the Priceline policy which has used NYOP 

parallel to the posted-price channel. 

 The current study helps the operations managers to better analyze buyers’ behavior that directly affects 

supply chain profit. It should be noted that under the NYOP mechanism, the buyers determine the final 

price, so the retailer’s profit is completely related to the buyers’ behavior and their bidding strategy. 

Accurate analysis of buyers’ behavior helps retailers to determine optimal supply chain structure and 

identify factors that can affect the buyer’s frictional cost such that the retailer profit is maximized. The 

results indicate that if the retailer only applies the NYOP channel, he would lose some of his customers 

especially when there are some outside options for the customers to buy the product.  

5- Conclusion and future research 
   This paper studied NYOP, an interactive pricing setting, to obtain the buyer’s bidding strategy which is 

the main concern in the NYOP mechanism and retailer’s profit. To do this, the theoretical and managerial 
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implications of employing the NYOP channel along with posted-price channels were investigated where 

joint bidding is allowable. A two-stage model was developed, in which buyers select whether they want to 

participate in NYOP in the first stage. Moreover, they specify whether they want to bid for a bundle or a 

single item. The buyers’ decisions in the second stage are dependent on the outcome of the first stage. 

Moreover, the effect of buyers learning when rebid was considered. Four different scenarios that buyers 

may use to purchase items were developed. The results indicated that for high posted-prices, buyers submit 

a bid greater than one for the bundle in both periods. However, as posted-prices decreases, buyers prefer to 

buy from this channel at least in one period. Moreover, for most posted-prices, variation in frictional costs 

of the second period does not affect the buyer’s bidding strategy. However, high frictional costs of the first 

period cause buyers to bid at NYOP at least in one period. Hence, rational buyers manage the trade-off 

between posted-price and frictional costs to choose the bidding strategy, and the retailer can make more 

profit by setting the appropriate posted-price. Furthermore, the analysis showed selling items only in 

NYOP, especially when the rivals can sell items through posted-price, is not profitable for the retailer. In 

sum, the results showed the design of the market has a considerable effect on the buyers’ behavior and the 

retailer’s utility. There are several avenues for future research. The retailer can use a dynamic threshold 

with other distributions. This paper considered a retailer, but the competition between retailers can be 

present. Studying different types of products, such as complementary products, and considering risk-averse 

buyers are other extensions.  
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Appendix A 
Proof of proposition 3.1. According to equation (2), the buyer’s expected utility in the second period is: 

1

1

0 0

2

0,1 1 1
max ( )( ( ))

P a b b

bN j
P

P P a b

u WTP P Mdy Mdy Ndy c





       

(A1) 

In the above equation 𝑎 = 0, 𝑏 = 1, and 𝑊𝑇𝑃𝑗 = 2 is substituted. As noted in Section 3, in Case 1.a, the 

acceptable range for both 𝑃0 and 𝑃1 is [0, 1]. Within this range, equation (A1) is continuous and 

differentiable in P1. Taking the second-order derivative of 𝑢𝑏𝑁0,1
 with respect to P1 for the given value of 

P0 yields: 
2 2 2

0,1 1 1 0
(6 4) ( 2)

bN
u P P P      (A2) 

If 
1

2 3P  , the equation (A2) is negative. So, 𝑢𝑏𝑁0,1
 is concave on this interval. The F.O.C yields the 

following two real roots:
0 ,1 0 ,1

1 2 2 2

0 0
(2 3 4) 3  , (2 3 4) 3

bN bN

r P r P      . Note that 0 ≤ 𝑃0 ≤ 1, so 𝑟𝑏𝑁0,1
2 is 

not positive and is not an acceptable root. Though 𝑟𝑏𝑁0,1
1 is smaller than 2, which is the upper bound of P1, 

is greater than 1. Hence, it is not in the acceptable interval of case 1.a. The sign of the first-order derivative 

and the value of its possible roots yields 𝑢𝑏𝑁0,1
 is non-decreasing when 0 ≤ 𝑃0 ≤ 1 and 0 ≤ 𝑃1 ≤ 1. Hence, 

when 1 > 𝑃1 > 2 3⁄ , the maximum value of 𝑢𝑏𝑁0,1
 is 𝑃1 = 1. If 𝑃1 < 2 3⁄ , 𝑢𝑏𝑁0,1

 is convex and non-

decreasing. So, the maximum solution over this region is 𝑃1 = 2 3⁄ . In sum, because 𝑢𝑏𝑁0,1
 is continuous 

on the interval [0,1], the maximum value of 𝑢𝑏𝑁0,1
 is 𝑃1 = 1. Figure A1 demonstrating 𝑢𝑏𝑁0,1

 for a given 

value of P0. 

 
Fig A1. The relation between 𝑢𝑏𝑁0,1

 and P1  

 

Substituting the maximum solution obtained in period two in equation (2) gives: 
0 0

0

2 2

0,0 0 0 0 0 1

2 2

max ( ) (1 )(( 1 2) )

P P

bN j
P

a a

u WTP P Mdy c Mdy P P c          
(A3) 

Equation (A3) is continuous and differentiable in P0. Taking the second-order derivative of 0,0bNu  gives: 

2 2

0,0 0 0 1
3 1

bN
u P P c       (A4) 

If
10

( 1) 3P c  , (A4) would be negative and (A3) is concave in P0. Using F.O.C, two following real roots 

are obtained:
1 2

0,0 0,0 1
0 , 2( 1) 3

bN bN
r r c   . Where 𝑟𝑏𝑁0,0

2 can be on the interval  1
( 1) 3,1c  . So, 𝑟𝑏𝑁0,0

2 is 

the maximum solution. Note that c1 is nonnegative and 𝑟𝑏𝑁0,0
2  is always greater than 

1
( 1) 3c  . Besides, the 

first-order derivative shows that 𝑢𝑏𝑁0,0
 it is non-decreasing over  

1
0, (2 2 3)c  . Hence, if 𝑟𝑏𝑁0,0

2  is greater 

than 1, the maximum value of 𝑢𝑏𝑁0,0
 is 𝑃0 = 1. If 

0 1
30 ( 1)P c   , 𝑢𝑏𝑁0,0

 is convex and non-decreasing. 

Hence, the maximum value of 𝑢𝑏𝑁0,0
 over this region is 

0 1
1 3P c  . But, as noted earlier, 𝑢𝑏𝑁0,0

 is 

continuous and non-decreasing over the interval  1
0, (2 2) 3c  . So, it is concluded that the solution
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 0 1
min 1, (2 2) 3P c   maximizes 𝑢𝑏𝑁0,0

 on the interval [0,1]. For better intuition, consider figure A2 

which shows 𝑢𝑏𝑁0,0
. (a) Shows the situation that 

1
(2 2) 3 1c    and the optimal solution is

0 1
(2 2) 3P c    

(b) shows the situation in which 
1

(2 2) 3 1c    and the optimal solution is 𝑃0 = 1 . 

 

 
Fig A2. The relation between 𝑢𝑏𝑁0,0

 and P0 

 

Appendix B 
Proof of proposition 3.2. According to equation (3), the buyer’s expected utility function in the second 

period is: 

1

1

0 0

2

1,1 1 1
max ( )(( ) ( ))

Pa b a b b

bN j
P

P a b P a b

u WTP P Mdy Ndy Mdy Ndy c

 

 

         

(B1) 

In the above equation 𝑎 = 0, 𝑏 = 1, and 𝑊𝑇𝑃𝑗 = 2 is substituted. If 0 ≤ 𝑃0 ≤ 1 and 1 ≤ 𝑃1 ≤ 2, 𝑢𝑏𝑁1,1
 

would be continuous and differentiable in P1. Taking the second-order derivative of 𝑢𝑏𝑁0,1
 with respect to 

P1 for the given value of P0 gives: 
2 2 2

1,1 1 1 0
6(2 ) ( 2)

bN
u P P P      (B2) 

Since 0 ≤ 𝑃0 ≤ 1 and 1 ≤ 𝑃1 ≤ 2, equation (B2) is negative. So, 𝑢𝑏𝑁1,1
 is convex over this region. Using 

F.O.C gives: 
1 2 2 2

1,1 0 1,1 0
2 3 6 3 , 2 3 6 3

bN bN
r P r P        . According to 0 ≤ 𝑃0 ≤ 1 , 𝑟𝑏𝑁1,1

1  is 

greater than 2. So, 𝑟𝑏𝑁1,1
1  is not in the acceptable range. In particular, it is greater than the buyer’s 

willingness-to-pay for the bundle, and the buyer never bid 𝑟𝑏1,1
1 . Moreover, 1 < 𝑟𝑏𝑁1,1

2 < 2 is an acceptable 

root and maximizes 𝑢𝑏𝑁1,1
 over the noted region of Case 1.b (i.e., 0 ≤ 𝑃0 ≤ 1 and 1 ≤ 𝑃1 ≤ 2). Figure B1 

depicts 𝑢𝑏𝑁1,1
, for a given value of 𝑃0 and 𝑐1. 

 
 Fig B1. The relation between 𝑢𝑏𝑁1,1

 and P1  

 

Substituting  𝑃1 = 𝑟𝑏𝑁1,1
2  in equation (3) gives: 

0 0

0

2

1,0 0 0 0 1

2 2

max ( ) (1 )((2 3 6 9) )

P P

bN j
P

a a

u WTP P Mdy c Mdy P c          
(B3) 
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Here, the second-order derivative is complicated, so the maximum value of (B3) is obtained by analyzing 

the behavior of the function. The sign of the first-order derivative of 𝑢𝑏𝑁1,0
 is considered. 

 
1 2 2 3 2

1,0 1,0 1 1 1 1,0 1 1 1
0 , 18( 2) 2 12 48 14 31  , 18( 2) 2 12 48 14 31

bN bN bN
r r c c c r c c c               

If
1

2 186 6c     , 𝑟𝑏𝑁1,0
1 = 0 is the only real root of (B3). 𝑢𝑏𝑁1,0

 is continuous and 0 is not a double 

root. Sign analysis gives 𝑢𝑏𝑁0,1
 is non-increasing before 𝑃0 = 0 and non-decreasing after 𝑃0 = 0. Hence, 

when 0 ≤ 𝑃0 ≤ 1 and
1

2 186 6c     , the optimal point is 𝑃0 =  1. Figure B2 demonstrates 𝑢𝑏𝑁1,0
  

where the optimal solution is 𝑃0 = 1. 

 
Fig B2. The relation between 𝑢𝑏𝑁1,0

 and P0 

 

   If 
1

0 2 186 6c    , the maximum number of real roots of (B3) is three. Analyzing the sign of the 

first-order derivative of 𝑢𝑏𝑁1,0
 gives that 𝑢𝑏𝑁1,0

 is non-increasing before 0, non-decreasing on the interval 

[0, 𝑟𝑏𝑁1,0
3 ], non-increasing on the interval [𝑟𝑏𝑁1,0

3 , 𝑟𝑏𝑁1,0
2 ], and non-decreasing after 𝑟𝑏𝑁1,0

2 . As noted earlier, 

in Case 1.b, 0 ≤ 𝑃0 ≤ 1 and 𝑟𝑏𝑁1,0
2  is always greater than 1. Hence, 𝑟𝑏𝑁1,0

2  is out of the acceptable domain. 

However, 𝑟𝑏𝑁1,0
3  can be on the interval [0,1]. As noted above, equation (B3) is continuous, non-decreasing 

on [0, 𝑟𝑏𝑁1,0
3 ], and non-increasing on [𝑟𝑏𝑁1,0

3 , 𝑟𝑏𝑁1,0
2 ]. Hence, the maximum solution is at 𝑚𝑖𝑛( 𝑟𝑏𝑁1,0

3 , 1). 

For better understanding, consider figure B3 (a) that shows (B3) in which 𝑟𝑏𝑁1,0
3 > 1  and the optimal 

solution is 𝑃0 = 1. Moreover, figure B3 (b) illustrates 𝑢𝑏𝑁1,0
 where 𝑟𝑏𝑁1,0

3  is on the interval [0,1], and the 

optimal solution is 𝑃0 = 𝑟𝑏𝑁1,0
3 . 

 

 
Fig B3. The relation between 1,0bNu  and P0 

 

 

 

Appendix C 
Proof of proposition 3.3. Both 𝑃0 and 𝑃1 are greater than 1 and the buyer’s expected utility function in the 

second period is: 
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1

1

0 0

2

2,1 1 1
max ( )( )

P b

bN j
P

P P

u WTP P Ndy Ndy c     

(C1) 

In the above equation 𝑎 = 0, 𝑏 = 1, and 𝑊𝑇𝑃𝑗 = 2 is substituted. When 1 ≤ 𝑃0 ≤ 2, equation (C1) is 

continuous and differentiable in 𝑃1. Taking the second-order derivative of 𝑢𝑏𝑁2,1
with respect to 𝑃1 for the 

given value of 𝑃0, gives: 
2 2 2

2,1 1 1 0
6( 2) ( 2)

bN
u P P P      (C2) 

   Because 1 ≤ 𝑃1 ≤ 2, equation (C2) is negative and 𝑢𝑏𝑁2,1
 is concave. Using F.O.C yields: 

1 2

2,1 0 2,1 0
2 ( 2) 3 , 2 ( 2) 3

bN bN
r P r P      . As 1 ≤ 𝑃0 ≤  2 , so  𝑟𝑏𝑁2,1

2 ≥  2. Paying attention to the 

buyer’s willingness-to-pay for a bundle and the range of 𝑃1, the buyer never bid 𝑟𝑏𝑁2,1
2 . When 1 ≤ 𝑃0 ≤  2, 

𝑟𝑏𝑁2,1
1  is on the interval [1, 2]. Thus, 𝑟𝑏𝑁2,1

1  is the maximum solution of 𝑢𝑏𝑁2,1
  when both 𝑃0 and 𝑃1 are 

more than 1. Figure C1 depicts 𝑢𝑏𝑁2,1
 and its optimal solution i.e. 

1 0
2 3( 2) 3P P   . 

 

 
Fig C1. The relation between 𝑢𝑏𝑁2,1

 and P1  

 

Substituting 𝑃1 = 𝑟𝑏𝑁2,1
1  in equation (4) yields: 

0

0

0

2

2,0 0 0 0 1

2

max ( )( ) ((2 3( 2) 9) )

Pa b b

bN j
P

a a b P

u WTP P Mdy Ndy c Ndy P c





          

(C3) 

    𝑢𝑏𝑁2,0
 is continuous and differentiable in 𝑃0. The second-order derivative of 𝑢𝑏𝑁2,0

 with respect to 𝑃0 is 

taken to find the optimal value of the buyer’s bid in the first period. 
2 2

2,0 0 0 1
(3 2 3)( 2)

bN
u P P c       (C4) 

Since 𝑃0 ≤ 1, (C4) is negative and 𝑢𝑏𝑁2,0
 is concave. Using F.O.C yields: 

2 2 2 2

1 2

2,0 2,0

2 3 9 93 36 3 92 3 414 2 3 9 93 36 3 92 3 414
2 2

23 23
, 

bN bN

c c c c c c c c
r r

         
    

The buyer never bids 𝑟𝑏𝑁2,0
1  because it is greater than her willingness-to-pay, i.e. 𝑟𝑏𝑁2,0

1 > 2. Taking

2 2
93 36 3E c c  , so we can reformulate 𝑟𝑏𝑁2,0

2  as, 
2

2,0
2 ( 92 3 414) 23

bN
r E E     . Since 

𝑟𝑏𝑁2,0
2 < 2, the optimal solution is at max(1, 𝑟𝑏𝑁2,0

2 ). Figures C2 (a) and (b) depict equation (C3) where 

𝑟𝑏𝑁2,0
2 > 1 and 𝑟𝑏𝑁2,0

2 ≤ 1 respectively. 
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Fig C2. The relation between 𝑢𝑏𝑁2,0

 and P0 

 

Appendix D 

Proof of proposition 3.4. Taking the second-order derivative of equation (10) with respect to 0P  yields: 

2 2

0 0 0
3 2

bNp
u P P B      (D1) 

 If 𝑃0 > 2𝐵 3⁄ , (D1) is negative and 𝑢𝑏𝑁𝑝0
 is concave. But if 𝑃0 < 2𝐵 3⁄ , (D1) is positive and 𝑢𝑏𝑁𝑝0

 is 

convex. Using F.O.C gives: 
1 2

0 0
0 , 4 3

bNp bNp
r r B  . Hence, if 𝑃0 > 2𝐵 3⁄ , the solution is 𝑟𝑏𝑁𝑝0

2 =

4𝐵 3⁄  because of 4𝐵 3⁄ > 2𝐵 3⁄  . If 0 < 𝑃0 < 2𝐵 3⁄ , 𝑢𝑏𝑁𝑝0
 is convex and the solution is 𝑃0 = 2𝐵 3⁄ . In 

sum, because 𝑢𝑏𝑁𝑝0
 is continuous in 𝑃0 on the interval [0,1] and the sign analysis of the first-order 

derivative shows 𝑢𝑏𝑁𝑝0
  is non-decreasing on the interval [0, 4𝐵 3⁄ ], the maximum solution is 𝑃0 =

𝑚𝑖𝑛( 1, 4𝐵 3⁄ ). For better understanding, consider figure D1, which (a) shows 𝑢𝑏𝑁𝑃0
 when the optimal 

offer is 1, and (b) shows 𝑢𝑏𝑁𝑝0
 when the optimal offer is  4𝐵 3⁄ . 

 

 

 

 
Fig D1. The relation between 𝑢𝑏𝑁𝑃0

 and P0 

 

 

 

 

Appendix E 
Proof of proposition 3.5. Taking the second-order derivative of equation (11) with respect to P0 yields: 

2 2

0 01
4 3 2

bNp
P P Bu       (E1) 

If 𝑃0 < 2 (2 + 𝐵) 3⁄ , (E1) is negative and 𝑢𝑏𝑁𝑝1
 is concave over this region. Using F.O.C we have: 

1 2 2 2

1 1
(2 4 2 ( 1) 1.5) 3 , (2 4 2 ( 1) 1.5) 3

bNp bNp
r B B r B B          . The buyer never bid 𝑟𝑏𝑁𝑝1

1  

because 𝑟𝑏𝑁𝑝1
1 > 2  and 𝑟𝑏𝑁𝑝1

1  is greater than the buyer’s willingness-to-pay. As noted in Section 3, in Case 
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2.b), we have 𝑃0 >  1. Moreover,
2

1
(4 2 ) 3 2

bNp
r B    and 𝑢𝑏𝑁𝑝1

is concave on this interval. Hence, the 

maximum value of 𝑢𝑏𝑁𝑝1
 on [0, (4 2 ) 3]B  is at max(1, 𝑟𝑏𝑁𝑝1

2 ).The first-order derivative shows 𝑢𝑏𝑁𝑝1
 is 

non-increasing over the interval [𝑟𝑏𝑁𝑝1
2 , 𝑟𝑏𝑁𝑝1

1 ]. Hence, If
0

2 (4 2 ) 3P B   , 𝑢𝑏𝑁𝑝1
 is non-increasing and 

convex. So, the maximum solution is (4 2 ) 3B  over the interval  2( ,4 2 ) 3B . In sum, since 𝑢𝑏𝑁𝑝1
  is 

continuous and non-increasing over 
2

1
[ (4 2 ) 3, ]

bNp
r B , the maximum solution of 𝑢𝑏𝑁𝑝1

 over [1,2]  is at 

max(1, 𝑟𝑏𝑁𝑝1
2 ). Figure E1(a) depicts 𝑢𝑏𝑁𝑝1

when the optimal offer is 𝑃0 = 𝑟𝑏𝑁𝑝1
2 , and (b) shows 𝑢𝑏𝑁𝑃1

 when 

the optimal offer is 𝑃0 = 1. 

 

 
Fig E1. The relation between 𝑢𝑏𝑁𝑃1

 and P0 

 

 

Appendix F 
Proof of proposition 3.6. Taking the second-order derivative of equation (15) with respect to 𝑃0, yields: 

2 2

2 0
2

bp
u P     (F1) 

𝑢𝑏𝑁𝑝2
 is concave in 𝑃0 and has a unique optimal point. Using F.O.C, the optimal solution is: 𝑟𝑏𝑝2 = 𝐵 2⁄ . 


