

Designing and explaining the decision-making model of shareholders with a comparative approach to classical finance and behavioral finance in the capital market

Leyla Pir Hayati¹, Mehrzad Minouei^{1*}, Mirfeiz Fallah Shams¹

¹Department of Industrial Management, Central Tehran Branch, Islamic Azad University, Tehran, Iran

Leyla.h_6678@yahoo.com, omm1344@yahoo.com, fallahshams@gmail.com

Abstract

The title of the present study is designing and explaining the decision-making model of shareholders with a comparative approach to classical finance and behavioral finance in the capital market. The traditional finance viewpoint assumes that people make rational decisions to maximize wealth at a certain level of risk or minimize risk at a certain level of wealth. Such an approach, which states "how people should behave," is called norm. In this study, in the first stage, based on the literature review and using the previous related studies, a complete list of fifty-seven factors affecting the decision-making model of shareholders was provided to the members of the experts' panel in the form of a questionnaire for the sake of weighting. The DANP technique was then used. The results show that political factors, economic factors, market psychological factors, cognitive factors, emotional factors, and finally financial factors have the highest effect at the company level.

Keywords: decision-making of shareholders, comparative approach, classical finance, behavioral finance

1-Introduction

Nowadays, given that companies and institutions working in the stock market are required to reveal their financial information clearly, investors could access this information easily. Thus, this information allows investors to finance in the market more accurately through careful analysis of trends governing the market that makes the supply and demand of information by companies and investors very significant (Faten Moussa et al., 2017: 18). Now this question arises that based on the available information, what is the decision-making model of shareholders in the capital market and whether this component can affect the quality of financial reporting of companies listed on the stock exchange? This is an important question because financial reporting is fundamentally important in the decisions of shareholders and non-shareholder stakeholders of companies. However, the traditional view of corporate governance emphasizes that managers need to act solely on behalf of shareholders, and that usually supporting the interests of other constituencies can also be counterproductive (Ni, 2020). Therefore, it can be stated that the most important challenge facing finance is the evolution towards an integrated theory of financial market actions. This challenge has been repeatedly raised by traditional financial theorists (Nawrocki and Viole, 2014: 10).

*Corresponding author

ISSN: 1735-8272, Copyright c 2022 JISE. All rights reserved

In finance, on the other hand, the assumption of market efficiency is at the heart of any financial modeling, strategies, and policy design in financial markets. Since its development in the 1960s, the concept of efficient markets has been the subject of intense theoretical and empirical debate for more than a century (Tuyon and Ahmad, 2016: 1). The results of research (Garham, Harvey, and Rajgopal, 2005) on corporate financial reporting show that among all the information that companies disclose, corporate earnings and especially earnings per share is the most important indicator related to that report. Typically, companies that are stable in reporting their expenses and income usually carry out more analysis on their stocks and have so-called floating market stocks. On the other hand, the over-emphasis of the capital market on profits and related information has made this figure one of the most important factors in stock price changes and by creating an unusual return, it has made the growth of the company dependent on itself, this unusual return will also be associated with a corresponding risk (Rogers, 2009). In fact, return in the investment process is the driving force that creates motivation and is considered a reward for investors (Dastgir et al., 2015).

According to signaling theory, companies compete for access to limited sources of capital, and any company that is well-known in financial reporting and discloses more accurate information about its activities will be abler to attract capital because it will gain the trust of investors. Reliable and timely reports enable people to accurately evaluate the future prospects of the company, thereby reducing investment risk and expected rate of return and, of course, reducing the cost of capital (Etemadi et al., 2012). Therefore, it can be stated that in stock exchanges, choosing and deciding on the optimal investment options has become a big problem for investors. Hence, the answer to the question of what is the decision model of shareholders in the capital market can be very important for capital market companies (Scott, 2012). On the other hand, the dominant role of the efficient market hypothesis as a theoretical investment framework ended with the development of behavioral finance theory. Since then, the two approaches of classical finance and behavioral finance have been intertwined. Rationality in investing and efficient market ideas clearly contradicts the psychology of an investor and the rules of biased behavior. However, inefficient access to investment information and long-term market anomalies provide evidence of behavioral finance priorities. Behavioral finance approach is very important both at the level of individuals and at the level of companies, and usually most of the research on corporate behavior is related to capital structure, budgeting or financial problems (Jurevičienė et al., 2014). Now, according to the above, we seek to design and explain the decision-making model of shareholders with a comparative approach to classical finance and behavioral finance in the capital market.

Behavioral finance approach the subtle facets and interactions in the human brain, faced with the uncertainty of making economic decisions. The most common human traits (fear, anger, greed, selflessness) place considerable emphasis on our decisions about money. Intellect (grasping a situation), reason (long-term consequences of the action taken) and emotion (considering a course of action) are all interrelated; they are the springs behind human decision. Human behavior is generally reactive, not proactive; therefore, it is difficult to make predictions on the basis of narrow rules. Behavioral finances can relatively easily explain why an individual has made a decision, but have difficulty in quantifying what effects that decision will have on the individual (Oprean, Tanasescu, 2014, 1710). On the other hand, the term "corporate finance" describes the interaction between company managers and investors and its effect on company value, that is, corporate financial theory tries to explain financial contracts and investment behavior resulting from the interaction between managers and investors (according to this theory, managers should make unbiased predictions of future events and use them in decisions that are in their best interest). According to modern corporate finance information, investors and investors act rationally when making financial decisions. If rational behavior is assumed to be correct, managers can expect capital markets to be efficient, which means that stocks and securities are priced correctly at all times (stock prices accurately reflect general information about their underlying value). According to this theory, managers' behavior in decision-making will be based on the principle of self-interest. Given that the main role of the capital market is the redistribution of property, when price contributes to the fair redistribution of resources, Fama (1970) noted: When prices reveal complete information, the market is efficient. Recent literature research has shown that a rational assumption of the behavior of corporate executives and investors cannot be done in

reality. Empirical studies have shown that investors taking financial decisions pay attention to peripheral information or "noise" (Black, 1986). In addition, it was observed that deviations from rational behavior are not random but systematic and depend on the approach to risk assessment and uncertainty of future problems of the impact of decision-making. In this regard, the behavioral finance approach investigates the subtle facets and interactions in the human brain and how they make decisions (Jurevičienė et al., 2020: 433). However, classical economic theory believes that rational investors are predictable, unbiased, and market is efficient. Modern portfolio theory states that risk-averse investors build their portfolio by optimizing expected returns on an acceptable and known basis of market risk.

In the following, in section 2, the research background is examined. Section 3 describes the research method. In section 4, the results are numbered and analyzed, and finally in section 5, conclusions are made.

2-Literature review

Ahmed et al. (2021), using a sample of 351 companies, confirmed that the criterion of corporate investment efficiency is low in the stages of introduction and decline and it is high in the stages of growth and maturity, and in general, the process of corporate investment efficiency in stages of the company's life cycle is inverted U-shaped.

Nguyen et al. (2020) in China from 2007 to 2016 confirmed that all three risks increase significantly in the emergence, growth and decline stages because their competitive advantages, access to resources and capabilities are limited and risk is less in the maturity stage. On the other hand, cash flow fluctuations have had a different effect on various types of risk.

Researchers and behavioral finance experts have provided different classifications of behavioral biases, the following are excerpts from these classifications:

Shahrabadi and Yousefi (2007) have provided the following classification for behavioral biases:

- A) Self-deception or overconfidence: it means excessive trust in knowledge and abilities;
- **B**) **Heuristic methods:** a series of rules of thumb or mental shortcuts that will facilitate the decision-making process. Obviously, innovative methods will not always lead to the right decision-making;
- C) Social interactions: People tend to conform to others in their decisions and judgments.

Another classification of behavioral biases is done by prospect theory. This theory encompasses four important parts of the behavioral dimension of investors that have been completed by scientists such as Thaler, Schiller, and Johnson during the 1980s: a) Losses b) Mental accounting c) Self-control d) Remorse. Kahneman and Riepe have divided behavioral biases into three classed as described in table 1:

Table 1. Kahneman and Riepe's triple divisions of behavioral biases

Tuble 1. Hamiltonian and Prope 8 argue arvisions of Senavioral States							
A) Judgmental biases	B) Preferential biases (preference or priority)	C) Biases resulting from the decision results					
1. Error of overconfidence 2. Error of optimism and pessimism 3. Error of prediction 5. Error of overreaction to random events	1. Error of nonlinear probability weighting 2. Error of ambiguity in the process of value changes 3. Error of using the purchase price as a reference point 4. Error of tendency to a short-term perspective instead of a long-term one 5. Error of attractiveness in gambling 6. Error of tendency to repeat risk and gambling 7. Error of closed framework-orientation	Error regret aversion Error of loss aversion					

Based on their own studies and research, Jafari and Dolati (2009) have classified behavioral biases into four groups as described in table 2:

Table 2. Jafari and Dolati's classifications of behavioral biases

A) Heuristic behaviors	B) Formatting	C) Abnormal phenomena (economic behavior)	D) Abnormal phenomena (price and stock returns)
 Expectations theory Loss aversion Status quo bias Gambler's fallacy Self-serving bias Money illusion 	 Cognitive formatting Mental accounting Fixation 	 Misplacement effect Endowment effect Retaliation Time consumption Preferences with the error of limitation in time Instant investment Passion and fear 	 Equity premium puzzle Labor wage hypothesis Price stickiness Limits to arbitrage Dividend puzzle Calendar effect Fat tails
		8. Herd instinct (collectivist behavior) 9. Sunk cost fallacy	

In his book, Behavioral Biases and Wealth Management, Michael Pompian (2010) divides behavioral bias into two general classes as described in table 3:

Table 3. Pompian's classifications of behavioral biases

Table 3. Pompian's classifica	itions of benavioral blases
A) Cognitive	B) Emotional
1. Error of overconfidence	1. Self-controlling error
2. Error of availability error	2. Error of optimism and
3. Error of conservatism	pessimism
4. Error of mental accounting	3. Error of regret aversion
5. Error of hindsight	4. Error of loss aversion
6. Error of cognitive inconsistency	5. Error of forgiveness
7. Error of confirmation	6. Status quo error
8. Self-attribution error	
9. Error of ambiguity aversion	
10. Error of recency	
11. Error of shape or frame-	
orientation	
12. Error of representativeness	
13. Error of relying and	
compromising	
14. Error of control delusion	

3-Methodology

The present research is a type of developmental and applied research in terms of purpose and also descriptive and causal in terms of nature and method. In this study, according to a survey of organizational experts, the sample size in the present study can be selected according to the number of organizational elites and a number of companies operating in the stock market and OTC. In general, due to the high volume of the statistical population, convenience random sampling is used. The sample size using Cochran's formula is 35 people. In fact, the sample in this section was selected from the senior members of the Tehran Stock Exchange. In explaining this technique, it should be noted that since in most decisions, the elements interact with each other and there are relationships and interdependencies between decision options and decision-making criteria, and among the objectives of most research is to prioritize and identify the complicated

interactions between them, network analysis method ANP is a good method. It should be noted, however, that in this technique, it seems unreasonable to use the averaging method to obtain a weighted supermatrix, because using this method means that each cluster of criteria has the same degree of effectiveness, however, according to the results obtained from the DMATEL technique, there are different degrees of effectiveness between the criteria and, consequently, between the clusters consisting of the criteria. Therefore, the network analysis method (ENP) based on the DMATEL technique, which is called DANP, was used in order to solve this problem. In this research, fuzzy ANP technique is used to rank the components. In the classical ANP method introduced by Saaty (1996), the expert is asked to carry out pairwise comparison on characteristics of the same level in a network structure using exact numbers and ratios. The ratios provided by the expert formed the matrix of pairwise comparisons, by calculating the matrix of its eigenvalues, the weight of each of the characteristics of the same level was obtained. Many researchers believe that this type of decision is inaccurate and unreliable due to a kind of uncertainty in the expert when carrying out the pairwise comparison and allocating the ratio to it (Leung and Cao, 2000). The fuzzy numbers used in this study to form the pairwise comparison matrices proposed by Lin (2009) are listed in the table 4 (Haghighat Monfared and Rezaei, 2011).

Table 4. Fuzzy numbers

Lingual variable	Fuzzy number	Corresponding fuzzy number scale
Same	ĩ	(1, 1, 1)
Intermediate	$\tilde{2}$	(1, 2, 3)
Slightly more important	ã	(2, 3, 4)
Intermediate	$\tilde{4}$	(3, 4, 5)
More important	<u> </u>	(4, 5, 6)
Intermediate	 6	(5, 6, 7)
Much more important	$\tilde{7}$	(6, 7, 8)
Intermediate	ã	(7, 8, 9)
Strictly more important	9	(8, 9, 9)

Character (1) is placed on the symbols to represent fuzzy sets, and in fact, the most important feature of the fuzzy set is its ability to represent vague and uncertain data. The characteristic of this set is the membership function in which each member is assigned a membership rank between zero and one (Zhou et al., 1999). It should also be noted that triangular fuzzy numbers are used as a membership function, as shown in the figure. The reason for using triangular fuzzy numbers is its ease of calculation and use, which helps the decision maker to make decisions more easily (Kaufman and Gupta, 1998). A fuzzy number is a triangular fuzzy number if its membership function is as follows and is shown as (l,m,u).

$$\mu(X/\tilde{M}) = \begin{cases} \frac{x-l}{m-l} & 1 \le x \le m \\ \frac{u-x}{u-m} & m \le x \le u \\ 0 & \text{Otherwise} \end{cases}$$

(1)

The parameters l, m, and u represent the lowest possible value, the highest probable value and the highest possible value, respectively.

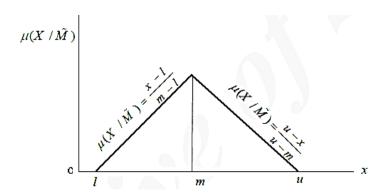


Fig 1. Display of a triangular fuzzy number

The model of this research is as follows:

Table 5. Research model and 37 variables

, I	Row	Factor	Material
	1	Economic factors	 Information on the average interest rate on bank deposits Desirability and sensitivity of the investor compared to other markets Investigating the return on investment in the stock market compared to other markets Tendency to liquidate stocks during the boom of other markets Information on the average inflation rate and its flow Effect of rising inflation on stock market indices Effect of inflation on other investment options Tehran Stock Exchange getting affected by international economic developments
	2	Political factors	9. Following political news and its effect on the stock market 10. Influenced by the comments of domestic political officials 11. Influenced by the comments of foreign political officials 12. Following international political news 13. Investigating the effect of international organizations on market flow 14. Effect of internal political developments on stock market indices 15. Effect of foreign policy developments on stock market indices 16. Effect of Iran's political relations with other countries on stock prices 17. Effect of social and cultural developments on stock market indices

	Table 5. Continued					
Row	Factor	Material				
3	Market psychological factors	state of the market 20. Programs announced by managers and officials of companies 21. Recommending friends and acquaintances 22. Published news (official and unofficial) from company assemblies 23. Unofficial news from company meetings and programs 24. Rumors and news published on Internet sites 25. Comments of brokers and investment consulting companies 26. The extent of using consulting services in buying and selling stocks				
4	Financial factors at the company level	27. Using financial ratios such as income price (P/E) and etc. 28. Use of and knowledge about the action of companies' balance sheets 29. Confidence in the published financial data of companies 30. Follow up on quarterly reports and data published by companies 31. Existence of a relationship between balance sheet items and corporate returns 32. Information on the risk and the stock market in question 33. Examining the previous share price flow at the time of decision making 34. Pay attention to the volume of share transactions 35. Following up the flow of institutional and major investment activities 36. Investigating the liquidity power of shares 37. Belief in following future price trends and returns from past performance				

DEMATEL is a comprehensive and appropriate method for building and analyzing causal models between factors in complex problems (Wei et al., 2007). In fact, the interaction effects of a large number of factors affecting a particular problem can be categorized and organized using the DEMATEL method (Uzunovic et al., 2000). On the other hand, in the fuzzy analytic hierarchy process method, we first convert these matrices to a single matrix. One of the best ways to combine the pairwise comparison tables of all respondents is to use a geometric mean. This is because pairwise comparisons generate proportional data, and the inverse of the pairwise comparison matrix further justifies the use of this method, as it preserves the geometric mean of the inverse property in the pairwise comparison matrix. If we assume that the component \tilde{a}_{ij}^k is related to the Kth respondent to compare criterion i with criterion j, the geometric mean for the corresponding components is calculated from the equation (2):

$$\widetilde{a}_{ij} = \left(\prod_{k=1}^{n} \widetilde{a}_{ij}^{k}\right)^{\frac{1}{n}} \quad \widetilde{a}_{ij} = \left(\widetilde{a}_{ij}^{\gamma} \otimes \widetilde{a}_{ij}^{\gamma} \otimes \otimes \widetilde{a}_{ij}^{\gamma}\right)^{\frac{\gamma}{\gamma_{A}}}$$
(2)

4-Results

After collecting the questionnaires, the questionnaires were analyzed using fuzzy DEMATEL, fuzzy ANP and fuzzy TOPSIS techniques. The results of fuzzy DEMATEL are as follows:

Table 6. Results of DEMATEL method

C1 2.334226415 -0.25577		Table 6. Results of DEMATEL method								
C2 2.46884406 -0.12702 C3 2.645311 C24 0.300827 C3 2.645310293 0.006117 C29 2.601197 C50 0.281042 C4 2.658731579 0.043434 C79 2.594758 C36 0.267889 C5 2.193477473 0.066674 C38 2.571268 C56 0.244803 C6 2.28484417 -0.12194 C30 2.549494 C28 0.240673 C7 1.830853512 -0.01822 C24 2.544748 C19 0.230632 C8 2.413922493 0.093266 C51 2.542083 C44 0.225369 C9 2.450844739 0.161446 C32 2.539783 C14 0.221208 C10 2.390928918 0.148778 C45 2.52979 C55 0.188717 C11 2.349006829 0.00166 C12 2.511173 C53 0.175073 C12 2.511172509 0.120557 C34 2.508717 C34 0.	C1	R+C	R-C	r		R+C	r		R-C	
G2 2.645310293 0.006117 C29 2.601197 C50 0.281042 G4 2.658731579 0.043434 C19 2.594758 C36 0.267889 C5 2.193477473 0.066674 C38 2.571268 C56 0.244803 C6 2.28484417 -0.12194 C30 2.549494 C28 0.240673 C7 1.830853512 -0.01822 C24 2.544748 C19 0.230632 C8 2.413922493 0.093266 C51 2.542083 C44 0.225369 C9 2.450844739 0.161446 C32 2.539783 C14 0.221208 C10 2.399928818 0.148778 C45 2.52979 C55 0.188717 C11 2.349006829 -0.0166 C12 2.511173 C53 0.175074 C12 2.511172509 0.120557 C34 2.508717 C34 0.173503 C13 2.188191947 0.221208 C22 2.48817 C9 0		2.334226415	-0.25577		C4	2.658732		C52	0.405865	
C4 2.685310293 0.006117 C29 2.594758 C36 0.267889 C5 2.193477473 0.066674 C38 2.571268 C56 0.244803 C6 2.28484417 -0.12194 C30 2.549494 C28 0.240673 C7 1.830853512 -0.01822 C24 2.544748 C19 0.230632 C8 2.413922493 0.093266 C51 2.542083 C44 0.225569 C9 2.450844739 0.161446 C32 2.539783 C14 0.221208 C10 2.390928918 0.148778 C45 2.52979 C55 0.188717 C11 2.349006829 -0.00166 C12 2.511173 C53 0.175074 C12 2.511172509 0.120557 C34 2.508717 C34 0.173503 C13 2.18396838 0.49863 C35 2.48817 C9 0.161446 C14 2.18191947 0.221008 C22 2.488012 C51 0.		2.46884406	-0.12702		C3	2.64531		C24	0.370827	
C5 2.193477473 0.066674 C38 2.5947458 C56 0.244803 C6 2.28484417 -0.12194 C30 2.549494 C28 0.240673 C7 1.830853512 -0.01822 C24 2.544748 C19 0.230632 C8 2.413922493 0.093266 C51 2.542083 C44 0.225369 C9 2.450844739 0.161446 C32 2.539783 C14 0.221208 C10 2.390928918 0.148778 C45 2.52979 C55 0.188717 C11 2.349006829 -0.00166 C12 2.511173 C53 0.175074 C12 2.51117250 0.120557 C34 2.508717 C34 0.173503 C13 2.039997575 -0.26085 C43 2.48817 C9 0.161446 C14 2.188191947 0.221208 C22 2.488012 C51 0.156837 C15 2.18836538 -0.49863 C35 2.483766 C33 <th< td=""><td></td><td>2.645310293</td><td>0.006117</td><td></td><td>C29</td><td>2.601197</td><td></td><td>C50</td><td>0.281042</td></th<>		2.645310293	0.006117		C29	2.601197		C50	0.281042	
C6 2.28484417 -0.12194 C30 2.549494 C28 0.240673 C7 1.830853512 -0.01822 C24 2.544748 C19 0.230632 C8 2.413922493 0.093266 C51 2.542083 C44 0.225369 C9 2.450844739 0.161446 C32 2.539783 C14 0.221208 C10 2.390928918 0.148778 C45 2.52979 C55 0.188717 C11 2.349006829 -0.00166 C12 2.511173 C53 0.175074 C12 2.511172509 0.120557 C34 2.508717 C34 0.173503 C13 2.39997575 -0.26085 C43 2.48817 C9 0.161446 C14 2.188191947 0.221208 C22 2.488012 C51 0.156837 C15 2.188368538 -0.49863 C35 2.483766 C23 0.155723 C16 2.401495566 0.038048 C2 2.468844 C10 <td< td=""><td>C4</td><td>2.658731579</td><td>0.043434</td><td></td><td>C19</td><td>2.594758</td><td></td><td>C36</td><td>0.267889</td></td<>	C4	2.658731579	0.043434		C19	2.594758		C36	0.267889	
C7 1.830853512 -0.01822 C24 2.544748 C19 0.230632 C8 2.413922493 0.093266 C51 2.542083 C44 0.221368 C9 2.450844739 0.161446 C32 2.539783 C14 0.221208 C10 2.390928918 0.148778 C45 2.52979 C55 0.188717 C11 2.349006829 -0.00166 C12 2.511173 C53 0.175074 C12 2.511172509 0.120557 C34 2.508717 C34 0.175074 C13 2.039997575 -0.26085 C43 2.48817 C9 0.161446 C14 2.188191947 0.221208 C22 2.488012 C51 0.156837 C15 2.18836838 0.49863 C35 2.483766 C23 0.155723 C16 2.401495566 0.038048 C2 2.468844 C10 0.148778 C17 2.401404064 0.134883 C49 2.453676 C45 <t< td=""><td>C5</td><td>2.193477473</td><td>0.066674</td><td></td><td>C38</td><td>2.571268</td><td></td><td>C56</td><td>0.244803</td></t<>	C5	2.193477473	0.066674		C38	2.571268		C56	0.244803	
C8 2.413922493 0.093266 CSJ 2.544788 C13 0.233693 C9 2.450844739 0.161446 CSJ 2.539783 CI4 0.223669 C10 2.390928918 0.148778 C45 2.52979 C55 0.188717 C11 2.349006829 -0.00166 C12 2.511173 C53 0.175074 C12 2.511172509 0.120557 C34 2.508717 C34 0.173503 C13 2.039997575 -0.26085 C43 2.48817 C9 0.161446 C14 2.188191947 0.221208 C22 2.488012 C51 0.156837 C15 2.188368538 -0.49863 C35 2.483766 C23 0.155723 C16 2.40149566 0.038048 C2 2.468844 C10 0.148778 C17 2.401404064 0.134883 C49 2.453676 C45 0.139024 C18 2.09105019 -0.32843 C10 2.450845 C17 <	C6	2.28484417	-0.12194		C30	2.549494		C28	0.240673	
C9 2.450844739 0.093266 C.72 2.542083 C.14 0.221208 C10 2.390928918 0.148778 C.45 2.52979 C.55 0.188717 C11 2.349006829 -0.00166 C12 2.511173 C53 0.175074 C12 2.511172509 0.120557 C34 2.508717 C34 0.173503 C13 2.039997575 -0.26085 C43 2.48817 C9 0.161446 C14 2.188191947 0.221208 C22 2.488012 C51 0.156837 C15 2.188368538 -0.49863 C35 2.433766 C23 0.155723 C16 2.401495566 0.038048 C2 2.453676 C45 0.139024 C18 2.09105019 -0.32843 C10 2.450845 C17 0.134883 C19 2.594757989 0.230632 C23 2.447745 C12 0.120557 C20 2.324110588 -0.04844 C46 2.421222 C22	C7	1.830853512	-0.01822		C24	2.544748		C19	0.230632	
C10 2.450844739 0.161446 C22 2.539783 CLS 0.221208 C11 2.390928918 0.148778 C45 2.52979 C55 0.188717 C11 2.349006829 -0.00166 C12 2.511173 C53 0.175074 C12 2.511172509 0.120557 C34 2.508717 C34 0.175073 C13 2.039997575 -0.26085 C43 2.48817 C9 0.161446 C14 2.188191947 0.221208 C22 2.488012 C51 0.156837 C15 2.188368538 -0.49863 C35 2.488766 C23 0.155723 C16 2.401495566 0.038048 C2 2.468844 C10 0.148778 C17 2.401404064 0.134883 C49 2.453676 C45 0.139024 C18 2.09105019 -0.32843 C10 2.450845 C17 0.134883 C19 2.594757989 0.230632 C23 2.447745 C12	C8	2.413922493	0.093266		C51	2.542083		C44	0.225369	
C11 2.349006829 -0.00166 C12 2.511173 C53 0.175074 C12 2.511172509 0.120557 C34 2.508717 C34 0.173503 C13 2.039997575 -0.26085 C43 2.48817 C9 0.161446 C14 2.188191947 0.221208 C22 2.488012 C51 0.156837 C15 2.188368538 -0.49863 C35 2.483766 C23 0.155723 C16 2.401495566 0.038048 C2 2.468844 C10 0.148778 C17 2.401404064 0.134883 C49 2.453676 C45 0.139024 C18 2.09105019 -0.32843 C10 2.450845 C17 0.134883 C19 2.594757989 0.230632 C23 2.447745 C12 0.120557 C20 2.324110588 -0.04844 C46 2.421222 C22 0.097391 C21 2.204627064 -0.23586 C8 2.413922 C38	C9	2.450844739	0.161446		C32	2.539783		C14	0.221208	
C12 2.511172509 0.100166 C12 2.51117 C34 0.173503 C13 2.03997575 -0.26085 C43 2.48817 C9 0.161446 C14 2.18819947 0.221208 C22 2.488012 C51 0.156837 C15 2.188368538 -0.49863 C35 2.483766 C23 0.155723 C16 2.401495566 0.038048 C2 2.468844 C10 0.148778 C17 2.401404064 0.134883 C49 2.453676 C45 0.139024 C18 2.09105019 -0.32843 C10 2.450845 C17 0.134883 C19 2.594757989 0.230632 C23 2.447745 C12 0.120557 C20 2.324110588 -0.04844 C46 2.421222 C22 0.097391 C21 2.204627064 -0.23586 C8 2.413922 C38 0.097224 C22 2.488011652 0.097391 C16 2.401496 C8 <t< td=""><td>C10</td><td>2.390928918</td><td>0.148778</td><td></td><td>C45</td><td>2.52979</td><td></td><td>C55</td><td>0.188717</td></t<>	C10	2.390928918	0.148778		C45	2.52979		C55	0.188717	
C13 2.039997575 -0.26085 C43 2.48817 C9 0.161446 C14 2.188191947 0.221208 C22 2.488012 C51 0.156837 C15 2.18836838 -0.49863 C35 2.483766 C23 0.155723 C16 2.401404064 0.134883 C49 2.453676 C45 0.139024 C18 2.09105019 -0.32843 C10 2.450845 C17 0.134883 C19 2.594757989 0.230632 C23 2.447745 C12 0.120557 C20 2.324110588 -0.04844 C46 2.421222 C22 0.097391 C21 2.204627064 -0.23586 C8 2.413922 C38 0.097224 C22 2.488011652 0.097391 C16 2.401496 C8 0.093266 C23 2.447745333 0.155723 C17 2.401404 C46 0.09487 C24 2.544747825 0.370827 C56 2.39475 C5 <t< td=""><td>C11</td><td>2.349006829</td><td>-0.00166</td><td></td><td>C12</td><td>2.511173</td><td></td><td>C53</td><td>0.175074</td></t<>	C11	2.349006829	-0.00166		C12	2.511173		C53	0.175074	
C14 2.188191947 0.221208 C22 2.488012 C51 0.156837 C15 2.188368538 -0.49863 C35 2.483766 C23 0.155723 C16 2.4014095566 0.038048 C2 2.468844 C10 0.148778 C17 2.401404064 0.134883 C49 2.453676 C45 0.139024 C18 2.09105019 -0.32843 C10 2.450845 C17 0.134883 C19 2.594757989 0.230632 C23 2.447745 C12 0.120557 C20 2.324110588 -0.04844 C46 2.421222 C22 0.097391 C21 2.204627064 -0.23586 C8 2.413922 C38 0.097224 C22 2.488011652 0.097391 C16 2.401496 C8 0.093266 C23 2.447745333 0.155723 C17 2.401404 C46 0.09487 C24 2.544747825 0.370827 C56 2.39475 C5	C12	2.511172509	0.120557		C34	2.508717		C34	0.173503	
C15 2.188361947 0.221208 C22 2.488012 C31 0.156837 C15 2.188368538 -0.49863 C35 2.4884766 C23 0.155723 C16 2.401495566 0.038048 C2 2.468844 C10 0.148778 C17 2.401404064 0.134883 C49 2.453676 C45 0.139024 C18 2.09105019 -0.32843 C10 2.450845 C17 0.134883 C19 2.594757989 0.230632 C23 2.447745 C12 0.120557 C20 2.324110588 -0.04844 C46 2.421222 C22 0.097391 C21 2.204627064 -0.23586 C8 2.413922 C38 0.097224 C22 2.488011652 0.097391 C16 2.401496 C8 0.093266 C33 2.447745333 0.155723 C17 2.401404 C46 0.09487 C24 2.54477825 0.370827 C56 2.39475 C5		2.039997575	-0.26085		C43	2.48817		C9	0.161446	
C16 2.401495566 0.038048 C2 2.468844 C10 0.148778 C17 2.401404064 0.134883 C49 2.453676 C45 0.139024 C18 2.09105019 -0.32843 C10 2.450845 C17 0.134883 C19 2.594757989 0.230632 C23 2.447745 C12 0.120557 C20 2.324110588 -0.04844 C46 2.421222 C22 0.097391 C21 2.204627064 -0.23586 C8 2.413922 C38 0.097224 C22 2.488011652 0.097391 C16 2.401496 C8 0.093266 C23 2.447745333 0.155723 C17 2.401404 C46 0.090487 C24 2.544774825 0.370827 C56 2.39475 C5 0.066674 C25 2.236503241 -0.11083 C37 2.390293 C47 0.050877 C26 2.28586351 0.042651 C9 2.390929 C47 <		2.188191947	0.221208		C22	2.488012		C51	0.156837	
C17 2.401404064 0.134883 C49 2.453676 C45 0.139024 C18 2.09105019 -0.32843 C10 2.450845 C17 0.134883 C19 2.594757989 0.230632 C23 2.447745 C12 0.120557 C20 2.324110588 -0.04844 C46 2.421222 C22 0.097391 C21 2.204627064 -0.23586 C8 2.413922 C38 0.097224 C22 2.488011652 0.097391 C16 2.401496 C8 0.093266 C23 2.447745333 0.155723 C17 2.401404 C46 0.090487 C24 2.544747825 0.370827 C56 2.39475 C5 0.066674 C25 2.236503241 -0.11083 C37 2.392931 C29 0.055677 C26 2.28586351 0.042651 C9 2.390929 C47 0.050877 C27 2.232338187 -0.15881 C47 2.354525 C32		2.188368538	-0.49863			2.483766		C23	0.155723	
C18 2.401404064 0.134883 C49 2.453676 C43 0.139024 C18 2.09105019 -0.32843 C10 2.450845 C17 0.134883 C19 2.594757989 0.230632 C23 2.447745 C12 0.120557 C20 2.324110588 -0.04844 C46 2.421222 C22 0.097391 C21 2.204627064 -0.23586 C8 2.413922 C38 0.097224 C22 2.488011652 0.097391 C16 2.401496 C8 0.093266 C23 2.447745333 0.155723 C17 2.401404 C46 0.090487 C24 2.544747825 0.370827 C56 2.39475 C5 0.066674 C25 2.236503241 -0.11083 C37 2.392931 C29 0.055677 C26 2.28586351 0.042651 C9 2.390929 C47 0.050877 C27 2.232338187 -0.15881 C47 2.345625 C32		2.401495566	0.038048			2.468844			0.148778	
C19 2.09105019 -0.32843 C10 2.450845 C17 0.134883 C19 2.594757989 0.230632 C23 2.447745 C12 0.120557 C20 2.324110588 -0.04844 C46 2.421222 C22 0.097391 C21 2.204627064 -0.23586 C8 2.413922 C38 0.097224 C22 2.488011652 0.097391 C16 2.401496 C8 0.093266 C23 2.447745333 0.155723 C17 2.401404 C46 0.090487 C24 2.544747825 0.370827 C56 2.39475 C5 0.066674 C25 2.236503241 -0.11083 C37 2.392931 C29 0.055677 C26 2.28586351 0.042651 C9 2.390929 C47 0.050877 C27 2.232338187 -0.15881 C47 2.354525 C32 0.043509 C28 2.314831096 0.240673 C11 2.349007 C4 <		2.401404064	0.134883			2.453676		C45	0.139024	
C20 2.394757989 0.230632 C23 2.447745 C12 0.120557 C20 2.324110588 -0.04844 C46 2.421222 C22 0.097391 C21 2.204627064 -0.23586 C8 2.413922 C38 0.097224 C22 2.488011652 0.097391 C16 2.401496 C8 0.093266 C23 2.447745333 0.155723 C17 2.401404 C46 0.090487 C24 2.544747825 0.370827 C56 2.39475 C5 0.066674 C25 2.236503241 -0.11083 C37 2.392931 C29 0.055677 C26 2.28586351 0.042651 C9 2.390929 C47 0.050877 C27 2.232338187 -0.15881 C47 2.354525 C32 0.043509 C28 2.314831096 0.240673 C11 2.349007 C4 0.043434 C29 2.601196515 0.055677 C40 2.334226 C16		2.09105019	-0.32843		C10	2.450845		C17	0.134883	
C21 2.204627064 -0.23586 C8 2.413922 C38 0.097224 C22 2.488011652 0.097391 C16 2.401496 C8 0.093266 C23 2.447745333 0.155723 C17 2.401404 C46 0.090487 C24 2.544747825 0.370827 C56 2.39475 C5 0.066674 C25 2.236503241 -0.11083 C37 2.392931 C29 0.055677 C26 2.28586351 0.042651 C9 2.390929 C47 0.050877 C27 2.232338187 -0.15881 C47 2.354525 C32 0.043509 C28 2.314831096 0.240673 C11 2.349007 C4 0.043434 C29 2.601196515 0.055677 C40 2.34368 C26 0.042651 C30 2.549493991 0.03607 C1 2.334226 C16 0.038048 C31 1.942401444 -0.3384 C20 2.324111 C30		2.594757989	0.230632		C23	2.447745		C12	0.120557	
C22 2.488011652 0.097391 C16 2.401496 C8 0.093266 C23 2.447745333 0.155723 C17 2.401404 C46 0.090487 C24 2.544747825 0.370827 C56 2.39475 C5 0.066674 C25 2.236503241 -0.11083 C37 2.392931 C29 0.055677 C26 2.28586351 0.042651 C9 2.390929 C47 0.050877 C27 2.232338187 -0.15881 C47 2.354525 C32 0.043509 C28 2.314831096 0.240673 C11 2.349007 C4 0.043434 C29 2.601196515 0.055677 C40 2.34368 C26 0.042651 C30 2.549493991 0.03607 C1 2.334226 C16 0.038048 C31 1.942401444 -0.3384 C20 2.324111 C30 0.03607 C33 2.04478834 -0.17817 C28 2.314831 C11 -		2.324110588	-0.04844		C46	2.421222		C22	0.097391	
C23 2.488011652 0.097391 C16 2.401496 C8 0.093266 C23 2.447745333 0.155723 C17 2.401404 C46 0.090487 C24 2.544747825 0.370827 C56 2.39475 C5 0.066674 C25 2.236503241 -0.11083 C37 2.392931 C29 0.055677 C26 2.28586351 0.042651 C9 2.390929 C47 0.050877 C27 2.232338187 -0.15881 C47 2.354525 C32 0.043509 C28 2.314831096 0.240673 C11 2.349007 C4 0.043434 C29 2.601196515 0.055677 C40 2.34368 C26 0.042651 C30 2.549493991 0.03607 C1 2.334226 C16 0.038048 C31 1.942401444 -0.3384 C20 2.324111 C30 0.03607 C32 2.539782998 0.043509 C55 2.323403 C3 0.006117 C33 2.04478834 -0.17817 C28 2.314831		2.204627064	-0.23586		C8	2.413922		C38	0.097224	
C24 2.54474825 0.370827 C56 2.39475 C5 0.066674 C25 2.236503241 -0.11083 C37 2.392931 C29 0.055677 C26 2.28586351 0.042651 C9 2.390929 C47 0.050877 C27 2.232338187 -0.15881 C47 2.354525 C32 0.043509 C28 2.314831096 0.240673 C11 2.349007 C4 0.043434 C29 2.601196515 0.055677 C40 2.34368 C26 0.042651 C30 2.549493991 0.03607 C1 2.334226 C16 0.038048 C31 1.942401444 -0.3384 C20 2.324111 C30 0.03607 C32 2.539782998 0.043509 C55 2.323403 C3 0.006117 C33 2.04478834 -0.17817 C28 2.314831 C11 -0.00166 C34 2.508717165 0.173503 C39 2.310364 C43 -0		2.488011652	0.097391		C16	2.401496		С8	0.093266	
C25 2.236503241 -0.11083 C37 2.392931 C29 0.055677 C26 2.28586351 0.042651 C9 2.390929 C47 0.050877 C27 2.232338187 -0.15881 C47 2.354525 C32 0.043509 C28 2.314831096 0.240673 C11 2.349007 C4 0.043434 C29 2.601196515 0.055677 C40 2.34368 C26 0.042651 C30 2.549493991 0.03607 C1 2.334226 C16 0.038048 C31 1.942401444 -0.3384 C20 2.324111 C30 0.03607 C32 2.539782998 0.043509 C55 2.323403 C3 0.006117 C33 2.04478834 -0.17817 C28 2.314831 C11 -0.00166 C34 2.508717165 0.173503 C39 2.310364 C43 -0.00892	C23	2.447745333	0.155723		C17	2.401404		C46	0.090487	
C26 2.28586351 0.042651 C9 2.390929 C47 0.050877 C27 2.232338187 -0.15881 C47 2.354525 C32 0.043509 C28 2.314831096 0.240673 C11 2.349007 C4 0.043434 C29 2.601196515 0.055677 C40 2.34368 C26 0.042651 C30 2.549493991 0.03607 C1 2.334226 C16 0.038048 C31 1.942401444 -0.3384 C20 2.324111 C30 0.03607 C32 2.539782998 0.043509 C55 2.323403 C3 0.006117 C33 2.04478834 -0.17817 C28 2.314831 C11 -0.00166 C34 2.508717165 0.173503 C39 2.310364 C43 -0.00892	C24	2.544747825	0.370827		C56	2.39475		C5	0.066674	
C27 2.28586351 0.042651 C9 2.390929 C47 0.050877 C27 2.232338187 -0.15881 C47 2.354525 C32 0.043509 C28 2.314831096 0.240673 C11 2.349007 C4 0.043434 C29 2.601196515 0.055677 C40 2.34368 C26 0.042651 C30 2.549493991 0.03607 C1 2.334226 C16 0.038048 C31 1.942401444 -0.3384 C20 2.324111 C30 0.03607 C32 2.539782998 0.043509 C55 2.323403 C3 0.006117 C33 2.04478834 -0.17817 C28 2.314831 C11 -0.00166 C34 2.508717165 0.173503 C39 2.310364 C43 -0.00892	C25	2.236503241	-0.11083		C37	2.392931		C29	0.055677	
C28 2.314831096 0.240673 C11 2.349007 C4 0.043434 C29 2.601196515 0.055677 C40 2.34368 C26 0.042651 C30 2.549493991 0.03607 C1 2.334226 C16 0.038048 C31 1.942401444 -0.3384 C20 2.324111 C30 0.03607 C32 2.539782998 0.043509 C55 2.323403 C3 0.006117 C33 2.04478834 -0.17817 C28 2.314831 C11 -0.00166 C34 2.508717165 0.173503 C39 2.310364 C43 -0.00892	C26	2.28586351	0.042651		C9	2.390929		C47	0.050877	
C29 2.601196515 0.055677 C40 2.34368 C26 0.042651 C30 2.549493991 0.03607 C1 2.334226 C16 0.038048 C31 1.942401444 -0.3384 C20 2.324111 C30 0.03607 C32 2.539782998 0.043509 C55 2.323403 C3 0.006117 C33 2.04478834 -0.17817 C28 2.314831 C11 -0.00166 C34 2.508717165 0.173503 C39 2.310364 C43 -0.00892	C27	2.232338187	-0.15881		C47	2.354525		C32	0.043509	
C30 2.549493991 0.03607 C1 2.334226 C16 0.038048 C31 1.942401444 -0.3384 C20 2.324111 C30 0.03607 C32 2.539782998 0.043509 C55 2.323403 C3 0.006117 C33 2.04478834 -0.17817 C28 2.314831 C11 -0.00166 C34 2.508717165 0.173503 C39 2.310364 C43 -0.00892	C28	2.314831096	0.240673		C11	2.349007		C4	0.043434	
C31 1.942401444 -0.3384 C20 2.324111 C30 0.03607 C32 2.539782998 0.043509 C55 2.323403 C3 0.006117 C33 2.04478834 -0.17817 C28 2.314831 C11 -0.00166 C34 2.508717165 0.173503 C39 2.310364 C43 -0.00892	C29	2.601196515	0.055677		C40	2.34368		C26	0.042651	
C32 2.539782998 0.043509 C55 2.323403 C3 0.006117 C33 2.04478834 -0.17817 C28 2.314831 C11 -0.00166 C34 2.508717165 0.173503 C39 2.310364 C43 -0.00892	C30	2.549493991	0.03607		C1	2.334226		C16	0.038048	
C33 2.04478834 -0.17817 C34 2.508717165 0.173503 C35 2.314831 C39 2.310364 C35 C37 C39 2.310364 C43 -0.00892	C31	1.942401444	-0.3384		C20	2.324111		C30	0.03607	
C33 2.04478834 -0.17817 C28 2.314831 C11 -0.00166 C34 2.508717165 0.173503 C39 2.310364 C43 -0.00892	C32	2.539782998	0.043509		C55	2.323403		C3	0.006117	
C34 2.508717165 0.173503 C39 2.310364 C43 -0.00892	C33				C28			C11		
C25	C34	2.508717165			C39			C43		
	C35				C53			С7		

Table 6. Continued								
	R+C	R-C			R+C			R-C
C36	2.250884919	0.267889		C26	2.285864		C40	-0.0183
C37	2.392930718	-0.08148		C6	2.284844		C49	-0.03252
C38	2.571267949	0.097224		C44	2.253598		C54	-0.04369
C39	2.310364285	-0.3022		C36	2.250885		C20	-0.04844
C40	2.343679931	-0.0183		C25	2.236503		C37	-0.08148
C41	2.176836112	-0.42286		C27	2.232338		C35	-0.0981
C42	2.105673877	-0.4388		C21	2.204627		C25	-0.11083
C43	2.488170448	-0.00892		C5	2.193477		C6	-0.12194
C44	2.253598471	0.225369		C15	2.188369		C2	-0.12702
C45	2.529789712	0.139024		C14	2.188192		C27	-0.15881
C46	2.421221611	0.090487		C41	2.176836		C33	-0.17817
C47	2.354525207	0.050877		C50	2.173367		C21	-0.23586
C48	2.159693233	-0.27753		C48	2.159693		C1	-0.25577
C49	2.453676217	-0.03252		C52	2.150313		C13	-0.26085
C50	2.173367103	0.281042		C54	2.146964		C48	-0.27753
C51	2.54208341	0.156837		C42	2.105674		C39	-0.3022
C52	2.150312893	0.405865		C18	2.09105		C18	-0.32843
C53	2.308647883	0.175074		C33	2.044788		C31	-0.3384
C54	2.146964389	-0.04369		C13	2.039998		C57	-0.39684
C55	2.323402537	0.188717		C31	1.942401		C41	-0.42286

According to the obtained results, it can be stated that the horizontal vector (R+C) is the value of effect and the effect of the desired factor in the system. In other words, the higher the R+C factor, the more it interacts with other system factors. The vertical vector (R-C) represents the final value of the effect of each factor on the set of other factors of the system.

C57

*C*7

1.919883

1.830854

C42

C15

-0.4388

-0.49863

C56

C57

2.39474988

1.919882996

0.244803

-0.39684

As mentioned before, the interactions of a large number of factors affecting a particular problem can be categorized and organized using the DEMATEL method (Uzunovic et al., 2000). In fact, this technique can not only be used as a tool to categorize the factors affecting a particular problem, but also can be a good criterion for measuring the internal communication between factors. According to the results obtained from the DEMATEL technique, there are different degrees of effectiveness between the criteria and, consequently, between the clusters consisting of the criteria. These relationships are as follows:

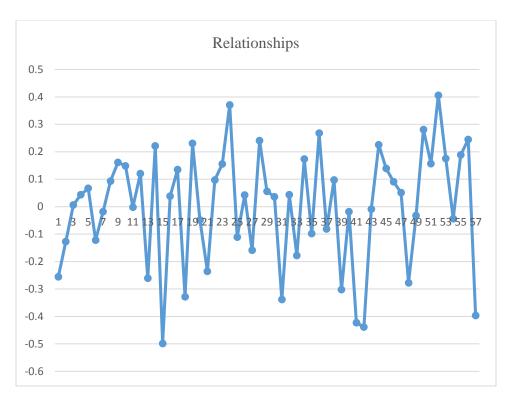


Fig 2. Effectiveness between the criteria

Following the studies, we use the fuzzy ANP technique. In explaining this technique, it should be noted that since in most decisions, the elements interact with each other and there are relationships and interdependencies between decision options and decision-making criteria, and among the objectives of most research is to prioritize and identify the complicated interactions between them, network analysis method ANP is a good method. The results of these studies are as follows:

Table 7. ANP Technique results

Row	Component	Criterion	Rank	Weight
1		Information on the average interest rate on bank deposits	7	0.103948
2		Desirability and sensitivity of the investor compared to other markets	1	0.154344
3		Investigating the return on investment in the stock market compared to other markets	3	0.144417
4	Economic	Tendency to liquidate stocks during the boom of other markets	6	0.108435
5		Information on the average inflation rate and its flow	8	0.058717
6		Effect of rising inflation on stock market indices	4	0.142203
7		Effect of inflation on other investment options	2	0.145514
8		Tehran Stock Exchange getting affected by international economic developments	5	0.141197

Table 7. Continued							
Row	Component	Criterion	Rank	Weight			
9	Political factors	Following political news and its effect on the stock market	1	0.201131			
10		Influenced by the comments of domestic political officials	5	0.109824			
11		Influenced by the comments of foreign political officials	2	0.146902			
12		Following international political news	4	0.11138			
13		Investigating the effect of international organizations on market flow	8	0.043291			
14		Effect of internal political developments on stock market indices	7	0.09404			
15		Effect of foreign policy developments on stock market indices	3	0.145896			
16		Effect of Iran's political relations with other countries on stock prices	6	0.109505			
17		Effect of social and cultural developments on stock market indices	9	0.037137			
18		News published in newspapers and	3	0.145912			
19		magazines Comments of stock exchange officials on the future state of the market	6	0.098424			
20		Programs announced by managers and officials of companies	1	0.184364			
21	-	Recommending friends and acquaintances	4	0.144958			
22	Market psychological	Published news (official and unofficial) from company assemblies	8	0.058019			
23	factors	Unofficial news from company meetings and programs	7	0.073093			
24		Rumors and news published on Internet sites	5	0.115335			
25		Comments of brokers and investment consulting companies	2	0.158858			
26		The extent of using consulting services in buying and selling stocks	9	0.021037			
27		Using financial ratios such as income price (P/E) and etc.	7	0.075102			
28		Use of and knowledge about the action of companies' balance sheets	1	0.159318			
29		Confidence in the published financial data of companies	2	0.142918			
30		Follow up on quarterly reports and data published by companies	8	0.063266			
31	Financial factors	Existence of a relationship between balance sheet items and corporate returns	9	0.062472			
32	Tactors	Information on the risk and the stock market in question	11	0.055418			
33		Examining the previous share price flow at the time of decision making	3	0.103642			
34		Pay attention to the volume of share transactions	10	0.059378			
35		Following up the flow of institutional and major investment activities	4	0.100511			
36		Investigating the liquidity power of shares	5	0.091023			

Table 7. Continued							
Row	Component	Criterion	Rank	Weight			
37		Belief in following future price trends and returns from past performance	6	0.086952			
38		Error of overconfidence	14	0.049846			
39		Error of availability error	10	0.060474			
40		Error of conservatism	6	0.067159			
41		Error of mental accounting	12	0.054479			
42		Error of hindsight	5	0.072103			
43	Cognitive factors	Error of cognitive inconsistency	13	0.05273			
44		Error of confirmation	1	0.107759			
45		Self-attribution error	3	0.097072			
46		Error of ambiguity aversion	2	0.100456			
47		Error of recency	8	0.066111			
48		Error of shape or frame-orientation	4	0.084948			
49		Error of representativeness	9	0.06267			
50		Error of relying and compromising	11	0.057544			
51		Error of control delusion	7	0.066649			
52		Self-controlling error	2	0.244118			
53		Error of optimism and pessimism	1	0.340012			
54	Emotional	Error of regret aversion	3	0.176048			
55	factors	Error of loss aversion	4	0.133469			
56		Error of forgiveness	5	0.067745			
57		Status quo error	6	0.036131			

Finally, the main components of the research were ranked, the results of which are as follows:

Table 8. Criteria ranking

Table 6. Citeria faliking							
Criterion	Rank	Defuzzificated weight	uw_j	mw_j	lw_j	\widetilde{W}_{j}	
Self-controlling error	2	0.244118	0.238195	0.243098	0.254123	\widetilde{W}_1	
Error of optimism and pessimism	1	0.340012	0.326563	0.34499	0.333549	\widetilde{W}_{2}	
Error of regret aversion	3	0.176048	0.178098	0.175175	0.177491	\widetilde{W}_3	
Error of loss aversion	4	0.133469	0.133795	0.133691	0.132255	$\widetilde{W}_{_4}$	
Error of forgiveness	5	0.067745	0.073687	0.067039	0.064624	$\widetilde{W}_{_{^{\prime}5}}$	
Status quo error	6	0.036131	0.034803	0.036006	0.037959	$\widetilde{W}_{_{'6}}$	
		Judgment consist	ency rate			0/0214	

And given that the calculated consistency index is much less than 0.1, it can be said that the pairwise comparisons of the group in the matrix of the table have good consistency and the model is completely significant.

5-Conclusion and suggestions

Findings of the present research suggest that political factors are of great importance for investors. In general, one of the characteristics of the capital market of any country is being affected by political issues, and sometimes these effects can be very complex and multifaceted, and maintain their impact for a long

time. Political risks cause investments to decline and people to make more decisions out of excitement and emotion rather than to thoroughly investigate the situation and consider different dimensions. Many studies show that political risks affect the stock markets of developed countries more than the stock markets of developing countries.

These factors especially have determinative importance in Iran because the speed of changing laws and regulations is very high in Iran. The behavior of shareholders in the Iranian capital market accepts a dual effect from political news that needs to be followed carefully. The first is the fluctuations of the dollar price in the free market and the second is the negative effect of systematic political risk on stock prices. Now, based on the issues raised and considering the investigated factors, paying attention to the following can be helpful: It is suggested that the government focus more on expert activities in the main body of the government. It is also suggested that the government improve the emotional state of the market by increasing the management of investment risk control in the capital market by attracting new capital and increasing the liquidity of securities, as well as creating stock exchanges for large market shares. In this regard, the government can also reduce government ownership by preventing the politicization of the stock market and, consequently, by reducing political tensions in society and preventing political comments, by socializing economic activities through transferring shares of state-owned companies in a gradual process. In this research, it was found that economic factors can affect the investment behavior of investors. For example, with the increase of the construction budget (realized), part of the budget funds will be spent on contracting companies contracted by the government and another part will be spent on purchasing materials and capital products for state-owned companies from private sector companies. The combination of the above two cases improves the financial situation of the contracted companies, and the shares of some of these companies are listed on the stock exchange and traded by the shareholders. On the other hand, if the increase in money volume is the result of the government budget deficit, it can have a negative effect on stock prices. As a result, the variable of money volume can have a positive or negative effect on changes in the price index. Therefore, economic factors can be considered a very important component in this field. According to the monetary theory of inflation, the continuous increase of liquidity at a rate greater than the product of the growth rate of real income and the elasticity of demand for money is a necessary and sufficient condition for continuous inflation. On the other hand, some believe that increasing liquidity can increase the demand for investments, including stocks, therefore, the relationship between liquidity and indicators should be positive (Karimzadeh et al., 2013). Hence, it is suggested that the rules and regulations governing the stock market be formulated and implemented in such a way that the results put the country's economy on the path of growth and development. Allocating appropriate credits can be very effective to support the industrial sector and encourage them to participate more effectively in the stock and OTC markets and to invite Iranian investors abroad to create economic prosperity, increase competitiveness and raise the level of liquidity. It is also suggested to stabilize the existing conditions and increase the attractiveness of the capital market and reduce investment risk by stabilizing macroeconomic indicators. Because these factors increase the percentage of liquidity absorption and luck of this market compared to competitors such as the housing market and foreign currencies. Another factor affecting the decision of shareholders is the psychological component of the market. In classical finance theory, investors are assumed to be rational. Also, according to the efficient market hypothesis, stock prices reflect all company information. On the other hand, the emotional decision of investors in the capital market causes stock prices to deviate from real (fundamental) prices. For example, when the index is sharply declining and negative, and every day puts the high numbers of negative and red in front of the eyes of market participants, it automatically issues the command to the minds of people that capital is disappearing and there is more possibility for falling prices, so traders, especially inexperienced people from one point start emotional trading and sell their stocks at high losses, which in turn leads to a more negative overall market and intensifies liquidity outflow. Such emotional behaviors can severely damage the market as a whole. Now, accordingly, some suggestions are made. The government and regulators in general can control emotional behaviors by reducing the risk of market fluctuations by developing corporate financial performance analysis and providing information in this regard. In fact, providing complete and transparent information to investors and shareholders will lead to correct and timely decisions in the capital market, and in addition,

taking training and counseling as a national duty by the development staff of the stock exchange organization can help control these behaviors.

5-1-Future suggestions

The title of the present research is designing and explaining the decision-making model of shareholders with a comparative approach to classical finance and behavioral finance in the capital market. In this research, using effective decision-making methods and techniques, the effective components were identified and the model was explained. For future studies, it is suggested to examine each of these components on the market using statistical and regression techniques by collecting the available data and the proposed model. Also, using the existing model, it is possible to investigate the predictability of the market in similar conditions by using meta-heuristic algorithms such as neural networks.

References

Ahmed B, Akbar M, Sabahat T, Ali S, Hussain A, Akbar A, Hongming X. (2021). Does Firm Life Cycle Impact Corporate Investment Efficiency? Sustainability. 13(1):197. https://doi.org/10.3390/su13010197.

Agarwal, Sh. Kumar, Sh. Goel, U. (2019) "Stock market response to information diffusion through internet sources: A literature review" International Journal of Information Management 45 (2019) 118–131

Ali Hosseinzadeh, Rana; Mohammadi, Mohammad Hadi (2017) "Analysis of Ethics and Investment Behavior" Economic Studies, Financial Management and Accounting, Spring 2017, Volume 3, Number 1, from 158 to 171.

Aney, M. Appelbaum, E. Banerji, S. (2019) "Firm boundaries and financing with opportunistic stakeholder behavior" Journal of Corporate Finance 56 (2019) 437–457

Babajani Mohammadi, Saeedeh; Mortazavi, Saeed; Maharati, Yaghob; Tehrani, Reza (2017) "Study of the mediating role of psychological bias in the relationship between the dimensions of national culture and irrational behaviors" Journal of Executive Management, Year 9, No. 17

Badri, Ahmad; Goodarzi, Neda (2014) "Behavioral Finance, Representative Bias and Fundamental Accounting Variables: Evidence from Tehran Stock Exchange" Quarterly Journal of Experimental Financial Accounting Studies Year 11 Issue 43, fall 2014, from 57 to 88.

Camara, O. (2017) "Industry herd behaviour in financing decision making" Journal of Economics and Business 94 (2017) 32–42

Cheng M., Liu J. & Zhang L., Tunneling through allies: Affiliated shareholders, insider trading, and monitoring failure, International Review of Economics and Finance (2020), doi: https://doi.org/10.1016/j.iref.2019.12.013.

Danis, A (2019) "Shareholder activism with strategic investors" Finance Research Letters

Darabi, Roya; Chenari Bouket, Hassan (2015) "Dimensions and Approaches of Behavioral Financial Theory" Institute of Humanities and Cultural Studies.

Ebadpour, Bahram; Ebrahimi Sarv-e Olya, Mohammad Hassan; Babajani, Jafar; Hanafizadeh (2019) "Study of the effect of cultural, social, and psychological factors on the behavior of real investors in the

stock market" Message of Organizational Culture Management Fall 2019, Volume 17 - Number 3 Scientific Research from 445 to 467.

Filbeck, G. Ricciardi, V. Evensky, H. Fan, S. Holzhauer, H. Spieler, A. (2017) "Behavioral finance: A panel discussion" Journal of Behavioral and Experimental Finance 15 (2017) 52–58

Ghayur Baghbani, Seyed Morteza; Behboodi, Omid (2017) "Factors Affecting the Behavior of Investors with Phenomenographic Approach" Quarterly Journal of Asset Management and Financing, Year 5, Issue 3, Issue (18), Fall 2017.

Graham, M., Peltom aki, J. & Sturlud ottir, H., Do Capital Controls Affect Stock Market Efficiency? Lessons from Iceland, International Review of Financial Analysis (2015), doi: 10.1016/j.irfa.2015.05.009.

Hilmola, O. (2020) "Role of inventory and assets in shareholder value creation" Expert Systems with Applications: X 5 (2020) 10 0 027.

Hosseini Chegini, Elham; Haghgoo, Behnaz; Rahmaninejad, Leila (2014) "Investigating the Behavioral Biases of Investors in the Tehran Stock Exchange Based on the Structural Equation Model" Financial Management Strategy, Year 2, Issue 7, Winter 2014, from 113 to 133.

Jamshidi, Nasser; Qalibaf Asl, Hassan; Fadaei Nejad, Mohammad Esmail (2019) "Study of Behavioral Biases and Performance of Real Investors in Tehran Stock Exchange" Financial Research, Summer 1398, Volume 21, Number 2, from 143 to 164.

Jurevičienė, D. Bikas, E. Keliuotytė-Staniulėnienė, G. Novickytė, L. Dubinskas, P. (2014) "Assessment of Corporate Behavioural Finance" Procedia - Social and Behavioral Sciences 140 (2014) 432 – 439.

Kapoor, S. Prpsad , J (2017) "Behavioural Finance: A Review" P rocedia Computer Science 122 (2017) 50–54

Khademi Gerashi, Mehdi; Ghazizadeh, Mostafa (2007) "Study of Factors Affecting Shareholder Decision Making in Tehran Stock Exchange Based on Structural Equation Model" Daneshvar Raftar Scientific-Research Bi-Quarterly / Shahed University / July 2007

Mohammadipour, Rahmatollah; Rahmani Norouzabad, Saman (2018) "Evaluation of behavioral factors affecting the decisions of investors in the Tehran Stock Exchange"

Nawrocki, D. Viole, F. (2014) "Behavioral finance in financial market theory, utility theory, portfolio theory and the necessary statistics: A review" Journal of Behavioral and Experimental Finance 2 (2014) 10–17

Nguyen, H.V. Phan and E. Lee, Shareholder litigation rights and capital structure decisions, Journal of Corporate Finance (2020), https://doi.org/ 10.1016/j.jcorpfin.2020.101601

Oprean, C. Tanasescu, C (2014) "Effects of Behavioural Finance on Emerging Capital Markets" Procedia Economics and Finance 15 (2014) 1710 – 1716

Paule-Vianez, J. Gómez-Martínez, R. Prado-Román, C. (2020) "A bibliometric analysis of behavioural finance with mappinganalysis tools" European Research on Management and Business Economics xxx (2020)

Rahimi, Hossein; Shakeri, Abbas (2018) "The effect of financial, political and psychological factors on shareholders' decision to buy shares in Tehran Stock Exchange" Economic Studies, Financial Management and Accounting, Summer 1397, Volume 4, Number 2

Ramiah, V. Xu, X. Moosa, I (2015) "Neoclassical finance, behavioral finance and noise traders: A review and assessment of the literature" International Review of Financial Analysis 41 (2015) 89–100

Saeeda Ardakani, Saeed; Bahalkeh, Ainaz; Mirzad, Negar; Tavassoli, Tahereh Sadat (2015) "Investigating the reaction of investors to sudden events in the Tehran Stock Exchange" Financial Research, Spring and Summer 2015, Volume 17, Number 1, From 103 to 122

Seifollahi, Razieh; Kordloui, Hamid Reza; Dashti, Nader (2015) "A Comparative Study of Behavioral Factors in Investing Financial Assets" Quarterly Journal of Investment Knowledge, Fourth Year, Issue 15, fall 2015

Shanmuganathan, Behavioural finance in an era of artificial intelligence: Longitudinal case study of roboadvisors in investment decisions. Journal of Behavioral and Experimental Finance (2020), doi: https://doi.org/10.1016/j.jbef.2020.100297.

Tuyon, J. Ahmad, Z. "Behavioural finance perspectives on Malaysian stock market efficiency" Borsa _Istanbul Review 16-1 (2016) 43e61

Tekc, e, B., Yilmaz, N., Bildik, R., What Factors Affect Behavioral Biases? Evidence From Turkish Individual Stock Investors, Research in International Business and Finance (2016), http://dx.doi.org/10.1016/j.ribaf.2015.11.017

Yurttadur, M. Ozcelik, H (2019) "Evaluation of the Financial Investment Preference of Individual vestor from Behavioral Finance" 3rd World Conference on Technology, Innovation, Procedia Computer Science 158 (2019) 761–765