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Abstract 
Increasing software as a service (SaaS) requires the provision of more 
updated models for services, so trying to develop a model customized for the 

customer is important. We used the linear Knapsack problem model 

proposed by Mike Hewitt and Emma Frejinger in 2020. Then historical data 

of Digikala was applied and shown that how the model works on it. 

Keywords: Optimization modeling, statistical learning, mixed integer linear 

programming, third-party logistics  

 

 

1-Introduction 
   Third-party logistics (3PL) companies have now increased their products' sales and the use of online 

sales sites and software. Classic optimization models help with organizational planning systems. So, 

we try to use historical data and business rules. Software as a Service (SaaS) works by using 

applications over the Internet as a service. This market is large and growing. It is estimated to grow 

the SAAS market by $272.49 billion in 2021. The user accesses the software using an application or 

browser through the Internet. Centrally hosting the application has benefits for both the customer and 

the provider. In this paper, we use historical data and training data from the 3PL company to review 

the linear Knapsack problem model proposed by Mike Hewitt and Emma Frejinger (Hewitt & 

Frejinger, 2020). This company has been selected as a third-party logistics company that sells 

products through software. The performance of third-party logistics is such that the owner of the 

products is assigned to 3PL companies to carry out transportation, customs, warehousing, order 

fulfillment, distribution, etc. Furthermore, a third-party logistics provider is a company that offers its 

customers logistics services for part or all of their supply chain management functions.  

   Section 2 reviews the relevant literature, whereas section 3 introduces the framework for a general 

mathematical program and discusses the General Optimization Problem (GOP) and business rules 

utilized to assess the effectiveness of the framework and explain its application. Section 4 describes 

how the data sets were generated to validate the framework. Then, section 5 reports the effectiveness 

of the framework. 

 

2-Literature review 
   Lombardi, Milano, & Bartolini propose a methodology to integrate constraints related to complex 

systems in an optimization model (Lombardi, Milano, & Bartolini, 2017).  
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   They assume an accurate simulator and use it to generate data for supervised representation 

learning. They delineate the general setting including the embedding of linear regression in mixed-

integer linear programs (MILP) in a model. Focus is on problems that can be effectively solved with 

MILP and rules that can be accurately expressed with linear constraints. Such as (Pawlak & Krawiec, 

2017), this paper focuses on the automated modeling of business rules for MILP. The problem setting 

is related to constraint programming (CP), parametric Markov decision processes, and inverse 

optimization. The aim of CP is to define constraints based on solution examples (Kolb s., 2016).  

   There are about five logistics parties that are working in the market spread in the physical 

distribution industry. The first stage is that production and transport were done by one producer, then 

some of these activities are divided into businesses that terms of insourcing and outsourcing, which is 

given to 3rd party logistics providers. At the beginning of third-party logistics in the 1980s, some 

companies have set up to provide services functions both transport and storage. These companies 

basically lifted a certain burden from manufacturing or producing companies related to supply chain 

management. Accordingly, it has correlated with a number of companies and a number of trucking 

carriers, which are using third-party logistics services (KIM, Studies on Total Logistics Management 

in Physical Distribution Process, 2019). Mike Hewitt and Emma Frejinger focused on optimization 

problems that are MILP. Two inputs are used: (1) MILP model to solve, which referred to as GOP, 

and, (2) historical data regarding past decisions implemented. Mathematical representations of 

business rules that are not present in GOP are learned by the framework, and the historical data 

indicates impacted actual decision making. The problem of learning mathematical representations of 

business rules from historical data is treated as a statistical learning problem and it expands GOP with 

new limitations, which is called the adaptive optimization problem (AOP). So, there is an algorithmic 

framework that combines optimization and statistical learning for automating the adaptation of 

classical optimization models to specific operational contexts. 
 

3-General framework 
   This section presents GOP that will be adapted and shows how to learn mathematical 

representations of business rules from historical data. This GOP is MILP widely used in operational 

planning. So, GOP is: 

 

maximize rt𝑥 

s. t. 

𝐴𝑡𝑥 ≤ 𝑏𝑡                                𝑥 ∈ 𝑋                                                                                                                (1) 

𝐺𝑡𝑥 + 𝐻𝑡𝑣 ≤ ℎ𝑡                  𝑣 ∈ 𝑉                                                                                                               (2) 

   Some of the business rules' models are not represented in GOP but still be observed by an actionable 

plan. Such as some business rules are often modeled with auxiliary variables such as binary variables 

for precedence constraints in scheduling. Parameters are for a time period 𝑡 = 1,…… , 𝑇  , and 

𝑦𝑡  and 𝑥𝑡 are plans executed in each of those time periods and an optimal solution to GOP, 

respectively. The methodology is to yield an optimization problem that focuses on learning linear 

representations.  

   The function  𝑦𝑖 = 𝑓(𝑥; 𝛼
𝑖, 𝛽𝑖)  is an affine function and regression equation is defined: 

𝑦𝑖 = 𝛽
𝑖 +∑𝛼𝑗

𝑖𝑥𝑗    + 𝜀
𝑖

𝑛

𝑗=1

              𝑖 = 1,… . , 𝑛                                                                                       (3) 

   Where 𝛽𝑖 ∈ ℝ are intercepts, 𝛼𝑗
𝑖 ∈ ℝ are parameters and 𝜀𝑖 are Gaussian noise and they are 

independent. Training yields the parameter estimates 𝛽̂ and 𝛼̂. 𝛽̂ and 𝛼̂ are used to create an AOP by 

adding to the GOP three sets of decision variables. The first, 𝑦𝑖 are the predictions of the executed 

plan given a solution to GOP. The second, 𝛿𝑖 ≥ 0 , 𝑖 =  1 , . . . , 𝑛 measures the difference between 

those plans with respect to element 𝑖. Finally, the third, ∆, measures the total difference between these 

plans.  
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𝛽̂𝑖 +∑𝛼̂𝑗
𝑖𝑥𝑗    + 𝜀

𝑖

𝑛

𝑗=1

 = 𝑦𝑖                                                                                                                             (4) 

δ𝑖  
≥ 𝑦𝑖   − 𝑥𝑖                                                                                                                                                        (5) 
δ𝑖  ≥ 𝑥𝑖 − 𝑦𝑖                                                                                                                                                     (6) 

∆=∑δ𝑖

𝑛

𝑖=1

                                                                                                                                                         (7) 

   As mentioned, a third-party logistics (3PL) company is selected and the company's goal is to 

maximize revenue and the provider tries to determine which customers' products to load into a single 

container. The 3PL has the ability to formulate and solve a different type of linear knapsack problem, 

KP (t): 

𝑍𝐾𝑃
𝑡 = 𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 ∑𝑟𝑖

𝑡𝑥𝑖  

𝑛

𝑖=1

 

𝑠. 𝑡. 

∑𝑎𝑖
𝑡𝑥𝑖   ≤ 𝑏

𝑡   

𝑛

𝑖=1

 

0 ≤ 𝑥𝑖 ≤ 1 

 

   We assume that the revenue is  𝑟𝑖
  , and size is 𝑎𝑖

  , associated with customer i's products, the 

capacity is b, and t refers to the day. These business rules may be satisfied in an executable plan. 

Table 1 provides representations of these rules. 

 
Table 1.  Business rules for linear Knapsack problem 

Rule Logical/Mathematical constraint Functional mapping 

1 𝑥1 ≥ 𝑥2 𝑓1: 𝑦̅𝑖 = {
max(𝑥̅1, 𝑥̅2)                                   𝑖 = 1
𝑥̅𝑖                                       𝑖 = 2,3, … . , 𝑛 

 

2 𝑎1
𝑡𝑥1 + 𝑎2

𝑡𝑥2 ≤ 0.4𝑏
2 𝑓2: 𝑦̅𝑖 =

{
 
 

 
 max(0,

0.4𝑏𝑡 − 𝑎2𝑦̅2
𝑎1

)        𝑖 = 1

min (1,
0.4𝑏𝑡

𝑎2
)                        𝑖 = 2

𝑥̅𝑖                                      𝑖 = 3, … , 𝑛

 

  

   AOP version of KP(t) is called A-KP (c, t). To formulate A-KP (c, t), we fit the following regression 

equation for each 𝑖 =  1 , . . . , 𝑛 : 

𝛽𝑖 +∑𝛼𝑗
𝑖

𝑛

𝑗=1

𝑥𝑗 + 𝜀
𝑖 = 𝑦𝑖 

 

 

A-KP (c, t): 

 

𝑍𝐾𝑃
𝑡 = 𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 ∑𝑟𝑖

𝑡𝑥𝑖 + 𝑐∆  

𝑛

𝑖=1

 

𝑠. 𝑡. 

∑𝑎𝑖
𝑡𝑥𝑖   ≤ 𝑏

𝑡   

𝑛

𝑖=1

 

0 ≤ 𝑥𝑖 ≤ 1 
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4-Data generation 
   We divide the data into two sets that they are training and test sets. We use a training set to learn the 

linear representation of a mapping and a test set is used to evaluate the effectiveness of learning 

mathematical objects. We use sales data for two days and two customers (two cities) as a training set. 

Table 2 presents a data set. 

 

 
Table 2. Data set for the linear knapsack problem 

  Day1 Day 2 

Customer 1 
Size 180 150 

Revenue (Rials) 23499300 75677500 

Customer 2 
Size 125 160 

Revenue (Rials) 138314800 90459930 

 

 

5-Results 
   This section validates the approach in the regular setting. Recall this setting consists of small 

instances of GOP and the application of the same single business rule each day. It is observed that for 

small values of c, the optimal solution to A-KP (c, t) nearly always satisfies the constraints 

 𝐺𝑡𝑥 + 𝐻𝑡𝑣 ≤ ℎ𝑡 . Finally, we see that with respect to satisfying the business rule, the linear mapping 

approach works well on the linear knapsack problem. 

 
Fig 1. Linear knapsack problem: percentage of days in test data set where business rule is satisfied 

 

   Finally, we understand that this system helps product shippers plan and execute transportation 

moves, usually by third-party carriers, in order to deliver their products. We assessed the performance 

of the framework on a class of optimization problems. Our experiment showed that this problem has 

satisfied. 
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