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Abstract 
In this paper, a novel robustness index is introduced to provide a measure of the 

robustness of a solution against variations in decision variables and parameters. 
Most of the proposed robustness measures in the literature consider only magnitude 

of variations in the objectives space and don’t take into account the direction, or in 

the other words, the type of variations. In this paper, two types of variation named 

dominating and Pareto variations are introduced and argued that the Pareto 
variations are more robust than the other one. An index is also proposed here to help 

measuring the proportion of dominating variations. We proved that this index is 

independent of magnitude of variations. A robustness index is developed based on 
these two measures. The robustness index is then used as an additional objective 

and constraint function so that the uncertain multi-objective optimization problem 

is transformed to a deterministic one. The resulting deterministic multi-objective 
optimization problem is solved by NSGA-III. Moreover, Mont Carlo simulation is 

used to evaluate solutions during the algorithm and compute the robustness index. 

Two test problems from the context of engineering design optimization are used to 

illustrate the applicability and efficiency of our proposed robustness index. 
Keywords: Multi-objective optimization, uncertainty, robustness measure, 

engineering design 

 

1-Introduction 
   Multi-objective optimization (or multi-criteria decision making) has a vast application in the real 
world decision making problems, such as problems arising in the domain of economy, social and 

behavioral sciences, biology, management and engineering (Bertsimas & Thiele, 2004; Chen et al., 

2012; Chi, Xu, & Zhang, 2020; Disser, Müller–Hannemann, & Schnee, 2008; Elyasi, Roudbari, & 
Hajipourzadeh, 2020; Fliege & Werner, 2014; Gilani & Sahebi, 2020; Hamarat, Kwakkel, Pruyt, & 

Loonen, 2014; Ju et al., 2019; Najafi, Eshghi, & Dullaert, 2013; Nikjoo & Javadian, 2019; Yu & Liu, 

2013; Zhou et al., 2018). Mathematical programming is a powerful tool in modeling and formulation 

of real-world decision-making problems. In the following, some contributions of the mathematical 
programming to the decision-making process are listed: 

 Giving an optimal solution to the decision maker, 

 Cooperating with the decision maker in an interactive process to determine the optimal solution, 

 Giving a limited set of excellent solutions to the decision maker, and 

 Giving an insight about the problem to the decision maker through classifying the solution 

space. 

Although Mathematical programming is capable of facilitating the decision making process in real 
world problems, but its application is naturally limited (Fliedner & Liesiö, 2016).  
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   Data uncertainties as a common property of real-world problems can considerably reduce the 
efficiency of Mathematical programming methods and limit their application area. To deal with this 

uncertainty, different approaches have been proposed by researchers. Among the existing approaches, 

robust optimization, as a conservative manner of dealing with uncertainty, has attracted more attention, 

especially from the practitioners. Robust optimization methods search for solutions that are less 
sensitive to uncertainties and variations of variables and parameters. These methods are simpler and 

more practical than other methods, such as stochastic programming (Abdelaziz, 2012; Gutjahr & 

Pichler, 2016). Hence, an extensive study has been done on single objective robust optimization (Ben-
Tal, Ghaoui, & Nemirovski, 2009; Bertsimas, Brown, & Caramanis, 2011; Goerigk & Schöbel, 2016). 

Unlike single objective optimization, application of robust optimization approaches to multi-objective 

context is limited to few publications. In fact, due to the complex nature of multi-objective concept, 
translation of single objective robustness concepts to the multi-objective context is not straightforward. 

Nonetheless, some works have been done to introduce robustness concept in multi-objective context. 

We classify these robust multi-objective optimization approaches into four categories: probabilistic 

dominance; mean value replacement; variation measure; and worst case analysis. In the first category, 
the concept of domination is extended to probabilistic context. Teich (2001) introduced concept of 

probabilistic dominance and used it as a probabilistic counterpart of Pareto dominance concept in the 

deterministic problems. In addition, Khosravi, Borst, and Teich (2018) applied a histogram-based 
approach to compare candidate solutions with arbitrarily distributed uncertain objectives. 

   The second category comprises methods that are based on the simple idea of Branke (1998) that 

replaces objective functions value with their mean value. Kalyanmoy Deb and Gupta (2006) used this 
idea in their work. They proposed two procedures to find robust Pareto frontier. These procedures are 

based on two definitions of multi-objective robust solutions called type I and type II. In the first 

procedure, values in the objective vector of a solution are replaced by the mean of objective function 

values in the neighborhood of the solution. In second procedure, a robustness constraint is added to the 
model. This constraint requires that the deviations of objective values from the nominal values (distance 

of mean point from nominal point) don’t exceed a predetermined value. They used evolutionary Multi-

objective genetic algorithm based on NSGA-II (developed by K. Deb, Pratap, Agarwal, and Meyarivan 
(2002)) to generate robust Pareto solutions. In this algorithm, random points are generated via 

simulation to compute the robustness of a solution during the algorithm. 

   In the third category methods, a measure of variation size for each solution is considered as robustness 

index for that solution. Degree of robustness concept proposed by Barrico and Antunes (2006) measures 
the percentage of a solution x neighboring points whose objective function values belong to a predefined 

neighborhood of f(x). Hence, the degree of robustness can be regarded as a measure of variation. 

Augusto, Bennis, and Caro (2012) used sensitivity analysis to derive robustness index. They used the 
global sensitivity Jacobian matrix to compute the sensitivity of objective functions to variation of 

variables. It should be mentioned that in order to use their approach some assumptions about the 

objective functions must be satisfied. In fact, the objective functions must belong to the C2 class. Works 
of Ferreira, Fonseca, Covas, and Gaspar-Cunha (2008); Saha, Ray, and Smith (2011); Zhou et al. (2018) 

Daryani, Omran, and Makui (2020) and Kusch and Gauger (2021) can be classified in this category. 

   The fourth category includes methods that only consider the worst cases. As robustness concept, 

intrinsically, is a conservative approach to deal with uncertainty, the worst-case methods for measuring 
robustness may be more compatible with its concept, but this is not always in accordance with the 

decision maker’s preferences. However, there are some reasons to use worst case approaches: they don’t 

need any information about the distribution of uncertain variables, there is a strong rationale 
(conservatism) behind them, and finally, definition of them is straightforward. Li, Azarm, and Aute 

(2005) considered two types of robustness called performance robustness (objective functions 

robustness) and feasibility robustness (constraint functions robustness). In performance robustness, 
diameter of sensitivity region (maximum distance from nominal point) is used as a worst-case 

robustness measure. In feasibility robustness, a solution is regarded as a robust solution if and only if 

the sensitivity region of that solution is completely inside the feasible space. To compute the robustness 

index of a solution, a single objective optimization problem is solved via a meta-heuristic algorithm and 
then, the computed robustness index is regarded as an additional objective function in the original multi-

objective optimization. Also, a similar approach is used in the Gunawan and Azarm (2005) to generate 

robust Pareto solutions. In recent years, researches on Multi-objective robustness have focused on worst 
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case approaches (Goberna, Jeyakumar, Li, & Vicente-Pérez, 2018; Ide & Schöbel, 2016). Initial works 
in this regard include the works of Avigad and Branke (2008); Soares, Parreiras, Jaulin, Vasconcelos, 

and Maia (2009) and Kuroiwa and Lee (2012). More recently, some researchers applied the worst case 

Pareto frontier to generate robust solutions (Bokrantz & Fredriksson, 2017; Ehrgott, Ide, & Schöbel, 

2014; Fakhar, Mahyarinia, & Zafarani, 2018; Goberna, Jeyakumar, Li, & Vicente-Pérez, 2015; 
Schmidt, Schöbel, & Thom, 2019).  We have summarized above-mentioned classification in the table 

(1). 

 
Table 1. classification of robust multi-objective optimization methods 

Probabilistic 

dominance 

Mean value 

replacement 

Variation measure Worst case analysis 

Teich 

(2001); 

Khosravi et 

al. (2018) 

Kalyanmoy 

Deb and 

Gupta (2006)  

Barrico and Antunes 

(2006); Augusto et 

al. (2012); Ferreira et 

al. (2008); Saha et al. 

(2011); Daryani et 

al. (2020); Kusch 

and Gauger (2021); 

Zhou et al. (2018) 

Li et al. (2005); Gunawan and Azarm (2005); 

Avigad and Branke (2008); Soares et al. (2009); 

Kuroiwa and Lee (2012); Ehrgott et al. (2014); 

Goberna et al. (2015); Bokrantz and Fredriksson 

(2017); Fakhar et al. (2018); Schmidt et al. (2019);. 

 

   Mavrotas, Pechak, Siskos, Doukas, and Psarras (2015) present a new interpretation of robustness 

concept. Previous works suppose that the uncertainty is about the decision variables and parameters, 

but they considered the uncertainty about decision maker’s preferences. To do that, they used an 

additive weighting approach to aggregate objective functions. they call a Pareto optimal solution as a 
robust solution if its performance is less sensitive to the perturbations within weights of the objective 

functions. They used Mont Carlo simulation to compute robustness of Pareto optimal solutions. A 

survey of simulation based methods of robust Multi-objective optimization is provided by Steponavice 
and Miettinen (2012). 

   Some researchers have applied the existing concepts and presented new algorithms for generating 

robust solutions (Kuhn, Raith, Schmidt, & Schöbel, 2016; Meneghini, Guimaraes, & Gaspar-Cunha, 
2016; Sun, Zhang, Fang, Li, & Li, 2018; Xie et al., 2018). Some scholars have also applied existing 

robustness concepts in various applications (Doolittle, Kerivin, & Wiecek, 2018; Habibi-

Kouchaksaraei, Paydar, & Asadi-Gangraj, 2018; Peng, Hou, Che, Xu, & Li, 2019; Sun et al., 2018; 

Xidonas, Mavrotas, Hassapis, & Zopounidis, 2017).    
   The existing methods in the third category measure only the magnitude of variations. In other words, 

these methods don’t consider the type of variations (direction of variations). To deal with this issue, we 

distinguish between two types of variations and discuss that one type is more robust than the other one. 
Since we use the mean of objective functions and the variation measure as objectives to be minimized, 

our proposed robust optimization approach lay in the second and third category. 

The reminder of this paper is as follows: in section 2, we give an illustration of problem. Also, some 
definitions and preliminaries are stated. In section 3, we present our proposed robustness index. In 

section 4, two well-studied test problems from engineering design optimization are solved by our 

proposed algorithm and results are discussed. finally, in section 5, we give some concluding remarks.  

 

2- Definitions and preliminaries 
   Consider a multi-objective optimization model as follows: 
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Where, if  
denotes the ith objective function, jg is the jth constraint function. ,c dx x and P are 

respectively the vector of continuous and discrete (combinatorial) decision variables and decision 

parameters. It is supposed that the decision variables and the parameters ( ,c dx x and P) are random 

variables. Where the probability distribution of a variable is not known (as interval uncertainty), 

uniform distribution is supposed. 
In this paper, the tolerance region and sensitivity region concept (introduced by Gunawan and Azarm 

(2005)) is used to represent the uncertainty. Let 
0 0 0

1 2( , )x x x  be an arbitrary point in the decision space 

(as shown in figure 1.a). If a variable has interval uncertainty, then, the tolerance region is in form of a 

rectangle. The mapping of tolerance region into the objectives space is called sensitivity region (as 

shown in figure 1.b). 

 

Fig 1.a. Tolerance region of a solution, b. Sensitivity region 

   The sensitivity region of a solution represents the response of the solution to the uncertainty. So, 

studying the features of the sensitivity region is the only way to measure robustness of a solution. Li et 
al. (2005) used the diameter of the sensitivity region as robustness index. Figure 2 represents two 

different sensitivity regions with the same diameter. According to this robustness index, two solutions 

are equivalent, but the question is now whether these two solutions are really equivalent? To answer to 

this question, more detailed analysis of the sensitivity regions is required. 
First of all, we must define the term robustness in mathematical terms: 

 

Definition 2.1. let U(x) denote the total utility function of solution x. We say solution x is more robust 

than solution y if and only if     ( ) ( )Variance U x Variance U y . 
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Fig 2. Two sensitivity regions with the same diameter 

By studying the two above-mentioned sensitivity regions we introduce two different types of 

variation: 
 

Definition 2.2. Dominating variation. A variation (deviation) between point A and point B in a 

sensitivity region is called dominating variation if and only if: 

      0)()()()(,,,1,  BfAfBfAfnji jjii  (2) 

Definition 2.3. Pareto variation. A variation between point A and point B in a sensitivity region is 

called Pareto variation if and only if: 

      0)()()()(,,,1,  BfAfBfAfnji jjii  (3) 

    

   In other words, a variation from point A to point B is dominating variation if and only if A dominates 
B or vice versa, otherwise, the variation is a Pareto variation. Dominating and Pareto variations are 

illustrated in figure 3. It’s evident that a Pareto variation is more robust than a dominating variation in 

the sense that in a Pareto variation a decrease in an objective function can be considered as a 
compensation to an increase in some other objective function while in a dominating variation, all 

objective functions increase or decrease simultaneously. We give a mathematical proof for this result 

as follows: 

 

Claim 1. Pareto variation is more robust than dominating variation. 

Proof. Let A, B, C and D be four points in the objectives space (as illustrated in figure 3). Suppose the 
two pairs (A, B) and (C, D) respectively define Pareto and dominating variations with equal magnitude 

of variation: ,1,),(),( niff DC

i
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i  where ).()(),( BfAff ii

BA

i   Then, for any vector of 

objectives weights w (a representative for decision maker preferences) we have: 
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As (A,B) is a Pareto variation we know by definition 2.3 that for some i, the term
),( BA

if is negative. 

Also, by definition 2.2 for all ,0,1 ),(  DC

ifni then, we have: 
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   Thus, by definition 2.1 we conclude that variation (A,B) is more robust than variation (C,D)  . 

One can intuitively see that in the sensitivity region of figure 3.a, Pareto variations are more dominant 

than dominating variation while, in the sensitivity region of figure 3.b dominating variations overcome 

Pareto variations. Therefore, we conclude that the sensitivity region of figure 3.a is more robust than 
the sensitivity region of figure 3.b. 

   Now, the problem is how to assess a sensitivity region based on dominating and Pareto variations. To 

do that, we propose a measure and call it domination ratio: 
 

Definition 2.4. Domination ratio. Let x be a solution. Then, the domination ratio of the sensitivity 

region of the solution, denoted by ( )dr x , is calculated as follows: 
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Where, )(A and )(B are respectively probability distribution functions of points A and B. )(xS is the 

sensitivity region of solution x. If the probability with which, point A is dominated by any other point 

in the sensitivity region is denoted by ),(APd then, we have: 

dAAAPxr
xSA

dd  
 )(

)()()(   
(8) 

   In fact, the domination ratio of a sensitivity region is the probability with which a solution in the 

sensitivity region dominates any other solution. 

 

 

Fig 3.a. Illustration of a Pareto variation, b. illustration of a dominating variation 

 

Definition 2.5. Pareto optimal solution. A feasible solution
*x is called Pareto optimal solution, if and 

only if, for any feasible solution x, )()(,1, * xfxfnii ii  . 
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3-Robustness index 
   In this section we introduce a novel robustness index. At first, two theorems will be proved. 

 

Theorem 3.1. let )(xS be the sensitivity region of solution x. then, the domination ratio of )(xS  is 

between 0 and 0.5. In the other words:
2

1
)(0  xrd . 

Proof. We define three functions for any pair of points ( , )A B  in the sensitivity region: 
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Since for any pair of points ( , )A B  we have three statuses: BA   or BA   or BA ~ , and only one 

of these three statuses can occur, then we have: 1),(),(),(  BABABA  . 

 

since BA  and BA   are equivalent, then, ),(),( ABBA   . Thus, we have:

1),(),(),(  BAABBA  . From the definition 2.3 we have: 
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,21 dr  (16) 

.
2

1
00  dr  

(17) 

   It’s essential to note that when the sensitivity region is a line segment, the extreme cases in the theorem 

3.1 ( 0dr and 5.0dr ) will happen. When slope of the line is positive, then all variations in the 

sensitivity region are in the form of dominating variation and then .5.00  dr  If slope of the 

line is negative, then all variations in the sensitivity region are in the form of Pareto variation and then, 

.00  dr  

 

Theorem 3.2. The domination ratio is insensitive to the size of sensitivity region. In mathematical 

terms, for a scalar value ,0k we define  ,, SAAkAAS  then, ).()( SrSr dd   

Proof. For any pair of pints, A and B we have ),(),( BABA  because: 
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 )()(,),()(,1, BfAfjBfAfniiBA jjii  (18) 

 )()(,),()(,1, BfkAfkjBfkAfknii jjii  (19) 

).,(),( BABABABkAk    (20) 

Also, it’s obvious that .),()(, SAAASA   Then, we have: 
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   This theorem says that the domination ratio is independent of the size of variation (or size of 

sensitivity region). In fact, domination ratio only determines the type of variation. Therefore, we should 

introduce an index that represents the size of variation for a solution (sensitivity region). We call the 

index magnitude of variation and display it by Mv. It is calculated as follows: 
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Where S  is the center of sensitivity region, and ),( SAd  is distance of point A from the center. 

Therefore, Mv is expected value of distance from the center. .,,1,),(  pSASAd
p

 but we 

use p . As the objective functions may be in different scales, normalized objective values must be 

used in measuring the distance between two points. Then the distance is calculated as follows: 

 

 














SA

norm

ii

ii

iinorm

i

n

norm

n

norm

nidAAAff
ff

fAf
Af

fAffAfSASAd

.,,1,)()(,
)(

)(

,)(,,)(max),(

minmax

min

11






 ( 23 ) 

Now, we are ready to introduce our proposed robustness index. The robustness index of solution x is 

denoted by )(x  and is calculated as follows: 

 

  )(5.0)()( xMxrx vd   ( 24 ) 

   For some solutions, )(xrd may equal to zero and then, the robustness index becomes zero. This means 

that the effect of )(xM v  in equation (24) is destroyed, therefore, we add )(xrd  by 0.5, then 

15.0)(5.0  xrd . The term  5.0)( xrd  in equation (24) is, in fact, a coefficient that modifies the 

magnitude of variation. 

   We have used another robustness index to generate robust Pareto frontier. Concept of the robustness 

index is introduced by Li et al. (2005).  The robustness index is in fact the diameter of sensitivity region 
and calculated as follows: 

 

),(max)(
)(

SAdxD
xSA

  (25) 

   In section 4, we compare the results of these two robustness indexes based on two test problems. 
Since variation of variables and parameters can lead to infeasible solutions, feasibility robustness of 

each solution should also be considered. In this regard, we use feasibility robustness index that is 

denoted by F  and calculated as follows: 

 

)(),Pr( xSAfeasibleisAF   (26) 
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Using the performance and feasibility robustness indexes, the uncertain multi-objective optimization 
model (1) can be transformed to deterministic multi-objective optimization model: 
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(27) 

   Where, u is a threshold for performance robustness index. We solve the resulting deterministic multi-

objective optimization model with NSGA-III , developed by Kalyanmoy Deb and Jain (2013). During 

this algorithm, each solution is evaluated with the aid of Mont Carlo simulation. In fact, for any solution, 
number of Nsim points in the sensitivity region is randomly generated (based on probability distribution 

function). Then, the robustness indexes are estimated as follows: 
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(29) 

   Where, )( iAn is the number of generated points in the sensitivity region that are dominated by A, and 

Fn  is the number of feasible points. 

To Compare the performance of the two robustness indexes )(x  and )(xD , we have used them as 

robustness index in model (27). The resulting Pareto frontiers for )(x  and )(xD  are called 

respectively, DRR (Domination Ratio based Robustness) and MDR (Max Distance based Robustness). 

 

4- Results and discussion 
   In this section, we will apply the proposed robustness index to two test problems from engineering 

design optimization context. We have taken these problems from Li et al. (2005). So, description of 
problems is extracted textually from the reference paper. 

We have implemented the robust multi-objective genetic algorithm in MATLAB 2009 and run it in a 

system with Intel CORE i3 CPU and 2 GB RAM. The population size in the genetic algorithm was set 

to 100 and number of Mont Carlo simulations for each solution in the population ( simN ) was set to 100. 

Run time of the algorithm for test problem 1 and test problem 2 became respectively 266 and 290 

seconds. It’s obvious that by increasing simN  accuracy of results will be improved but also, the run time 

of the algorithm increases. 

 

4-1- Test Problem 1 
   The first test problem, that is called two-bar truss design problem, is a popular test problem from the 

engineering design optimization literature. Figure 4 shows a two-bar truss. 
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Fig 4. Schematic for two-bar truss design problem 

   The problem is to design a two-bar truss that can carry a single vertical load of 100kN at joint C. The 

truss comprises of two links as shown in the figure 4. The objectives are to minimize the volume of the 

two links and to minimize the stress in them as well. The variables are the cross-sectional areas of the 

links, 21, xx , and the vertical drop of the joint y. The constraints are: an upper limit of 100,000 kN/m2 

for the stress, the range 1.0-3.0 m for y, and a non-negative value for the cross-sectional areas. The 

problem is formulated as follows: 
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    The known variation in the design variables was set as 0001.021  xx  and 05.0y . Figure 

5 shows DRR Pareto frontier obtained by solving problem (30). Figure 6 compares robust Pareto 
solutions (DRR) with nominal Pareto solutions (problem (30) without any uncertainty, in other words, 

all variables are deterministic and can only take their nominal values). As we have anticipated, 

performances of robust solutions are slightly worse than those of nominal solutions. Also, robust 
solutions are more compact than nominal solutions, that is, robust solutions are distributed over a 

smaller range of objective values. In fact, to reach to more robust solutions, quality of solutions 

(performance with respect to objective functions) must be sacrificed. The trade-off between robustness 

and quality can be attained by regulating the parameter u  in model (27). Figure 7 shows the feasibility 

robustness values 
F̂  for nominal Pareto solutions. The figure represents that the feasibility robustness 

value for most of solutions is less than 70%, and only one solution has feasibility robustness. In figure 

8, the effects of components of proposed robustness index )(x  is analyzed. To do that, DRR robust 

Pareto solutions are sorted based on the robustness index )(x . Then values of Mv and )5.0)(( xrd  

(components of )(x  in equation (24)) for sorted solutions are depicted in the figure. The figure shows 

that the trends of magnitude of variation and domination ratio (Mv and )(xrd ) are different, and as 

claimed in theorem 3.2, independent.  
 

 

Fig 5. Robust Pareto frontier for the two-bar truss design problem 

Fig 6.  Comparison of robust Pareto frontier with nominal Pareto frontier for the two-bar truss design problem 

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07

f 2
 (
m

in
im

iz
e)

f1(minimize)

DRR Pareto

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07

f 2
 (
m

in
im

iz
e)

f1(minimize)

DRR Pareto

Nominal Pareto



167 

 

 

Fig 7. Feasibility robustness of nominal Pareto solutions for the two-bar truss design problem 

 

Fig 8. Comparison of trends of three indexes ƞ, Mv, and rd for robust solutions of the robust Pareto solutions 

   Figure 9 compares DRR and MDR Pareto frontiers. As represented in the figure, Pareto frontiers 

obtained by using two robustness indexes )(x  and )(xD  are different. This was predictable, as the 

two robustness indexes have different philosophy. The upper limits for  )(x  and )(xD  in model (9) 

were set respectively to 2.0u  and 1Du . We use DRR and MDR Pareto sets to compare 

performances of the two robustness indexes. For this purpose, we sorted solutions in DRR and MDR 
Pareto sets with respect to their respective robustness index. Then, we computed the other robustness 

index for the sorted solutions in each Pareto set ( )(x for MDR Pareto set and )(xD  for DRR Pareto 

set). Figures 10 and 11 give the results. In these figures, the upper limit for robustness index is 
represented by a horizontal line. One can see from figure 10 that the DRR robust solutions (robust 

solutions based on )(x  robustness index) are also robust with respect to the other robustness index (

)(xD ). In fact, only one solution exceeds the upper limit (but its value is also very close to the upper 

limit). Figure 11 shows values of the two robustness index for MDR Pareto solutions. As can be seen, 

14 solutions lie above the threshold line, and therefore, are not robust with respect to )(x  robustness 

index. Based on these observations, we conclude that out proposed robustness index )(x  is more 

efficient than the robustness index )(xD . Another important matter with regard to figures 10 and 11 is 

that, trends of the two robustness indexes on the same set of solutions are different. 
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Fig 9. Comparison of the two robust Pareto frontiers related to the two robustness indexes (ƞ, D) for the two-bar 

truss design problem 

 

Fig 10. Comparison of performance of the two robustness indexes (ƞ, D) on the DRR Pareto solutions for the 

two-bar truss design problem 

 

 

Fig 11. Comparison of performance of the two robustness indexes (ƞ, D) on the MDR Pareto solutions for the 

two-bar truss design problem 
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4-2- Test Problem 2 
   The second test problem is to robustly design a simple speed reducer that might be used in a light 

airplane between the engine and the propeller. A schematic of the speed reducer to be optimized is 

shown in figure 12. The first design objective is to minimize the volume of the speed reducer and the 
second objective is to minimize the stress in the first gear shaft. The problem has seven design variables: 

gear face width (
1x ), teeth module (

2x ), number of teeth in the pinion ( 3x , integer), distance between 

bearings 1 (
4x ), distance between bearings 2 ( 5x ), diameter of shaft 1 ( 6x ) and diameter of  

shaft 2 ( 7x ). 

 

 

Fig 12. Schematic for speed reducer design problem 

   The design is subject to a number of constraints imposed by gear and shaft design practices. The seven 
design variables are subject to an upper and a lower bound. There are eleven inequality constraints that 

take into consideration: stresses, deflections, space restrictions and design requirements. The units for 

all the design variables are in cm except for 3x  and those of the objectives f1 and f2 are cm3 and kPa, 

respectively. The formulation of the problem is as follows: 
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(31) 

   The known variation in the design variables was set as 01.02 x and 1.06 x . Figure 13 shows 

DRR Pareto frontier obtained by solving problem (31). Figure 14 compares robust Pareto solutions 
(DRR) with nominal Pareto solutions. Similar to the results obtained for test problem 1, quality of robust 

solutions is slightly worse than nominal solutions and they are more compact. Figure 15 shows the 

feasibility robustness values F̂  for nominal Pareto solutions. Feasibility robustness of nominal Pareto 

solutions for this problem is less than that of test problem 1. For this problem, feasibility robustness of 
53% of nominal Pareto solutions is less than 10%. In figure 16, the effects of components of proposed 

robustness index )(x  is analyzed. Like the results obtained for the test problem 1, the trends of 

magnitude of variation and domination ratio (Mv and )(xrd ) are different and independent. 
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Fig 13. Robust Pareto frontier for the speed reducer design problem 

 

 

Fig 14. Comparison of robust Pareto frontier with nominal Pareto frontier for the speed reducer design problem 

 

 

Fig 15. Feasibility robustness of nominal Pareto solutions for the speed reducer design problem 
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Fig 16. Comparison of trends of three indexes ƞ, Mv, and rd for robust solutions of the speed reducer design 

problem 

    Figure 17 compares DRR and MDR Pareto frontiers. As represented in the figure, the Pareto frontier 

obtained by using robustness index )(x  is more compact than the Pareto frontier obtained by using 

robustness index )(xD . The upper limits for )(x  and )(xD  in model (27) were set respectively to 

012.0u  and 05.0Du . As we did for the test problem 1, we use DRR and MDR Pareto sets to 

compare performances of the two robustness indexes. The results are represented in figures 18 and 19. 

It is obvious from figure 18 that all of the DRR robust solutions (robust solutions based on )(x  

robustness index) are also robust with respect to the other robustness index ( )(xD ). Figure 19 shows 

values of the two robustness index for MDR Pareto solutions. As can be seen, 25 solutions lie above 

the threshold line, and therefore, are not robust with respect to )(x  robustness index. Based on this 

result, we conclude more strongly than we did from test problem 1 that our proposed robustness index 

)(x  is more efficient than the robustness index )(xD . Figures 18 and 19 also show that trends of the 

two robustness indexes on the same set of solutions are different. 

 

 

Fig 17. Comparison of two robust Pareto frontiers related to the two robustness indexes (ƞ, D) for the speed 

reducer design problem 
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Fig 18. Comparison of performance of the two robustness indexes (ƞ, D) on the DRR Pareto solutions for the 

speed reducer design problem 

 

 

Fig 19. Comparison of performance of the two robustness indexes (ƞ, D) on the MDR Pareto solutions for the 

speed reducer design problem 

4-3- Comparative analysis 
   Kalyanmoy Deb and Gupta (2006) extended the concept of "robust solution type II" to multi-objective 

context. They classify a solution x  as robust solution type II, if it is a global minimum solution of the 

following problem:  
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   Where ),,( 1 Mfff   and   is a threshold determined by decision makers to exert their direct 

control to the extent of desired robustness. Actually, they have used the p-norm function to directly 
extend the concept of robust solution type II from single-objective to multi-objective context. 
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   In this section, performance of our proposed domination-based robustness concept (DBRC) in 
generating true robust solutions is compared with MORST2 concept (multi-objective robust solution 
type II) for a numerical example: 

𝑚𝑎𝑥   �̃�11𝑥1 + �̃�12𝑥2 

𝑚𝑎𝑥   �̃�21𝑥1 + �̃�22𝑥2 
𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: 
0 ≤ 𝑥1 ≤ 1. 
0 ≤ 𝑥2 ≤ 1. 

(33) 

 Where �̃�𝑖𝑗 1 ≤ 𝑖. 𝑗 ≤ 2. are 4 jointly distributed uniform random variables with the mean and 

correlation matrixes as follows: 
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   The example is designed to illustrate the conditions under which MORST2 fails to generate true robust 
solutions. 

   To judge between the two methods (DBRC and MORST2), a reference robustness measure (RRM) is 

needed.  As both methods try to extend the same single-objective robustness concept (single-objective 
robust solution type II) to multi-objective context, RRM is calculated through weighted-sum 

scalarization of the multi-objective problem and then applying the concept of single-objective robust 

solution type II. Thus, RRM is a function of objectives weights ),( 21 www  : 
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   To compare the performance of our proposed robustness concept (DBRC) with the existing robustness 
concept in the literature (MORST2), the correlation between each of the two measures and RRM is 

calculated for points that were uniformly selected from across the decision space. So, the points 𝑥𝑖𝑗 =

(
𝑖

10
,

𝑗

10
) , 1 ≤ 𝑖, 𝑗 ≤ 10, are selected from the decision spaces. Then, 𝑁 = 1000 random matrices 𝐶 are 

generated via Mont Carlo simulation. In the next step, the two robustness measures DBRC and 

MORST2 are calculated for each point 𝑥𝑖𝑗 1 ≤ 𝑖, 𝑗 ≤ 10 based on the randomly generated matrices𝐶. 

Also, the RRM is calculated for each point 𝑥𝑖𝑗 1 ≤ 𝑖, 𝑗 ≤ 10 and each objectives weight 𝑤𝑖 =

(
𝑖

10
, 1 −

𝑖

10
) , 1 ≤ 𝑖 ≤ 9. Table summarizes the results. Columns of the table represent the objective 

weights for which RRM is calculated and the two rows represent the two robustness concepts. Values 
of the cells in the table represent the correlation between the corresponding robustness measure values 

and RRM values for the corresponding objectives weight. For example, based on the table, the 

correlation between the DBRC and RRM for objective weight 𝑤 = (0.1,0.9) equals to 0.90. Figure 20 
visualizes the results summarized in the Table. Based on the results, it can be concluded that our 

proposed method generates solutions that are much closer to the true robust solutions than the existing 
method in the literature. 
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Table 2. Comparison of the correlation between the two robustness measures and RRM for different objectives 

weights 

𝒘 

 

 

Method 

(0.1,0.9) (0.2,0.8) (0.3,0.7) (0.4,0.6) (0.5,0.5) (0.6,0.4) (0.7,0.3) (0.8,0.2) (0.9,0.1) 

MORST2 0.12 0.26 0.44 0.65 0.20 0.35 0.07 0.70 0.37 

DBRC 0.90 0.88 0.92 0.99 0.95 0.98 0.96 0.98 0.95 

 

a. 

 

b. 
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c. 

 

 

Fig 20. a,b,c. Comparison of Performance of the two robustness concepts DBRC and MORST2 with RRM for 

different objectives weights: a. 𝑤 = (0.3,0.7), b. 𝑤 = (0.5,0.5), c. 𝑤 = (0.7,0.3) 

 

5-Conclusions 
   A new robustness measure for multi-objective optimization problem is proposed in this paper. 

Literature indicates the existing proposed methods only address the magnitude of variations in the 

objectives space and don’t take into account the direction, or in the other words, the type of variations. 
In this paper, we distinguished between two types of variations and called them dominating and Pareto 

variations. We showed that the Pareto variation is more robust than the dominating variation. Then, we 

developed an index that measures proportion of dominating variation in a sensitivity region. We proved 

that this index is always between 0 and 0.5. Also we proved that domination ratio is insensitive to the 
size of sensitivity region and then it is independent of variation size. Therefore, we introduced an index 

that measures the size of variation and called it magnitude of variation. We used these two indexes to 

construct our proposed robustness index.  
   A Multi-objective genetic algorithm is used to generate optimal Pareto solutions. Every solution is 

evaluated using Mont Carlo simulation. Two test problems from the engineering design optimization 

are used to illustrate the applicability and efficiency of proposed robustness index. Concept of 
sensitivity region diameter is taken from the literature and is used as another robustness index to 

generate robust Pareto solutions. By comparing the two robust Pareto frontiers we conclude that our 

proposed robustness index is efficient than the other robustness index. Results show that performance 

of robust Pareto solutions with respect to objective functions are slightly worse than those of nominal 
Pareto solutions. This means that increasing robustness leads to decreasing quality and therefore, the 

decision maker must make a balance. The results also show that robust solutions are compact (confined 

to a small range of objective functions values) while nominal solutions are dispersed over a large range 
of objective functions values.  On the other hand, feasibility robustness values of nominal Pareto 

solutions are low. The results also confirm our claim that domination ratio and magnitude of variation 
are independent. 
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