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Abstract 
The Taguchi method is a useful technique to improve the performance of products or 
processes at a lower cost and in lesser time. This procedure can be categorized as the static 
and dynamic quality characteristics. The optimization of multiple responses has received 
increasing attention over the last few years in many manufacturing organizations.   
Several approaches dealing with multiple static quality characteristic problems have been 
reported in the literature. However, little attention has been made on optimizing the multiple 
dynamic quality characteristics. 
In this paper, we investigate multivariate signal response systems (Dynamic Taguchi) and 
propose a method based on multivariate process capability. Simulated data shows that the 
proposed method can increase robustness of dynamic Taguchi method. Furthermore, the 
proposed method is capable to find the optimal value of controllable factors in a continuous 
space.  
 
Keywords: Signal response system, Robust parameter design (RPD), Dynamic Taguchi 
design, Process capability index. 
 

1- Introduction 
1-1 Robust parameter design 
   The robust design has been successfully applied to a variety of industry problems for upgrading product 
quality since Taguchi (1987) first introduced this method. The objective of robust design is to reduce response 
variation in products or processes by selecting the settings of control factors, it provides the best performance 
and the least sensitivity to noise factors which is done by using interaction between control and noise factors.  
To apply the robust design, Taguchi employs an orthogonal array (OA) to arrange the experiments and uses the 
signal-to-noise ratio (SNR) to measure the performance of each experimental run.  
A two-step optimization procedure is then used to determine the optimal factor combination to simultaneously 
reduce the response variation and bring the mean close to the target value. 
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Taguchi divided the RPD methodology into two categories: static and dynamic characteristics. Static systems 
are defined as those desired output of the system that has a fixed target value and one attempts to obtain the 
value of a quality characteristic of interest as close as possible to a single specified target value. Whereas 
dynamic systems are those that target value depends on the input signal set and there is a relationship between 
response (output) and signal factor (input). This signal-response relationship is of primary importance to the 
performance of the system. Figure 1(a-b) denotes dynamic and static systems. 
Miller and Wu (2002) criticized the terminology of Taguchi and labeled the static system as simple-response 
system and the dynamic system as signal-response system. They said that static and dynamic systems are 
applied for those systems which concerned with time whereas the simple response system and signal-response 
systems can concern with other input variables. They divided signal-response system into two categories: 
multiple target systems and measurement systems. Wu and Hamada (2001) introduced the third category as the 
control systems.  
Because the signal-response concept plays an important role in product/process development, robust parameter 
design of signal-response systems (also called dynamic parameter design in Taguchi’s terminology) is an 
effective and powerful tool for quality improvement. 
Signal-response systems ideally suppose that there is a linear relationship between the response and the signal 
factor. Moreover, dispersion and sensitivity are two important aspects of the signal-response system which are 
considered with an index such as SNR (Wu and Hamada, 2001). According to the linear assumption of 
relationship function, the simple linear regression model can be written as follows: 
 

,y Mα β ε= + +  (1) 
 
where, M is the signal factor with predefined p levels with the value of im  in ith level, iy  is the response value 

in ith level of signal factor, ( ) 0E ε = and ( ) 2Var ε σ= .  

It is always desirable for any signal-response system to have a small dispersion, i.e., a small 2σ value. A large 
sensitivity (i.e., a large β  value) is also desirable. A performance measure, which converts 2σ  andβ  in to a 
single measure is 
 

2

2ln βω
σ
 

=  
 

 (2) 

 
Taguchi proposed the dynamic SNR formula for a nominal the best response as follows: 
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210 logSNR β
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 (3) 
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             (a)                                                                              (b) 

 
Figure 1. (a) Dynamic system (b) Static system 

 
   The dispersion and sensitivity are measured by 2σ  and β , respectively. β  and σ  are evaluated for different 
combinations of control factors. It is desired that the SNR to be maximized. 
   In contrast to Taguchi’s dynamic SNR and two-step optimization procedure, Miller and Wu (2002) developed 
performance measure modeling (PMM) and response function modeling (RFM) to optimize signal-response 
systems. PMM requires a two stage modeling. The first stage includes estimation of performance measure (PM) 
and second stage consists the modeling of PM as a function of control factors using estimation of PM. 
   RFM uses the experimental data to model the signal-response relationship as a function of the control and 
noise factors. The specified performance measure is then evaluated with respect to the fitted regression models. 
This method is an extension of the response modeling approach first recommended by Welch et al. (1990) and 
Shoemaker et al. (1991) for simple response applications. Wasserman (1996) presented a case study of the 
parameter design with dynamic characteristics by using multiple regression models. He demonstrated Taguchi’s 
SNR with a linear statistical model. Khattree (1996) provides a method for to estimate robust parameter design 
in the situation in which all of the noise variables cannot be studied simultaneously. He used the response 
surface approach. 
   Lunani, Nair and Wasserman (1997) noted that using SNR as a quality performance measure might produce 
inaccuracies due to a mistake to evaluate dispersion effect. They developed two graphical methods for 
identifying appropriate measures of dispersion, thereby avoiding interactions between the dispersion and 
sensitivity effects for a dynamic problem. Miller (2002) compared three methods of analyzing signal-response 
applications, including Miller and Wu’s (2002) approach, Taguchi method and a graphical approach proposed 
by Lunani, Nair and Wasserman (1997). He introduces a new graphical technique, the joint effects plot and 
demonstrated usefulness of the proposed method. 
   Lesperance and Park (2003) proposed a joint generalized linear model to evaluate the robust design of 
dynamic characteristics, which is based on standard regression modeling techniques. Roshan and Wu (2002) 
described the application of SNR in the analysis of the multiple target systems (i.e., first category of signal-
response systems). Again Roshan and Wu (2002) introduced a theoretical formulation for multiple target 
systems and developed a practical approach for optimization which overcomes some limitations. 
   Wu and Yeh (2005) presented an approach to optimize multiple dynamic problems based on quality loss 
function. The objective is to minimize the total average quality loss for the multiple dynamic quality 
characteristic's experiments. Zhiyu, Zhen and Xiangfen (2006), proposed a new desirability function method for 
multiple robust parameter design. Their proposed method can yield better results than traditional desirability 
function approach. Gupta, Kulahci, Montgomery and Borrer (2009), proposed a split-plot approach to the 
signal-response system characterized by two variance components. They demonstrate that explicit modeling of 
variance components using generalized linear mixed model (GLMM) leads to more precise point estimates of 
important model coefficients with shorter confidence intervals within-profile variance and between-profile 
variance. 
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   Dasgupta, Miller and Wu (2010), presented a robust design of measurement systems (i.e., second category of 
signal-response systems). They developed an integrated approach for estimation and reduction of measurement 
variation through a single parameter design experiment. They considered a linear signal-response relationship. 
Arvidsson and Gremyr (2008) prepared a literature review of conflicts and agreements on the principles of 
robust design. Through this review four central principles of robust design are identified: awareness of 
variation, insensitivity to noise factors, application of various methods, and application in all stages of a design 
process. 
   Boylan and Cho (2013), proposed a multidisciplinary RPD methodology that provides an enhanced approach 
for modeling multiple, mixed type quality characteristics; uses the skew normal distribution to allow for a fuller 
and more accurate representation of asymmetric system properties. 
   Boylan, Goethals and Rao Cho (2013), proposed a trade-off analysis between the cost of replication and the 
desired precision of generated solutions. They considered several techniques in the early stages of experimental 
design, using Monte Carlo simulation as a tool, for revealing potential options to the decision maker. 
   Yadav, Bhamare and Rathore (2010), explore the possibilities of combining both approaches into a single 
model and proposes a hybrid quality loss function-based multi-objective optimization model. 
   Truong, Shin and Jeong (2011), focus on solving the robust design (RD) problem that occurs in 
pharmaceutical studies in which output responses are measured over time 
    In general, several researches have addressed multiple static quality characteristics problems (i.e. Dasgupta, 
Miller and Wu (2010), Khuri and Conlon (1981), Lin, Lin and Ko (2002), Su and Tong (1997), Lu and Antony 
(2002), Wu (2002), Vining (1997), Tong, Su and Wang (1997,1999).  
   Several publications have studied the robust design problem considering the dynamic systems (i. e. 
Wasserman (1996), Lunani, Nair and Wasserman (1997), Miller and Wu (1996), Su and Hsieh (1998), Tsui 
(1999), McCaskey (1997)). 
   However, few studies have been concerned with optimizing the parameter design for multiple dynamic quality 
characteristics. Chang (2008), proposed a procedure based on desirability function to optimize multiple 
dynamic quality characteristics. He used the Simulated Annealing (SA) to find the best factor setting. 
Desirability function cannot consider variation of the observations and only focuses on the distance between 
responses and their targets. This fact leads to effect of noise factor and the fluctuation of the design parameters 
are ignored in this approach (Zhiyu, Zhen and Xiangfen (2006)). Hence, it cannot be a precise index to evaluate 
the results completely.  
   Chang (2008), used SNR of responses instead of responses values to solve the mentioned problem, in addition 
he used geometric mean to construct a single index for evaluating responses. However, there are some problems 
with his proposed approach as follows. 
 

(i) Using geometric mean leads to face strong effect on the single aggregated index when there is a less SNR 
value, while other responses may have a high desirability values. Hence, analyzer ignores setting of 
control factors and process is rejected basically.   

(ii) The effect of correlation between responses is not considered, because each response is analyzed 
separately. Hence, Chang’s (2008) procedure has an equal result for two processes which have similar 
mean and variance but different correlation. Note that, correlation between responses has a clear effect on 
the responses.   

   Similar to Chang (2008), the method proposed by Tong and Su (1997) considers TOPSIS method and focuses 
on SNR between responses and does not account for correlation between responses.  
   Tong, Wang and Houng (2001) solved the mentioned problem with desirability function and proposed the 
dual response surface method based on the desirability function. They first provide a regression model of 
responses and then calculate desirability of mean and variance. Finally, a response surface model is generated to 
consider the problem in two aspects of mean and variance. Their proposed approach is more reliable because of 
considering the responses variances. However, it does not consider the correlation between responses.  
Jalili, Bashiri and Amiri (2011), applied Data Envelopment Analysis (DEA) to optimize multivariate dynamic 
Taguchi design. The drastic difference between the method based on the DEA and proposed method of this 
paper is the correlation issue. The DEA cannot consider correlation of responses, but the multivariate process 
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capability index can account for the correlation between response variables. Moreover, the DEA is not a 
parametric method, hence normality assumption of the response variables is not required in this method while 
the multivariate process capability index used in this paper needs the normality assumption. In spite of the 
differences between the DEA and multivariate process capability index, both methods are appropriate for non 
linear relationship between response variable and controllable factors. 
   Amiri, Bashiri, Mogouie and Doroudyan (2012), proposed a non-normal response optimization method based 
on process capability index. Their method transforms the known non normal distribution to multivariate normal 
distribution and then uses process capability index to optimize a multi-response problem. The difference 
between that method and the proposed method in this paper is the ability of the proposed method to consider 
unilateral quality characteristics. 
   He, Zhu and Park (2012), proposed a robust desirability function approach to simultaneously optimize 
multiple responses. Their method takes account for all values in the confidence interval rather than a single 
predicted value for each response and then defines the robustness measure for the traditional desirability 
function using the worst case strategy. They used geometric mean to aggregate calculated desirability functions. 
This technique has some drawbacks as mentioned before. 
   Awad and Kovach (2011) utilized process capability index and proposed an optimization method for multi 
responses problems. Their multivariate process capability index, pmMC , index is applicable if there is a target 
value for each response 
   Pal and Gauri (2010), proposed a new method that integrates multiple regression technique and Taguchi's 
signal-to-noise (SN) ratio concept. Two sets of experimental data were analyzed using this method. The 
proposed method considers total SN ratio as well as closeness of individual responses to their corresponding 
target values.  
   Hence, an efficient index which investigates a signal-response system should have two conditions. First, it 
should consider both location and dispersion of responses. Secondly, the proposed index should not have any 
relaxations about the relationship between responses and signal factor such as linearity. One of the important 
issues in optimization is about stage. Optimization can be applied in the both design and operation stage (for 
example of applying in operation stage see Sekhar and Tan (2009)). So, optimization methods which used 
process mean can be a suitable technique for optimization in operation stage. 
 
 
1-2- Process Capability Index 
   Process Capability Indices (CPI) such as pC , pkC  and pmC  are used in statistical process control to evaluate 

the capability of the processes in satisfying the customer’s needs. Capability index pC  is defined as the ratio of 
tolerance range to the spread of the process as follows: 

,
6p

USL LSLC
σ
−

=  (4) 

where USL and LSL are upper and lower specification limits. Also σ  is standard deviation of quality 
characteristic. Sometimes, more than one quality characteristic describes the quality of a process. For analyzing 
the capability of these processes with correlated quality characteristics, multivariate CPIs are introduced by 
some researchers. 
   In this paper to evaluate responses of a multivariate signal-response system, we use NCVMPC  which have been 
proposed by Jalili, Bashiri and Amiri (2011). The proposed index is expressed as follows: 

1
, ,NCV

PR CV

PR NCV D
MPC

λ β× + +
=

+
 
  

 (5) 

where PR is process region, CV is conformance volume between the process region and modified tolerance 
region and NCV is non-conformance volume between the process region and modified tolerance region. λ  is 
the sensitivity process capability parameter and in a bivarite response with bilateral specification limits is 
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proposed to be 0.27 (Jalili et al., 2011). Also β  is added to the first component of the NCVMPC  to increase the 
sensitivity of the index to the processes which are completely within modified tolerance region. According to 
the simulations, it is better to apply 0.1β = . However, if volume of tolerance region is less than 1 it is advised 
to apply 0.05 Volume of Tolerance Regionβ = × , because 0.1β =  leads to overestimations of the index. Also 

distance between process and target is computed as ( ) ( )( )
1

211D T Tµ µ−′= + − ∑ −  (Jalili et al., 2011). 

Advantage of the NCVMPC  is applicable to both unilateral and bilateral situations. Hence, when there is a 

unilateral response, NCVMPC  can consider the problem effectively. One of the other methods which is used to 
consider a unilateral response is desirability function. But as mentioned before desirability function cannot 
consider variance of responses and only take in to account the distance between each responses with 
corresponding target. 
   Another advantage of using NCVMPC  in process capability is the capability of considering correlation between 
responses and also its first component could consider distance between process mean and target and variation of 
observations simultaneously respect to traditional approaches (Jalili et al., 2011). 
   Hence, using process capability to evaluate the signal-response system can be useful to consider location 
(mean) and dispersion (variance) of observation as well as correlation of responses. 
   The rest of the paper is organized as follows: The proposed method is discussed in Section 2. In Section 3, a 
simulated dataset is applied and the performance of the proposed index is evaluated. Our concluding remarks 
and some future researches are given in the final section. 
 
2- Proposed method 
   As mentioned before, to evaluate performance of the signal-response system, first a measurement index 
should be proposed. For example, Taguchi (1987), proposed SNR. This index considers dispersion and 
sensitivity of responses. Figure 2 depicts the processes of the Taguchi procedure. In this method as the first 
phase, variability of response decreases, and then in the second phase, the slope is brought to the target. 
 

 
 

Figure 2. Taguchi procedure for dynamic problem (Extracted from Chang, 2008) 
 
   The target may be dynamic nominal the best (DNTB), dynamic larger the better (DLTB) or dynamic smaller 
the better (DSTB). In this paper, we propose a method based on process capability to evaluate performance of 
control factors combination. In a signal-response system, we assume there are n correlated responses in each 
level of signal factor. Furthermore, there are p levels for signal factor. So n p×  response values should be 
considered.  
   The advantage of using process capability (PC) index in the signal-response system is that the n correlated 
responses in each level of signal factor can be converted to one response (process capability) which considers 
dispersion and sensitivity of responses without losing any properties of observations such as correlation. So 

62 
 



there are 1 p×  independent process capability indices and the optimization procedure can be done by using new 
independent responses. 
   Suppose that there are two responses for a signal-response system. It is obviously that in each level of signal 
factor, responses should have less variability (dispersion) and distances from the targets (sensitivity). As 
illustrated in Figure 3, PC index try to find a parameter combination which leads to decreasing in variability and 
distance from target, simultaneously. In Figure 3, observed data produce a region called the process region. The 
upper and lower bound of responses produce a region called the tolerance region. Observations which have less 
variability and less distance from the target have a larger PC value. Subsequently, with modeling PCs according 
to the control factors, the control factors setting, which has the maximum sensitivity and minimum dispersion 
are obtained. 
   Another advantage of using PC is that it considers the effects of noise factors on responses by considering the 
variation of responses. Hence, proposed combination of control factors in each level of signal factor is robust to 
the noise factor. In this paper, just the first component of NCVMPC  is considered because it includes both 
dispersion and sensitivity aspects. 
   The proposed index has the following three steps: In step 1 NCVMPC  of responses in each level of the signal 

factor is calculated. Then, in step 2, a general model for NCVMPC  according to the control factors is computed. 

Note that the numbers of NCVMPC  models are equal to the levels of signal factor. If the levels of signal factor 
increase, the generated models increases and then, there are more proposed setting for considered system. 
Consequently more improvement for responses is available. In step 3 by an optimization method, the best levels 
of the control factors are obtained. 
 

 
Figure 3. Presentation of tolerance and process regions 

 
3- Numerical Example 
 
   In this section a simulated example is applied to show the performance of the proposed method. First a data 
set is simulated. In the simulation process, a predefined relationships between responses and control factors are 
used. Then, in the step 1, the process capability ( NCVMPC ) index for each treatment and in every level of signal 

factors is calculated and in the step2, a regression equation between NCVMPC and control factors is constructed 
for each level of signal factors. Finally, by optimizing regression equation, best level of control factors are 
estimated. Also the improvement of optimization will be compared by the best treatment of design matrix. 
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   We investigate the proposed index by simulated dataset. Suppose that there are two responses 1Y  and 2Y , five 

controllable factors 1 2 3 4 5, , , ,x x x x x , one noise factor N and a signal factor M. According to the Equation (2), 

relationship function between 1Y  and signal factor M is expressed as: 

1 1 1Y Mα β ε= + +  

In numerical example, it is assumed that 1α and 1β  are as follows respectively: 

1 2 3 0.3

0.2 0.5 0.7

0.3 0.2 0.1

0.4 0.3 0.5 0.6

A B C D E

AB AC AD

BD CD DE

AN BN DN EN

α = + + − + +

+ − +

− + +

+ − +  
 

1 2 0.1 0.2

0.4 0.3 0.1 0.5

0.2 0.7 0.2 0.1

0.5 0.5 0.2

A B C D E

AC AD BC BE

CD CE DE AN

BN CN EN

β = + − − + +

+ + + −

− + + +

− +

 

Furthermore, relationship between 2Y  and signal factor M is expressed as:  

2 2 2Y Mα β ε= + +  

Also it is assumed that 2α and 2β  is: 

2 3 2 0.2

0.7 0.2 0.3 0.1

0.4 0.1 0.3 0.1

0.2 0.2 0.3 0.7

A B C D E

AB AC AD AE

BC CD CE DE

AN BN DN EN

α = + + + + +

+ + + −

+ − + +

− + +

 

2 2 0.7

0.4 0.2 0.8 0.1

0.3 0.2 0.7 0.4

0.2 0.3 0.2 0.1

A B C D E

AB AC AD BC

BD CD CE DE

AN BN CN EN

β = − + + − + −

+ + + +

+ + + −

+ + +

 

ε is a random variable with bivariate normal distribution and ( ) ( )0,0E ε =  and variance-covariance matrix 

1 0.1
0.1 1
 

∑ =  
 

. Signal factor M has three levels of 0.1, 0.2 and 0.3.   

Figure 4 depicts the assumed relationship between  1Y  , 2Y  and M and target lines for them with a random 

setting for control factors. Target values for each level of the signal factor for 1Y  are 0.1, 0.2 and 0.1 

respectively. And these values for 2Y  are -0.2, -0.1, 0.1.  

To consider an example, a combined array with resolution VI is used by a 6 12VI
−  design (see Table 1). 10 

replicates for 1Y  and 2Y  in each level of signal factor are simulated.  
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Table 1. Combined array 6 12VI
−  for the numerical example 

No. A B C D E N 
1 -1 -1 -1 -1 -1 -1 
2 1 -1 -1 -1 -1 1 
3 -1 1 -1 -1 -1 1 
4 1 1 -1 -1 -1 -1 
5 -1 -1 1 -1 -1 1 
6 1 -1 1 -1 -1 -1 
7 -1 1 1 -1 -1 -1 
8 1 1 1 -1 -1 1 
9 -1 -1 -1 1 -1 1 
10 1 -1 -1 1 -1 -1 
11 -1 1 -1 1 -1 -1 
12 1 1 -1 1 -1 1 
13 -1 -1 1 1 -1 -1 
14 1 -1 1 1 -1 1 
15 -1 1 1 1 -1 1 
16 1 1 1 1 -1 -1 
17 -1 -1 -1 -1 1 1 
18 1 -1 -1 -1 1 -1 
19 -1 1 -1 -1 1 -1 
20 1 1 -1 -1 1 1 
21 -1 -1 1 -1 1 -1 
22 1 -1 1 -1 1 1 
23 -1 1 1 -1 1 1 
24 1 1 1 -1 1 -1 
25 -1 -1 -1 1 1 -1 
26 1 -1 -1 1 1 1 
27 -1 1 -1 1 1 1 
28 1 1 -1 1 1 -1 
29 -1 -1 1 1 1 1 
30 1 -1 1 1 1 -1 
31 -1 1 1 1 1 -1 
32 1 1 1 1 1 1 
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Figure 4. Relationship between  1Y  , 2Y and M with a random setting for control factors with simulated data 

 
Steps of the proposed procedure are as follows: 
  
Step 1. Calculate the NCVMPC  index for each level of signal factor M in each treatment.  

The mean and variance-covariance matrix of 1Y  and 2Y  are computed and the value of first component of 

NCVMPC  for each level of signal factor M is reported in table 2. Note that the values of NCVMPC  should be 

maximized. Hence, the factor setting which leads to maximum value of NCVMPC  in each level of signal factor is 

desired. For example treatment 31 which contains larger value of NCVMPC  in each level of signal factor can be 
a preferable factor setting.  
 
Step 2. Construct the regression function between controllable factors and the NCVMPC . 

In this step according to the values of NCVMPC , a general linear model for each level of signal factor is 

generated. The constructed models of NCVMPC  for the numerical example are as follows: 

1 0.09 0.09 0.25 0.07

0.07 0.09 0.46

PC A B AB AD

AE BD

= − + − −

− + +
 0.1where M =  

 
 

2 0.09 0.09 0.24 0.1

0.06 0.1 0.08 0.44

PC A B AB AC

AD BD BE

= − + − −

− + − +
 

0.2where M =  

3 0.08 0.08 0.27

0.09 0.07 0.48

PC A B AB

BD CE

= − + −

+ − +
 

0.3where M =  

Where iPC  is the process capability regression function in the ith level of signal factor. 
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Step 3. Optimize the problem in each level of signal factor.   
In this step, each of the former regression models is optimized as an objective function. The process capability 
model in other levels of signal factor is considered as constraints and should be capable. Hence, their values 
should be at least 1. For example, the optimization model for 1PC  is expressed as: 

: 0.09 0.09 0.07 0.07 0.09 0.46A B AD AE BDMax − + − − + +  
. : 0.09 0.09 0.24 0.1

0.06 0.1 0.08 0.44 1

S T A B AB AC

AD BD BE

− + − −

− + − + >
 

0.08 0.08 0.27 0.09 0.07 0.48 1A B AB BD CE− + − + − + >  
1 1A− ≤ ≤  
1 1B− ≤ ≤  
1 1C− ≤ ≤  
1 1D− ≤ ≤  
1 1E− ≤ ≤  

Upper and lower bounds for control factors are 1 and -1, respectively. 
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Table 2. The experimental results and calculated 
NCVMPC  index for the numerical example 

    M1=0.1   M2=0.2   M3=0.3   M1=0.1   M2=0.2   M3=0.3 

No.   Mean 
 (Y1) 

Mean 
 (Y2) 

Var.-Cov. 
 Matrix   Mean 

 (Y1) 
Mean 
 (Y2) 

Var.-Cov. 
 Matrix   Mean 

 (Y1) 
Mean 
 (Y2) 

Var.-Cov. 
 Matrix   MPC(NCV)   MPC(NCV)   MPC(NCV) 

1   2.25 -1.83 1.12 0.60   2.87 -2.04 1.51 0.46   2.61 -1.53 1.15 0.27   0.14   0.14   0.14   0.60 0.96   0.46 1.21   0.27 0.63       

2   2.18 0.70 0.45 -0.12   1.47 0.97 0.87 0.07   1.12 1.27 0.44 -0.17   0.42   0.45   0.35   -0.12 1.23   0.07 1.22   -0.17 0.87       

3   -1.49 -2.89 0.92 0.35   -1.38 -3.01 0.50 0.08   -0.81 -3.40 1.56 0.05   0.34   0.35   0.45   0.35 1.38   0.08 0.70   0.05 1.13       

4   -3.53 -3.63 1.02 0.48   -4.18 -2.40 0.63 0.01   -5.05 -1.79 0.70 -0.01   0.41   0.29   0.25   0.48 1.26   0.01 0.83   -0.01 0.92       

5   0.91 -1.68 1.08 -0.22   0.62 -2.23 1.23 0.14   0.09 -3.16 0.37 0.05   0.16   0.18   0.17   -0.22 2.58   0.14 0.46   0.05 0.97       

6   11.32 5.56 1.30 -0.09   10.77 5.57 1.15 -0.44   10.78 5.83 1.69 0.04   0.98   0.14   1.19   -0.09 0.94   -0.44 0.41   0.04 0.46       

7   -5.94 -7.26 0.63 0.11   -6.09 -7.55 0.86 0.27   -6.15 -7.18 0.66 0.01   0.90   0.92   1.28   0.11 1.86   0.27 1.15   0.01 0.59       

8   -6.04 -1.54 1.33 0.53   -5.56 -0.97 0.96 0.07   -6.28 -2.54 0.86 0.05   0.14   0.14   0.14   0.53 1.34   0.07 0.69   0.05 0.34       

9   -5.75 -3.40 0.74 0.46   -5.78 -3.87 0.37 -0.14   -6.20 -4.64 1.69 0.21   0.14   0.14   0.14   0.46 1.14   -0.14 0.91   0.21 0.74       

10   1.59 -2.85 0.69 -0.23   1.04 -2.24 0.44 0.03   1.47 -1.52 0.58 0.36   0.31   0.36   0.23   -0.23 0.75   0.03 1.97   0.36 0.62       

11   5.54 2.3 0.94 0.14   6.15 0.99 1.10 -0.23   6.12 1.50 0.76 0.12   0.79   0.92   0.70   0.14 1.44   -0.23 0.65   0.12 1.22       

12   -7.70 -2.58 0.45 -0.20   -7.85 -3.71 1.02 0.22   -8.61 -3.26 0.75 -0.20   0.51   0.50   0.56   -0.20 0.92   0.22 0.53   -0.20 0.33       

13   4.69 7.70 0.63 0.38   5.25 6.76 0.84 -0.33   5.70 6.64 0.59 0.08   0.14   0.14   0.14   0.38 1.76   -0.33 0.77   0.08 0.99       

14   -1.82 5.15 0.77 -0.15   -1.75 5.08 0.75 0.55   -2.86 5.58 0.69 0.49   0.34   0.33   0.23   -0.15 1.01   0.55 1.42   0.49 1.78       

15   1.96 -0.55 1.49 1.29   1.93 -0.14 0.63 -0.26   1.69 -0.39 1.33 0.05   0.89   1.26   0.97   1.29 1.88   -0.26 0.78   0.05 0.11       

16   4.37 7.95 1.10 0.27   5.04 7.93 1.65 -0.10   5.24 7.91 1.48 -0.41   0.14   0.14   0.14   0.27 0.63   -0.10 0.41   -0.41 1.33       

17   7.08 10.63 1.63 0.21   8.36 10.69 0.25 -0.04   8.72 11.23 2.08 -0.37   0.24   0.26   0.27   0.21 0.37   -0.04 0.72   -0.37 0.92       

18   -6.16 -5.26 1.57 -0.01   -6.58 -5.44 0.98 0.03   -6.33 -4.92 1.00 0.30   0.90   1.27   0.91   -0.01 1.18   0.03 0.99   0.30 1.10       

19   -1.63 -5.00 0.82 0.35   -0.98 -4.95 0.97 0.23   -1.55 -5.14 1.31 0.15   1.05   0.67   0.93   0.35 0.80   0.23 1.18   0.15 0.35       

20   4.30 -1.65 1.34 -0.15   3.88 -0.74 1.43 0.62   3.80 0.07 1.03 0.45   0.14   0.14   0.14   -0.15 0.65   0.62 1.61   0.45 1.50       

21   -3.59 2.75 0.42 0.12   -3.29 2.23 1.67 -0.05   -3.23 1.85 0.92 0.60   0.47   0.50   0.42   0.12 1.83   -0.05 1.14   0.60 0.75       

22   1.69 -0.37 0.79 0.12   2.00 0.39 1.75 0.11   2.38 0.13 0.43 -0.18   0.40   0.54   0.57   0.12 0.53   0.11 0.95   -0.18 2.16       

23   -4.33 3.28 0.52 0.00   -4.84 2.4 1.21 0.63   -5.90 2.93 0.77 -0.03   0.54   0.56   0.63   0.00 0.49   0.63 1.05   -0.03 1.22       

24   9.63 5.10 0.99 0.19   10.74 5.16 0.84 0.26   11.05 4.37 0.65 0.23   0.14   0.14   0.14   0.19 1.21   0.26 0.51   0.23 0.91       

25   4.78 2.25 1.56 -0.08   4.32 2.20 0.32 -0.04   3.70 2.13 1.59 1.02   0.27   0.14   0.20   -0.08 0.66   -0.04 0.42   1.02 1.59       

26   -6.64 -0.33 0.33 0.01   -7.77 -0.39 1.32 -0.28   -8.56 0.00 0.65 -0.09   0.52   0.59   0.85   0.01 0.83   -0.28 1.13   -0.09 0.43       

27   -0.78 -5.48 1.12 -0.23   -0.06 -5.39 1.93 0.09   0.58 -5.03 1.04 -0.02   1.27   0.97   1.08   -0.23 0.82   0.09 1.13   -0.02 1.73       

28   -10.03 -6.39 0.63 0.24   -10.53 -7.75 0.69 0.12   -10.77 -7.70 1.90 0.05   0.15   0.14   0.14   0.24 1.05   0.12 0.43   0.05 2.08       

29   -2.06 -1.63 0.77 0.50   -1.89 -1.58 0.79 -0.09   -2.28 -1.30 0.59 0.41   0.15   0.17   0.14   0.50 2.00   -0.09 0.33   0.41 1.54       

30   1.72 4.05 1.22 0.56   2.29 3.68 0.81 0.53   2.77 3.42 0.83 0.95   0.40   0.39   0.35   0.56 0.60   0.53 1.98   0.95 3.14       

31   -3.76 -4.96 0.50 -0.16   -3.87 -5.01 0.15 0.18   -4.83 -5.00 2.30 0.48   1.27   1.21   1.27   -0.16 0.85   0.18 0.64   0.48 1.14       

32   9.19 3.22 1.22 -0.03   9.28 3.44 0.87 0.46   10.44 3.31 1.00 -0.04   0.14   0.14   0.14   -0.03 0.95   0.46 1.71   -0.04 1.16       

By optimizing the above model, the best levels of the control factors are calculated and named as model 1 
optimal setting. 

1, 1, 1, 1, 0A B C D E= − = = = =  
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1 2 31.05, 1.12, 1PC PC PC= = =  

Similar to model of 1PC , the optimizing models of 2PC  and 3PC  are conducted and the best levels of 

optimizing model 2PC  and 3PC  is obtained as follows. We call them as model 2 and 3 optimal settings 
respectively: 

1, 1, 1, 1, 0.714A B C D E= − = = = = −  

1 2 31, 1.18, 1.05PC PC PC= = =  
1, 1, 0.1, 1, 0.125A B C D E= − = = − = =  

1 2 31.06, 1, 1PC PC PC= = =  

   According to the proposed levels for control factors, 1Y  and 2Y have been simulated 1000 times for three 
models. Note that the noise factor changes randomly between its upper and lower values. In addition, according 
to the results obtained by initial simulations, we select treatments 7, 15, 18, 19, 27 and 31 from experimental 
design which have the best results of process capability in simulated data. Then, the mean and variance of 
responses in optimal settings of model 1, 2 and 3 are compared with mean and variance of responses in selected 
treatments respect to the targets to show the better performance of the proposed method. 
   As Table 3 shows, the variance of responses for the selected treatments is a large value and the distance of 
means from targets are not acceptable. Hence, these treatments do not produce an efficient response with 
minimum variation and distance from the target. 
   The optimal results of the models 1, 2 and 3 have been used to calculate the response mean and variance in a 
continuous space. The results have been shown in Table 4. Mean and variance of 1Y  and 2Y  indicate that setting 
of control factors obtained from the proposed method has less variance value than the selected treatments and 
the method is capable to bring the mean of observations to the targets. 
   By comparing the results of Tables 3 and 4, we can conclude that distance between responses’ means and 
targets and variation of responses decrease considerably based on the proposed method. To demonstrate this 
fact, Table 5, 6 and 7 give a comparison between the selected treatments (7, 15, 18, 19, 27, and 31) and models 
1, 2 and 3 optimal setting which reported before.  
   In these tables the percent of improvement for responses in each model are compared with the best selected 
treatments. The results of proposed index in Equation (6) show efficiency of the proposed approach in dynamic 
multi-response robust optimization.  

, , * , ,
,
, , ,

i m i m i m i m
bti m

k bt i m i m
bt

Y T Y T
IR

Y T

− − −
=

−
 (6) 

where .
.

k bt
i mIR  is the improvement rate for the ith response in mth level of signal factor between kth model and 

btth treatment, ,i m
btY is the best observed ith mean (variance) response value in mth level of signal factor for btth 

treatment, * ,i mY is the optimal mean (variance) value of ith response in mth signal level obtained by the 
proposed models and the ,i mT is the mean (variance) target of ith response of mth signal level. Note that the 
target value of variance for responses in the entire signal factor levels is set to zero level. 
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Table 3. Mean and variance of selected treatments between 32 existing ones according to the 
NCV

MPC  index value for 
simulated data  

 
 Signal 

factor 
levels 

Responses Mean Variance 
 Signal 

factor 
levels 

Responses Mean Variance 

Treatment 7 

M1 1Y  1.096 0.105 

Treatment 19 

M1 1Y  2.438 0.203 

2Y  3.142 0.259 2Y  1.956 0.097 

M2 1Y  1.208 0.103 
M2 1Y  3.069 0.218 

2Y  2.717 0.223 2Y  1.818 0.106 

M3 
1Y  1.122 0.109 

M3 
1Y  3.486 0.241 

2Y  2.328 0.222 2Y  1.780 0.098 

Treatment 15 

M1 
1Y  1.343 0.214 

Treatment 27 

M1 
1Y  1.528 0.107 

2Y  1.159 0.146 2Y  -0.091 0.129 

M2 
1Y  1.629 0.236 

M2 
1Y  2.164 0.089 

2Y  1.078 0.147 2Y  0.049 0.138 

M3 
1Y  1.671 0.244 

M3 
1Y  2.615 0.103 

2Y  1.078 0.126 2Y  0.229 0.147 

Treatment 18 

M1 
1Y  1.206 0.230 

Treatment 31 

M1 
1Y  1.542 0.096 

2Y  1.044 0.152 2Y  0.683 0.137 

M2 1Y  1.266 0.247 
M2 1Y  1.577 0.101 

2Y  1.551 0.133 2Y  1.411 0.152 

M3 1Y  1.154 0.230 
M3 1Y  1.431 0.099 

2Y  2.195 0.124 2Y  2.218 0.159 
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Table 4. Results from models 
 Levels of signal factor Responses Mean Variance 

Model 1 

M1 1Y  0.190 0.110 

2Y  -0.448 0.096 

M2 
1Y  0.240 0.098 

2Y  0.068 0.092 

M3 
1Y  0.002 0.121 

2Y  0.652 0.100 

Model 2 

M1 
1Y  -0.793 0.188 

2Y  -1.317 0.091 

M2 
1Y  -0.818 0.187 

2Y  -0.864 0.123 

M3 
1Y  -1.054 0.173 

2Y  -0.416 0.123 

Model 3 

M1 1Y  0.311 0.129 

2Y  -1.109 0.100 

M2 1Y  0.544 0.116 

2Y  -0.803 0.089 

M3 1Y  0.637 0.146 

2Y  -0.519 0.108 

 
   Consider Model 1. For example, according to the Table 4, mean of  1Y   in the first level of signal factor is 

0.190. This value for treatment 7 is 1.096 (see Table 3). So improvement rate for 1Y  of model 1 respect to 
treatment 7 in first level of signal factor calculated as follows: 

1,1
1, 7

1.096 0.1 0.190 0.1
0.91

1.096 0.1trtIR =

− − −
= =

−
 

   Note that in some levels of signal factor for responses, the distance between mean and targets is increased. For 
example, mean of  2Y   in the first level of the signal factor in model 1 is 0.448− . This value for treatment 27 is

0.091− . Hence, its improvement rate is -1.28. Tables 5, 6 and 7 show that in most of cases, the obtained 
improvement rates are positive and large.  
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Table 5. Comparison between mean and variance of the best selected treatments respect to the model 1 according to the 
proposed IR index 

 
Mean 

 M1 M2 M3 
 1Y  2Y  1Y  2Y  1Y  2Y  

Treatment 7 0.91 0.93 0.96 0.94 0.90 0.75 
Treatment 15 0.93 0.82 0.97 0.86 0.94 0.44 
Treatment 18 0.92 0.80 0.96 0.90 0.91 0.74 
Treatment 19 0.96 0.88 0.99 0.91 0.97 0.67 
Treatment 27 0.94 -1.28 0.98 -0.13 0.96 -3.28 
Treatment 31 0.94 0.72 0.97 0.89 0.93 0.74 

 
Variance 

 M1 M2 M3 
 1Y  2Y  1Y  2Y  1Y  2Y  

Treatment 7 -0.05 0.63 0.05 0.59 -0.10 0.55 
Treatment 15 0.49 0.34 0.59 0.37 0.51 0.20 
Treatment 18 0.52 0.37 0.60 0.31 0.48 0.20 
Treatment 19 0.46 0.01 0.55 0.13 0.50 -0.02 
Treatment 27 -0.03 0.26 -0.10 0.33 -0.17 0.32 
Treatment 31 -0.14 0.30 0.03 0.39 -0.21 0.37 

 
Table 6. Comparison between mean and variance of the best selected treatments respect to the model 2 according to the 

proposed IR index 
 

Mean 
 M1 M2 M3 
 1Y  2Y  1Y  2Y  1Y  2Y  

Treatment 7 0.10 0.67 -0.01 0.73 -0.13 0.77 
Treatment 15 0.28 0.18 0.29 0.35 0.27 0.47 
Treatment 18 0.19 0.10 0.04 0.54 -0.10 0.75 
Treatment 19 0.62 0.48 0.65 0.60 0.66 0.69 
Treatment 27 0.37 -9.24 0.48 -4.13 0.54 -3.01 
Treatment 31 0.38 -0.27 0.26 0.49 0.13 0.76 

 
Variance 

 M1 M2 M3 
 1Y  2Y  1Y  2Y  1Y  2Y  

Treatment 7 -0.79 0.65 -0.81 0.45 -0.58 0.45 
Treatment 15 0.12 0.38 0.21 0.16 0.29 0.02 
Treatment 18 0.18 0.40 0.24 0.08 0.25 0.01 
Treatment 19 0.07 0.06 0.14 -0.16 0.28 -0.25 
Treatment 27 -0.76 0.29 -1.10 0.11 -0.67 0.17 
Treatment 31 -0.96 0.34 -0.86 0.19 -0.74 0.23 
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Table 7. Comparison between mean and variance of the best selected treatments respect to the model 3 according to the 
proposed IR index 

 
Mean 

 M1 M2 M3 
 1Y  2Y  1Y  2Y  1Y  2Y  

Treatment 7 0.79 0.73 0.66 0.75 0.47 0.72 
Treatment 15 0.83 0.33 0.76 0.40 0.66 0.37 
Treatment 18 0.81 0.27 0.68 0.57 0.49 0.70 
Treatment 19 0.91 0.58 0.88 0.63 0.84 0.63 
Treatment 27 0.85 -7.33 0.82 -3.72 0.79 -3.81 
Treatment 31 0.85 -0.03 0.75 0.53 0.60 0.71 

 
Variance 

 M1 M2 M3 
 1Y  2Y  1Y  2Y  1Y  2Y  

Treatment 7 -0.23 0.61 -0.12 0.60 -0.33 0.51 
Treatment 15 0.40 0.31 0.51 0.39 0.40 0.14 
Treatment 18 0.44 0.34 0.53 0.33 0.37 0.13 
Treatment 19 0.37 -0.03 0.47 0.16 0.39 -0.10 
Treatment 27 -0.21 0.22 -0.30 0.36 -0.41 0.27 
Treatment 31 -0.35 0.27 -0.15 0.41 -0.47 0.32 

 
Table 8 includes responses’ mean and optimal setting of control factors in three models. Figure 5 depicts the 
mean of 1Y  and 2Y  according to the optimal setting. As Figure 5 shows, profiles of 1Y  and 2Y have less distance 
from target in randomly levels of the noise factor for three models. So, optimum setting which are obtained 
from three models could decrease distance of mean from the target in all of the signal factor levels. 
 

Table 8. Optimum setting obtained from three models 
  

  Levels of Control factors Mean 1Y  Mean 2Y  
 A B C D E M1=0.1 M2=0.2 M3=0.3 M1=0.1 M2=0.2 M3=0.3 

Model 1 -1 1 1 1 0 0.190 0.240 0.002 -0.448 0.068 0.652 
Model 2 -1 1 1 1 -0.714 -0.793 -0.818 -1.054 -1.317 -0.864 -0.416 
Model 3 -1 1 -0.1 1 0.125 0.311 0.544 0.637 -1.109 -0.803 -0.519 

 
 

 
(a) 
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(b) 
 

 
(c) 

Figure 5. Profile of 1Y  and 2Y according to the proposed setting   (a) Model 1 (b) Model 2 (c) Model 3 
 
   Figure 6 presents a comparison between process mean, targets and variations of model 1 as the best model and 
treatment 27 as the best initial treatment. In the mentioned figure, ijY is mean for ith response in jth level of 

signal factor. Also ijV  is variance for ith response in jth signal factor level.  
Results show the efficiency of the proposed method to obtain the setting of control factors. However, distance 
between process mean and its target and variance for 2Y  are increased a little, but variation and distance 

between process mean and the target for 1Y  are decreased considerably. 

 
4- Conclusions 
 
   In this paper, a new method based on the process capability index is proposed to optimize multivariate signal-
response systems. By using multivariate process capability index, location and dispersion of responses can be 
considered with a single measurement (PC) in each level of the signal factor. Finally, PC is modeled as a 
general linear model in each level of signal factor according to the control factors. Optimum levels of control 
factors are obtained by solving optimization models of control factors in each level of signal factor. The 
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simulated results show the efficiency of the proposed approach considering the improvement ratio index. 
Determination of Pareto optimal solutions for all levels of signal factor using multi objective optimization 
method can be studied as a related future research. 
 
 
 
 

 
Figure 6. Comparison between process mean and targets of 1Y  and 2Y  as well as variance of them for model 1 and 

treatment 27 
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