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Abstract 
Resilient natural gas production and transmission pipeline for minimum cost and 

minimum the maximum cumulative fraction of unsupplied demand related to the met 

demand before disruption) are two essential goals of natural gas transmission network 

design. This paper develops a multi-objective multi-period mixed possibilistic-

stochastic programming model to form a trade-off between resiliency and cost. In the 

presented model, the uncertainty of natural gas consumptions is considered as an 

operational risk while disruption risks are accounted for the failure of refinery 

production capacity and pipeline transmission capacity. The proposed model utilizes 

mitigation strategy such as extra capacities in the refinery, backup and fortified 

pipelines before disruption event and recovery strategy for restoring lost capacities of 

facilities to reach normal performance after disruption event. Finally, the performance 

of the proposed model is validated by executing a computational analysis using the 

data of a real case study. Our analysis shows that the efficiency of the natural gas 

transmission network is highly vulnerable to failure of pipeline and refinery capacity 

as well as demand fluctuations. Also, results indicate that utilizing extra refinery 

production capacity, fortified pipeline and backup pipeline options have numerous 

influences in raising the resiliency of the NG network. 

Keywords: Natural gas transmission network, resilient natural gas network, 

possibilistic programming, two-stage scenario-based stochastic programming, multi-

objective optimization 

  

1-Introduction 
   Designing the resilient natural gas supply chain (R-NGSC) is an important and essential issue for industry 

experts and policymakers due to great economic, health, security and social losses created by relevant 

disruption (Liu et., 2020). Natural gas supply chain (NGSC) is comprised of upstream, midstream and 

downstream parts that form a complex and vast network. refinery facilities and import activities are done 
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in upstream sector while in midstream stage, transmission and storage operations accomplished. Finally, 

distribution of Natural gas (NG) to end users falls in the downstream echelon. NGSC was optimized in 

many issues from economic (Hamedi et al.,2009; Üster and Dilaveroğlu, 2014; Liang et al., 2020; Sesini et 

al., 2020), environments (Azadeh et al., 2016; Kashani and Molaei, 2014; Zamanian et al., 2020), quality 

(Li et al., 2011), risk assessment (jo et al., 2008; Cimellaro et al., 2014), vulnerability evaluation (Omidvar 

and Kivi, 2016; Su et al., 2018; Tsinidis et al., 2019), and reliability assessment (Fan et al., 2017; Su et al., 

2018; Yu et al.,2018; Liu et al., 2018). NGSC Decisions according to time horizons are classified into 

strategic, tactical and operational levels (Papageorgiou 2009). Strategic decisions are pre-operating 

activities that try to design the best network structure by locating of pipelines, compressor stations, city gate 

stations, underground gas storage (UGS) and aboveground storage. Whereas, tactical and operational 

decisions such as flow and pressure rate, inventory management and working capacity and recovery 

planning of facilities prompt the exiting network for optimal performance. When process industries like 

water, power, natural gas and petroleum industries are studied, the complexity of the problem is increased 

because it deals with the vast network due to long distances between production facilities and consumer 

zones. Therefore, creating and keeping flow continuity in NG network requires the mass and energy balance 

equations for the network nodes, the pressure-drop equations in the pipes and the gas compression equations 

in the compressor stations nodes which makes natural gas network design optimization an attractive but 

challenging topic especially under business-as-usual and disruption risks. 

   Disruption risks are the uncertainties with high impact but low likelihood. Various disruptions that can 

be divided to external and internal factors influence on the continuous performance of natural gas supply 

chain. External factors include natural disaster (Earthquake, landslide, liquefaction, rockfall, avalanche, 

storm, tsunami, flood and cold), climate change, human-made accidents (Collision with pipes and 

installations, Terrorist attacks, war) and pandemic that are outside control of NG workforce and industry 

experts. Whereas, Internal factors like technology fracture and workforce error occur in the network 

(Ghavamifar et al., 2018; Emenike and Falcone., 2020). On the other hands, business-as-usual events or 

operational risks are common uncertainties that occur in high likelihood with low effects. In the NGSC 

models, some parameters such as NG demand, NG supply, prices and costs can be under uncertainty. In 

general, the input parameter of the model can be under two kinds of uncertainty, inclusive of: (1) 

randomness that occurs if historical data about the input parameter is available, sufficient and reliable in 

which can be extracted its probability distribution. Accordingly, stochastic programming can be utilized for 

handling the randomness of the parameters and (2) epistemic uncertainty that arises from lack of knowledge 

in the input parameters in which can be estimated from expert's subjective data to express the possibility 

distribution of uncertain parameter. As a result, the possibilistic programing approach can be applied for 

modeling the epistemic uncertainty (Pishvaee and Torabi, 2010). These risks cause to different kinds of 

challenges that can be classified into NG shortage, network pressure drop, gas pollution, pipeline fracture, 

explosion and fire, Leakage of toxic substances and increase of network pressure. a summary of the 

challenges in the NGSC, factors and the amount of importance and the location of occurrence are presented 

in table 1. Despite of these disruptions happens in low probability but have severe economic, environment 

and social impacts. One example can be pointed to the outbreak impacts of COVID-19 pandemic on the 

NGSC which is a rare uncertainty however have huge impacts like reduction in NG price, increase of NG 

demand and damage to NG trade.  
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Table 1. Different kinds of challenges in NGSC 

challenges factors The amount of importance  The Affected 

area 

explosion and fire Corrosion, Collision, Terrorist attacks, the 

lack of safety issues.  

 

 

Lead to casualties and 

extensive economic damage 

Refineries 

and 

transmission 

pipeline 

pipeline fracture Corrosion, Collision Inability to transfer NG for a 

long time 

transmission 

pipeline 

network pressure 

drops 

High consumption 

Sudden outage of compressor stations due 

to power outages, workforce error 

earthquake. 

 

NG consumers will be forced 

to choose other fuels for 

public use and heating 

transmission 

pipeline 

distribution 

network 

gas pollution Defects during refining Disruption for NG 

consumers 

transmission 

pipeline 

 

NG shortage  Reduction of production, cut-off of 

imports, disruption of wells and refineries 

due to natural disasters and human-made 

accidents 

It Causes gas cuts to 

consumers or makes serious 

problems for gas 

consumption 

Distribution 

network 

Leakage of toxic 

substances 

Damage to equipment It Causes poisoning of 

several people or killing of at 

least one person 

refineries 

 

   Each of these challenges account one of the main threats in the natural gas network that can reduce the 

actual capacity and limit the supply of NG to different consumers. An example of NGSC disruption is the 

Northridge earthquake in 1994, which burned the Balboa region by a gas pipeline explosion, and about 

15,000 gas cuts were caused by leaks. Another example of disruption is security incidents in oil and gas 

supply chain that Karmon (2002) listed events worldwide relating to pipelines, oil and gas facilities for the 

period 1980-2000 in which the highest rates of sabotage and terrorist attacks are in Latin American and the 

lowest in East Asia.  

   Unlike other supply chains, NGSC requires more attention in resilience concept. The reason is that NGSC 

is one of the critical infrastructure networks for societies in which its infrastructure has high investment 

facilities. Also, it directly or indirectly employs a large number of work forces and have great impacts on 

the world economy. As well as, NG facilities likes NG pipelines, compressor stations and refineries are 

prerequisite for normal function of NG network in which the shutdown and failure of turbos and compressor 

stations, leaks, bursts, or rupture of NG pipeline, periodic maintenances, production and supply disruption 

and demand fluctuations during seasonal changes is unavoidable. Hence, the NGSC needs a resilient 

approach to build resilient network in order to continue, resist and recover its performance against 

disruptions.   

   The idea of Resilience is implemented as a novel approach in supply chain management in recent years. 

Resilience tries to sustain the network's operation continuously by emphasizing two dimensions of strength 

and flexibility. Various definitions about resilience supply chain (RSC) are presented by scholars in which 

can be seen similarities in the definitions.  In general, resilience can be divided into 5 phases by reviewing 

the exiting definitions: (1) predicting unforeseen events (2) resisting against events, (3) responding to 

events, (4) restoring the network (5) going back to sustain situation and gaining knowledge from events.  

Many definitions emphasize that an essential factor in resilience is the ability of supply chain to recover 

and return to normal or even better condition after disruption (Sabouhi and Jabalameli, 2019). The UK 

energy research center is defined resilience in energy systems as the ability of system to reinforce its 

capacity and recover disrupted capacity as soon as possible as well as continue gas supply with alternative 

fuels when disruption occurred. Recently, some of authors such as Bringer et al. (2013) and Hosseini and 
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Barker (2016) introduced the resilience concept by the three capacity categories namely absorptive 

capacity, adaptive capacity and recoverable capacity that each of them indicates ability of system to stand 

prior to a disruption happening, overcome to disruption during happening and restore rapidly after 

disruption event, Respectively. Different strategies such as mitigation and recovery strategies are employed 

in various studies to build resilient supply chain. Mitigation strategies are utilized before disruption to 

reduce vulnerability and risk exposure. Examples of mitigation strategies consist of extra production 

capacity, back up routes and facilities, multiple-sourcing, emergency inventory and product substitution, 

etc., However recovery strategy are applied after disruption event where the most efficient actions of 

restoring facilities perform to reach normal performance. In general, resilience strategies in the Natural gas 

transmission network (NGTN) as a midstream part of NGSC can be divided into two types of redundancy 

and diversity that each of them increases the resistance of different parts of network, i.e., inlet (refinery), 

internal (pipeline and compressor stations) and output (increase in NG consumption). In the literature, 

redundancy strategy refers to having additional capacity and support systems in order to maintain 

performance in the event of challenges. Example of redundancy strategies specific to NGTN include 

designing of loop network using Backup pipeline, boosting compressor stations with spare turbo 

compressors, installing and increasing underground gas storages, extending the production capacity of 

refineries, connecting each refinery to at least two separate pipelines. On the other hand, diversity strategy 

refers to having a variety of alternatives to continue performance well.  For instance, when a challenge leads 

to failure of pipeline near major industries and power plants, NG supply can be temporarily resumed using 

compressed natural gas (CNG) and liquefied natural gas (LNG). In fact, diversity strategy proposes utilizing 

aboveground storages for storing LNG near consumption areas especially in cases where underground gas 

storages (UGS) are not available due to geography.   

   This paper addresses a NG transmission network design problem in a three-echelon network where 

capacities of refineries and pipelines are vulnerable to disruption risks. Also, in order to consider 

consumption challenges as operational risks into the modelling, the demand parameter is formulated as 

imprecise data. Therefore, the proposed model attends to both operational and disruption risks at the same 

time. Accordingly, operational risk is handled by imprecise demand parameter which is formulated as 

possibility distributions in the form of fuzzy sets. Addition, the disruption risks are handled based on 

independent and discrete stochastic scenarios with a pre-defined probability of incident while their impacts 

are represented via scenario associate parameters. For this purpose, A two-stage scenario-based stochastic-

possibilistic programming model is formulated to cope both disruption and operational risks. Among the 

major contributions of this paper is taking into account even mitigation decisions at pre-disruption and 

recovery strategy of lost capacities at post-disruption simultaneously. The proposed model considers 

additional capacities in refineries, backup pipeline, fortified pipeline and standby spare turbo compressor 

in compressor stations as resilience options. Moreover, this paper introduces a resilience quantitative index 

to minimize the maximize NG shortages based on the capacities as a result of post-disruption restorations. 

The Augmented 𝜀-constraint is applied to transform the bi-objective model into a single objective 

formulation. Finally, the proposed model is examined in Iran NGTN.  

   The rest of the paper is organized as follows. Section 2 reviews the related works in the resilient NGTN. 

the problem definition and the mathematical model is described in Section 3. In Section 4, The case study 

is examined besides numerical results and related sensitive analysis. Eventually, conclusions and 

suggestions as well as the directions for future research are presented in Section 5. 

2-Literature review 
   In this section, the literature of resilient NG transmission network by five categorizations including: 

decision level, type of risk, vulnerable part in NGTN, strategy type and resilience is reviewed.  

 Decision level: In general, optimization problems in NGTN are categorized into design problems 

and operational problems. design problems comprise strategic decisions that determine the suitable 

locations of pipelines and facilities to allow optimum operation. The goal of design problem 

includes the optimization of transmission capacity (Alves et al., 2016) and future network 
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expansion plans (Mikolajková et al.,2017) with minimal investment cost (Tabkhi et al.,2009). The 

operational problems involve tactical decisions with the aim of optimizing the operating conditions 

of existing network. Various objectives in natural gas transmission network operational problems 

such as reducing operating costs (Misra et al., 2015), increasing delivery capacity (Fasihzadeh et 

al., 2014), maximizing line pack (Kashani et al., 2014), reducing Environment effects (Azadeh et 

al., 2015) and reducing fuel consumption (Demissie et al., 2017) are considered. 

 Type of risk: business-as-usual and disruption risks are two types of risk in NGTN. Business-as-

usual or Operational risks are usual uncertainties that occur in high likelihood with low effects, 

such as demand (Behrooz, 2016), supply capacity (Yu et al., 2018) and cost fluctuations (Zhang et 

al.2019). However, Disruption risks happen in low likelihood but severe consequences which fall 

into three groups: (1) natural disasters, (2) human-made threats (Urciuoli et al., 2014) and (3) 

technological threats (Cimellaro et al., 2015).  

 Vulnerable part in NGTN: various studies have considered disruption risks in different parts of 

NGTN such as refinery, pipeline, NG storage, compressor station and consumer that can be 

vulnerable under disruption conditions.  

 Type of strategy: as mentioned in the previous section, mitigation and recovery strategies are 

resilient actions that authors employed them in their studies.  For example, line pack strategy as a 

mitigation strategy is utilized in Kashani and Molaei (2014) and installing backup pipeline is 

employed in (Mikolajková et al.,2017). 

 Resiliency: The resiliency concept is quantitatively defined by different measurement indicators 

such as minimizing vulnerability (Su et al., 2019), shortage (Zamanian et al., 2020) and recovery 

time (Cimellaro et al., 2015) in various studies.  

   Tabkhi et al. (2009) formulated a mixed integer nonlinear programming model to optimize NGTN, where 

the model is to use supply gas and storage capacities to satisfy demand consumers. Kashani and Molaei 

(2014) proposed a multi-objective optimization model to find optimum operating condition of NG network. 

For this purpose, three conflicting objective functions namely maximum gas delivery flow and line pack, 

and minimum operating cost (sum of fuel consumption and carbon dioxide emission costs) are applied to 

increase the efficiency of network. Urciuoli et al. (2014) studied on exogenous security threats and 

disruption strategies of oil and gas supply chains. They introduced that some strategies like portfolio 

diversification, flexible contracts, and transport capacity planning and safety stock is essential to build 

resilient NGSC. Cimellaro et al. (2015) investigated different failure modes of pipeline in the gas 

distribution network in which introduce the emergency shutoff valves along pipelines as resiliency strategy 

in order to control disruption risk. Also, the performance of the gas distribution network is measured by 

formulating a new resilience index with regard to restoration phase. Azadeh et al. (2015) proposed a multi-

objective fuzzy linear programming model in order to optimize NGSC under demand, cost and capacity 

uncertainty. They utilized NG storage as mitigation strategy to response the sudden increase in demand. 

Behrooz (2016) pointed that the uncertainties relevant to the demand forecast mistakes is an important 

factor that should be attend in order to increase the robustness of NG network daily planning. For this 

purpose, stochastic-chance-constrained programming technique is developed to cope with the uncertainty 

of the forecasted future demands. Behrooz and Boozarjomehry (2017) discussed the impact of the line-pack 

strategy in the robustness of NGSC under fluctuations of demand parameter.  Mikolajková et al. (2017) 

developed a multi-period linearized MILP formulation to optimize gas distribution network design that 

considers the influences of other gas sources, parallel pipelines and the seasonal changes and demand 

fluctuations on the optimum network design. Yu et al. (2018) proposed a new methodology to evaluate the 

impact of both gas supply capacity and market demand uncertainties on the gas supply reliability of NGTN. 

Zhang et al. (2019) presented a MILP model to optimize design and operation of multi-state NGSC under 

uncertainty of the NG purchase price and cities' demand in which uses the seasonal storage and 

transportation options plane of three states of NG to resist the network against different disruptions. Yu et 

al. (2019) introduced a methodology to evaluate gas supply reliability of NGTN by UGS under uncertainty 

of gas injection/production capacity. Su et al. (2019) presented a multi-objective optimization method to 
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trade-off supply reliability and power demand of compressor station in the NGTN. They considered the 

uncertainties of supply and demand and quantified the probability of supply interruption based on the mass 

conservation equation. Zamanian et al. (2020) studied the resilience-sustainable NGSC in order to optimize 

the operations of network with a multi-objective multi-period model. Sesini et al. (2020) presented a linear 

programming model to design resilient NG network via LNG and NG storages under unexpected increase 

in demand. Liang et al. (2020) presented a two-stage approach to design the NG pipeline, in which in the 

first stage the throughput of the pipeline is determined by predicting the demand in the future and then in 

the second stage a mathematical model is proposed for designing pipeline network. Zhu et al. (2021) 

investigated gas supply reliability of NGTN considering the individual difference differences among users 

and the reparability of pipeline networks. For this purpose, they introduced a new assessment reliability 

index by combining gas shortage time and severity. Table 1 presents a systemic review of literature of 

NGTN optimization problems. It should be note that resilience column in this table shows that any reviewed 

studies optimized qualitatively or quantitatively the resilience in their model or not. 

Table 2. A summary of the natural gas supply chain’s literature 

References Decision level Type of risk Vulnerable part 
Strategy 

type 
Resilience 

Tabkhi et al. (2009) 
Strategic 

Tactical 
_ _ mitigation No 

Kashani and Molaei's 

(2014) 
Tactical   Mitigation Yes 

Urciuoli et al. (2014) Tactical Disruption NG facilities Mitigation No 

Cimellaro et al. (2015) Tactical Disruption Pipelines 
Mitigation 

Recovery 
Yes 

Azadeh et al. (2015) Tactical Operational Demand Mitigation Yes 

Behrooz (2016) Tactical Operational Demand Mitigation NO 

Behrooz and 

Boozarjomehry (2017) 
Tactical Operational Demand Mitigation No 

Yu et al. (2018) Tactical Operational 
Demand/supply 

capacity 
Mitigation Yes 

Zhang et al. (2019) 
Strategic 

Tactical 

Disruption 

Operational 

NG purchase price 

and cities' demand 
Mitigation No 

Yu et al. (2019) Tactical Operational 

gas 

injection/production 

capacity 

Mitigation Yes 

Su et al. (2019) Tactical Operational supply and demand Mitigation Yes 

Zamanian et al. (2020) Tactical   Mitigation Yes 

Sesini et al. (2020) 
Strategic 

tactical 
Operational Demand Mitigation Yes 

Liang et al. (2020) 
Strategic 

Tactical 
Operational Demand  No 

Zhu et al. (2021) Tactical Disruption Pipeline Mitigation Yes 

This study 
Strategic 

Tactical 

Operational 

Disruption 

Pipeline/ refinery/ 

Demand 

Mitigation 

Recovery 
Yes 

 

   According to the reviewed articles in the table 2, it can be found that, most of these papers concentrates 

on tactical decisions. However, it is needed to consider resilience perspective in the NG network design as 

strategic decisions because of high investment costs of NG facilities.  In particular, the existed researches 

in the literature discuses mostly operational risks such as demand fluctuational, while the disruption risk 

such as capacity failure at refinery, UGS and pipeline is less noticed why they need to handle with making 

strategic decisions such as mitigation strategy.  Also, investigations show that a few papers study both 

disruption and operational risks concurrently. More interestingly, in spite of importance in vulnerability of 



743 
 

natural gas facilities (such as refinery, pipeline, compressor station and NG storage) to disruption risk, 

research works that addressed to this issue are so rare. Also, Reviewing the relevant literature shows that 

only a few papers modeled resiliency index in the NGTN design problem and measure the impact of 

resiliency strategies on the network resilience. It can also be seen that most of papers account mitigation 

strategy to build resilient NGTN, while it would be valuable to formulate resilient NGTN models 

accounting both mitigation and recovery strategies. Eventually, most of the papers do not address the 

recovery time and the time delay between the occurrence of the disruption and the recovery time. Therefore, 

it is needed to optimized the recovery time of facilities as an effective strategy.  

   To fill the literature gaps, this study presents a two-stage scenario-based stochastic-possibilistic 

optimization model for natural gas Transmission network design problem that some mitigation strategies 

are decided in the pre-disruption stage (in the first stage), and recovery decisions are determined in the post-

disruption under each scenario (in the second stage). The proposed model copes with both operational and 

disruption risks.  operational risk is seen as an uncertain demand parameter in the mathematical model that 

is managed with imprecise parameter and the perception about it is fuzzy triangular numbers. However, 

Disruption risks in the mathematical model are handled based on independent and discrete scenarios with 

a pre-defined probability of incident that exclusively can influence the flow capacity of pipelines and 

production capacity of refinery partially or completely. As a consequence, in order to build resilient NG 

network, some mitigation strategies such as providing extra production capacity in refineries, considering 

backup pipelines in the network as loop condition and fortifying of pipelines are conducted in the first stage 

of the model. Also, recovery strategies are done for restoring the disrupted production capacities in the 

refineries in the post-disruption phase. It is significant that the resilience level of NGTN is measured by 

minimizing the maximum cumulative fraction of unsupplied demand over the planning horizon using the 

chosen mitigation and recovery strategies. Also, in order to modeling the recovery strategy, two strategic 

and tactical time periods are considered in which there is a time delay between the occurrence of the 

disruption and the recovery time.  

 

2-Problem definition 
   This paper investigates a three-echelon, multi-objective and multi period natural gas transmission network 

design (figure 1) such that refineries after manufacturing the natural gas, send it to different consumer zones 

through compressor stations and pipelines. The output NG flow from the refineries starts with the maximum 

permitted value pressure in order to continues and meets some consumer zones in the acceptable pressure 

range until arrives one of the nearest compressor stations to boosts its pressure value because that the NG 

loses its pressure due to friction with the wall of pipeline. Hence, locating of pipelines and compressor 

stations as one of the key decisions are going to determine in this network. The flow direction in the 

pipelines can change from one period to another that is function of pressure difference, the NG flow rate 

and pipeline resistance.  
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Refinery station

Primary turbo

Standby turbo

Compressor station

Primary pipeline with 

second fortification level

Primary pipeline with first 

fortification level

Backup pipeline with 

second fortification level

Loop condition

 

Fig 1. Structure of natural gas transmission network under study 

 

   Refineries and pipelines capacities can be partially or completely threatened by different disruption risks 

that range from human-made accidents (e.g., Collision with pipes, work strikes, Terrorist attacks, war and 

sanction) to natural disaster (e.g., Earthquake, landslide, liquefaction, flood). To employ disruption risks in 

the mathematical model, a set of independent and discrete scenarios with a pre-defined probability of 

incident are specified that their impacts formulated by scenario-dependent parameters. To overcome 

disruption risks, three mitigation strategies include adding extra capacities for refineries, fortifying of 

pipelines and installing backup pipeline when the primary pipelines are not usable due to failure. In fact, 

mitigation strategies act as an absorption capacity in which help to network in order to continue its 

operations during disruption as well as recover lost capacities with minimal time and cost after disruption. 

For instance, if the primary pipeline is disrupted but the backup pipeline is undamaged; so, the flow can 

continue to network via backup pipeline until the primary pipeline is recovered. 

   Operational risk in our model is considered as an uncertain demand parameter. Because, NG demand 

parameter is inherently uncertain input data according to the various agents such as growth economic, 

electricity generation and weather conditions. Also, due to lack of the precise information and sufficient 

historical data about this uncertain parameter, probability distributions cannot be obtained. So, we take 

advantage of an expert’s opinions and experiences in order to formulate the imprecise parameter based on 

epistemic uncertainty. Hence, this imprecise demand parameter is formed as triangular fuzzy numbers and 

the possibilistic chance constraint programming approach is used to deal with inaccurate demand parameter. 

However, disruption risk in our model is the percentage of lost capacity in pipeline and refinery that effects 

on the flow capacity of pipeline and production capacity of refinery, respectively. For this purpose, the 

disruption risks in the model are handled based on three independent and discrete scenarios, small, medium 

and large scale. The small-scale scenario recognizes the least severe and the large-scale scenario recognizes 

the most severe case. Noteworthy, each of scenario has a pre-defined probability of incident while their 

impacts are represented via scenario associate parameters. Hence, in order to deal with disruption risks, the 

scenario-based stochastic programming method is employed as a common method. Interested readers can 

refer to Torabi et al. (2015) and Sabouhi et al. (2018) for more information.  

   The purpose of this problem is concurrently minimizing the total cost and maximizing the resilience of 

NGTN as well as seeks to determine some decisions as follows:  

 The locating of primary and backup pipelines with their fortification levels, 

 The locating of compressor stations with their turbos,  

 The direction of flow in the primary and backup pipelines,  

 The amount of extra production capacity of refineries, 

 The amount of flow transferred in each primary and backup pipeline, 
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 The amount of NG flow produced from refineries,  

 The amount of working capacity of refineries, 

 The amount of recovery capacity of refineries, 

 The amount of inlet and outlet pressure in each node. 

   To make the mentioned decisions, a stochastic-possibilistic, multi-objective, multi-period model is 

proposed that includes both disruption and operational risks. The first objective is to minimize the expected 

entire NGTN cost in different disruption scenarios, while the second objective aims to minimize the 

maximum (worst case) cumulative fraction of unsupplied demand over the planning horizon.  

 

3-1- mathematical model 
   The following assumptions are considered for formulate the problem: 

 It is assumed that NGTN operates in a steady state and an isothermal situation, 

 The pipeline segments are horizontal, 

 The outlet pressure of compressor stations is assumed to boost the pressure at most 60% more than 

the inlet pressure, 

 The maximum capacity expansion of the refinery is 20% of initial capacity, 

 Each node should receive the flow between the minimum and maximum allowed pressure value, 

 Decreased capacity of refineries should be recovered fully by the last period,  

 The lost capacity of refineries is recovered after post-disruption in the recovery time period 𝑤𝑟, 

 It is also assumed that the occurrence of disruptions occurs in the first operational time period, 

 There is a time delay between the occurrence of disruptions and the start of recovery.  

In the following, the sets, parameters and decision variables used in the proposed mathematical model are 

presented. 

 

Sets 

𝑁𝑅 Set of refineries  

𝑁𝐷 Set of demands 

𝑁𝐶 Set of compressor stations 

𝑁 Indexes of 𝑁𝑟,𝑁𝑑,𝑁𝑐 

𝑈 Set of turbo compressor in each compressor stations  

𝐸 Set of Fortification levels 

𝑊 Set of operational time periods (month)  

𝑇 set of strategic time periods(year)  

𝑆 Set of disruption scenarios 

Parameters 

𝑓𝑒𝑡𝑤
𝑝

 Fixed cost of locating a pipeline with fortification level e in period 𝑡 at week w 

𝑓𝑏𝑒𝑡𝑤
𝑝

 Fixed cost of locating a backup pipeline with fortification level e in period 𝑡 at week w 

𝑓𝑡𝑤
𝑐  Fixed cost of locating one turbo compressor in a compressor station in period 𝑡 at week w 

𝑜𝑡𝑤
𝑝

 Operating cost of one km of a pipeline arc in period 𝑡 at week w 

𝑜𝑡𝑤
𝑐  Operating cost of one turbo compressor in a compressor station in period 𝑡 at week w 

𝑜𝑏𝑡𝑤
𝑝

 Operating cost of one km of a backup pipeline arc in period 𝑡 at week w 

𝑐𝑡𝑤 Transportation cost in period 𝑡 at week w 

𝑐𝑒𝑖𝑡𝑤 The cost for extra capacity at refinery 𝑖𝜖𝑁𝑅 in period t at week w 

𝑐𝑝𝑖  Unit cost of recovering production capacity of refinery nodes 𝑖𝜖𝑁𝑅 

ℎ𝑖𝑡𝑤 The cost of producing natural gas by refineries 𝑖𝜖𝑁𝑅 in period 𝑡 at week w 

𝐴𝑃𝑖𝑗  1 if a connection is allowed between nodes 𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁, otherwise 0 

𝑙𝑖𝑗  Distance between nodes 𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 

𝐷𝑒̃𝑗𝑡𝑤 Demand of customers 𝑗 ∈ 𝑁𝐷 in period 𝑡 at week w 

𝐷𝑗𝑡𝑤 Demand of customers 𝑗 ∈ 𝑁𝐷 that is satisfied before disruption in period 𝑡 at week w 
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𝑐𝑎𝑝𝑖𝑗𝑡𝑤  Capacity of the total possible flow between nodes 𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁in period t at week w 

𝑐𝑎𝑖  Initial Production Capacity of refinery 𝑖 ∈ 𝑁𝑅 

𝜗𝑖𝑗𝑒𝑠 Percentage of lost capacity a pipeline with fortification level e between nodes 𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 under scenario s 

𝜃𝑖𝑠 Percentage of lost capacity refinery nodes 𝑖 ∈ 𝑁𝑅 under scenario s 

𝑢𝑝𝑖  Upper bound of extra capacity at refinery nodes 𝑖 ∈ 𝑁𝑅(percentage) 

𝜈 Capacity of one turbo compressor in compressor station 

𝑃𝑚𝑎𝑥  Maximum permissible gas pressure in the network 

𝑃𝑚𝑖𝑛 Minimum permissible gas pressure at a demand node 

𝜔 Maximum pressure rise multiplier at a compressor 

𝜋𝑠 Probability of occurrence of scenario 𝑠 ∈ 𝑆 

𝛼𝑖𝑗𝑡𝑠𝑘 Lower bound of flow in interval k between nodes 𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 in period t under scenario s 

𝛽𝑖𝑗𝑡𝑠𝑘 upper bound of flow in interval k between nodes 𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 in period t under scenario s 

𝐴𝑖𝑗𝑡𝑠𝑘 The square of lower bound of flow in interval k between nodes 𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 in period t under scenario s 

𝐵𝑖𝑗𝑡𝑠𝑘 The square of upper bound of flow in interval k between nodes 𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 in period t under scenario s 

   Binary variables 

𝑌𝑖𝑗𝑒𝑡𝑤 1 if a new pipeline is located between nodes 𝑖 ∈ 𝑁 and 𝑗 ∈ 𝑁, 𝑖 < 𝑗, with fortification level e in period 𝑡 at 

week w, 0 otherwise 

𝑌𝑏𝑖𝑗𝑒𝑡𝑤 1 if a back-up pipeline is located between nodes 𝑖 ∈ 𝑁 and 𝑗 ∈ 𝑁, 𝑖 < 𝑗, with fortification level e in period 𝑡 
at week w, 0 otherwise 

𝐶𝑜𝑖𝑢𝑡𝑤 1 if a compressor station 𝑖 ∈ 𝑁𝐶with type 𝑢 is located in period 𝑡 at week W, 0 otherwise 

𝐵𝑖𝑗𝑒𝑡𝑤  1 if NG flows in a pipeline with fortification level e from 𝑖 ∈ 𝑁 to 𝑗 ∈ 𝑁 in period 𝑡 at week w, 0 otherwise 

𝐺𝑖𝑗𝑟𝑒𝑡𝑤  1 if NG flows in a back-up pipeline with fortification level e from 𝑖 ∈ 𝑁 to 𝑗 ∈ 𝑁 in period 𝑡 at week w, 0 

otherwise 

Continues variables 

𝑋𝑖𝑗𝑠𝑡𝑤  The amount of NG transferred in pipeline between nodes 𝑖 ∈ 𝑁 and 𝑗 ∈ 𝑁 under scenario s in period 𝑡 at 

week w 

𝑋𝑏𝑖𝑗𝑠𝑡𝑤 The amount of NG transferred in pipeline between nodes 𝑖 ∈ 𝑁 and 𝑗 ∈ 𝑁 under scenario s in period 𝑡 at 

week w 

𝑄𝑖𝑠𝑡𝑤  The amount of NG produced in Refinery nodes 𝑖 ∈ 𝑁𝑅 under scenario s in period 𝑡 at week w 

𝐸𝑃𝑖  The extra production capacity for refinery nodes 𝑖 ∈ 𝑁𝑅  

𝑅𝑝𝑖𝑠𝑡𝑤 Production capacity at refinery 𝑖 ∈ 𝑁𝑅 that is recovered under scenario s in period 𝑡 at week w 

𝑊𝑃𝑖𝑠𝑡𝑤 Working capacity of refinery 𝑖 ∈ 𝑁𝑅 under scenario s in period 𝑡 at week w 

𝑃𝑖𝑛−𝑖𝑠𝑡𝑤  Inlet pressure of nodes𝑖 ∈ 𝑁under scenario sin period t at week w 

𝑃𝑜𝑢𝑡−𝑖𝑠𝑡𝑤 Outlet pressure of nodes 𝑖 ∈ 𝑁under scenario sin period t at week w 

 

 

𝑚𝑖𝑛𝑍1 =∑∑∑∑∑(𝑌𝑖𝑗𝑒𝑡𝑤 − 𝑌𝑖𝑗𝑒𝑡−1𝑤−1)𝑓𝑒𝑡𝑤
𝑝
𝑙𝑖𝑗

𝑤𝑡𝑒𝑗𝜖𝑁𝑖𝜖𝑁

+∑∑∑∑∑(𝑌𝑏𝑖𝑗𝑒𝑡𝑤 − 𝑌𝑏𝑖𝑗𝑒𝑡−1𝑤−1)𝑓𝑏𝑒𝑡𝑤
𝑝
𝑙𝑖𝑗

𝑤

+

𝑡𝑒𝑗𝜖𝑁𝑖𝜖𝑁

∑∑∑∑∑𝑌𝑖𝑗𝑒𝑡𝑤𝑙𝑖𝑗𝑜𝑡𝑤
𝑝

𝑤𝑡e𝑗𝜖𝑁𝑖𝜖𝑁

+∑∑∑∑∑𝑌𝑏𝑖𝑗𝑒𝑡𝑤𝑙𝑖𝑗𝑜𝑏𝑡𝑤
𝑝

𝑤𝑡e𝑗𝜖𝑁𝑖𝜖𝑁

+ ∑ ∑∑∑𝑈(𝐶𝑂𝑖𝑢𝑡𝑤 − 𝐶𝑂𝑖𝑢𝑡−1𝑤−1)𝑓𝑡𝑤
𝑐

𝑤𝑡𝑢𝑖∈𝑁𝐶

+ ∑ ∑∑∑𝑈𝐶𝑜𝑖𝑢𝑡𝑤𝑜𝑡𝑤
𝑐

𝑤𝑡𝑢∈𝑈𝑖∈𝑁𝐶

∑ ∑∑𝑐𝑒𝑖𝑡𝑤
𝑤𝑡

𝐸𝑝𝑖
𝑖∈𝑁𝑅

+ 𝜋𝑠(∑∑∑∑∑(𝑋𝑖𝑗𝑠𝑡𝑤+𝑋𝑏𝑖𝑗𝑠𝑡𝑤)𝑐𝑡𝑤
𝑤𝑡𝑠𝑗𝜖𝑁𝑖𝜖𝑁

+ ∑ ∑∑∑(𝑄𝑖𝑠𝑡𝑤)

𝑤

ℎ𝑖𝑡𝑤 +

𝑡𝑠𝑖∈𝑁𝑅

+ ∑ ∑∑∑𝑐𝑝𝑖𝑅𝑝𝑖𝑡𝑤𝑠
𝑤𝑡𝑠𝑖∈𝑁𝑅

) 

(1) 
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   The objective function (1) aims to minimize the expected total expenses of NGTN design under different 

scenario that includes cost of installing primary and backup pipelines, cost of operating primary and backup 

pipelines, cost of constructing and operating compressor station, cost of extending production capacity of 

refineries, cost of transferring NG flow between nodes, cost of producing and refining NG at refineries and 

cost of recovering for restoring production capacity in refineries. Objective function (2) minimizes the 

maximum cumulative fraction of unsupplied demand (relative to the met demand before the disruption) that 

is defined in equation (3).  

𝑃𝑜𝑢𝑡−𝑖𝑠𝑡𝑤 = 𝑃𝑚𝑎𝑥 
∀𝑖𝜖𝑁𝑅, s ∈ S, 𝑡𝜖𝑇, 

𝑤 ∈ 𝑊 
(4) 

𝑃𝑖𝑛−𝑖𝑠𝑡𝑤 ≥ 𝑃𝑚𝑖𝑛 
∀𝑖𝜖𝑁𝑑, s ∈ S, 𝑡𝜖𝑇, 

𝑤 ∈ 𝑊 
(5) 

𝑝𝑜𝑢𝑡−𝑖𝑠𝑡𝑤 ≤ 𝑃𝑚𝑎𝑥 
∀𝑖𝜖𝑁𝑑, s ∈ S, 𝑡𝜖𝑇, 

𝑤 ∈ 𝑊 
(6) 

Equations (4)-(6) define the domine of permitted pressure value in refinery and demand nodes, respectively. 

∑𝑌𝑖𝑗𝑒𝑡𝑤
e

≤ 𝐴𝑃𝑖𝑗  ∀𝑖, 𝑗𝜖𝑁, 𝑡𝜖𝑇, 𝑤 ∈ 𝑊 (7) 

Equation (7) indicates that if a connection between two nodes is permitted, then the pipeline can be located 

only with one of the fortification levels.  

𝑌𝑏𝑖𝑗𝑒́𝑡𝑤 ≤∑𝑌𝑖𝑗𝑒𝑡𝑤
𝑒

 ∀𝑖, 𝑗 ∈ 𝑁, 𝑖 < 𝑗, 𝑒́
∈ 𝐸, 𝑡𝜖𝑇, 𝑤 ∈ 𝑊 (8) 

Equation (8) ensures that if the primary pipeline is installed then the backup pipeline can be located parallel 

to it. 

𝑌𝑖𝑗𝑒𝑡𝑤 ≥ 𝑌𝑖𝑗𝑒𝑡−1𝑤−1 ∀𝑖, 𝑗 ∈ 𝑁, 𝑖 < 𝑗, 𝑒
∈ 𝐸, 1 < 𝑡 ≤ 𝑇, 
1 < 𝑤 ≤ 𝑊 

(9) 

𝑌𝑏𝑖𝑗𝑒𝑡𝑤 ≥ 𝑌𝑏𝑖𝑗𝑒𝑡−1𝑤−1 ∀𝑖, 𝑗 ∈ 𝑁, 𝑖 < 𝑗, 𝑒
∈ 𝐸, 1 < 𝑡 ≤ 𝑇, 
1 < 𝑤 ≤ 𝑊 

(10) 

Equations (9) and (10) enforce that if a primary or backup pipeline is located in a period, it should be 

remained until the end of the planning horizon, respectively.  

𝐵𝑖𝑗𝑒𝑡𝑤 + 𝐵𝑗𝑖𝑒𝑡𝑤 ≤ 𝑌𝑖𝑗𝑒𝑡𝑤 
∀𝑖, 𝑗𝜖𝑁, 𝑖 < 𝑗, 𝑒
∈ 𝐸, 𝑡𝜖𝑇, 𝑤 ∈ 𝑊 

(11) 

𝐺𝑖𝑗𝑒𝑡𝑤 + 𝐺𝑗𝑖𝑒𝑡𝑤 ≤ 𝑌𝑏𝑖𝑗𝑒𝑡𝑤 ∀𝑖, 𝑗 ∈ 𝑁, 𝑖 < 𝑗, 𝑒
∈ 𝐸, 𝑡𝜖𝑇, 𝑤 ∈ 𝑊 

(12) 

Equations (11) and (12) show that if a primary or backup pipeline is installed, then the flow path can occur, 

respectively.  

∑(𝐵𝑖𝑗𝑒𝑡𝑤
𝑒

+ 𝐵𝑗𝑖𝑒𝑡𝑤) ≤ 1 ∀𝑖, 𝑗 ∈ 𝑁, 𝑖 < 𝑗, 𝑡𝜖𝑇, 𝑤
∈ 𝑊 

(13) 

∑(𝐺𝑖𝑗𝑒𝑡𝑤
𝑒

+ 𝐺𝑗𝑖𝑒𝑡𝑤) ≤ 1 ∀𝑖, 𝑗 ∈ 𝑁, 𝑖 < 𝑗, 𝑡𝜖𝑇, 𝑤
∈ 𝑊 

(14) 

𝑚𝑖𝑛𝑍2 =∑∑𝑅𝑆𝑡𝑤
𝑤𝑡

 (2) 

𝑅𝑆𝑡𝑤 ≥ 1 −
∑ ∑ ∑ (𝑋𝑖𝑗𝑠𝑡𝑤 − 𝑋𝑗𝑖𝑠𝑡𝑤)𝑠𝑗∈𝑁𝐷𝑖𝜖𝑁 + ∑ ∑ ∑ (𝑋𝑏𝑖𝑗𝑠𝑡𝑤 − 𝑋𝑏𝑗𝑖𝑠𝑡𝑤)𝑠𝑗∈𝑁𝐷𝑖𝜖𝑁

∑ (𝐷𝑗𝑡𝑤)𝑗∈𝑁𝐷

                    ∀𝑡, 𝑤 (3) 
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Equations (13) and (14) grantee that the flow passes only in one direction in a primary and backup pipeline, 

respectively.  

𝑋𝑖𝑗𝑠𝑡𝑤 ≤ 𝑐𝑎𝑝𝑖𝑗∑𝐵𝑖𝑗𝑒𝑡𝑤(1 − 𝜗𝑖𝑗𝑒𝑠)

𝑒

 ∀𝑖, 𝑗 ∈ 𝑁, 𝑠 ∈ 𝑆, 𝑡𝜖𝑇, 𝑤
∈ 𝑊 

(15) 

𝑋𝑏𝑖𝑗𝑠𝑡𝑤 ≤ 𝑐𝑎𝑝𝑖𝑗𝑡∑𝐺𝑖𝑗𝑟𝑒𝑡𝑤(1 − 𝜗𝑖𝑗𝑒𝑠)

𝑒

 ∀𝑖, 𝑗 ∈ 𝑁, 𝑒 ∈ 𝐸, 𝑠
∈ 𝑆, 𝑡𝜖𝑇, 𝑤 ∈ 𝑊 

(16) 

Equations (15) and (16) state the capacity limitations of primary and backup pipelines, respectively.  

(∑𝑋𝑖𝑗𝑠𝑡𝑤 −∑𝑋𝑗𝑖𝑠𝑡𝑤
𝑖𝜖𝑁

) + (∑𝑋𝑏𝑖𝑗𝑠𝑡𝑤 −∑𝑋𝑏𝑗𝑖𝑠𝑡𝑤
𝑖𝜖𝑁

) ≥ 𝐷𝑒̃𝑗𝑡𝑤
𝑖𝜖𝑁𝑖𝜖𝑁

 
∀j ∈ 𝑁𝑑, s ∈ S, 𝑡 ∈ 𝑇, 𝑤

∈ 𝑊 

 

(17) 

Equation (17) enforces the flow balance constraint in the demand nodes.  

𝑄𝑖𝑠𝑡𝑤 ≥∑𝑋𝑖𝑗𝑠𝑡𝑤
𝑗∈𝑁

+∑𝑋𝑏𝑖𝑗𝑠𝑡𝑤
𝑗∈𝑁

 ∀i ∈ Nr, s ∈ S, 𝑡 ∈ 𝑇, 𝑤
∈ 𝑊 

(18) 

 

Equations (18)-(25) express the production capacity evolution of refineries over periods. Equation (18) 

indicates the flow balance constraint in the refinery.  

𝑄𝑖𝑠𝑡𝑤 ≤ 𝑊𝑃𝑖𝑠𝑡𝑤  
∀i ∈ Nr, s ∈ S, 𝑡 ∈ 𝑇, 𝑤

∈ 𝑊 
(19) 

Equation (19) represents the upper bound of production that should not exceed the maximum available 

production capacity (working capacity).  

𝑊𝑃𝑖𝑠𝑡𝑤 = (1 − 𝜃𝑖𝑠)(𝑐𝑎𝑖 + 𝐸𝑃𝑖) 
∀i ∈ Nr, s ∈ S, 𝑡 ∈ 𝑇, 𝑤

= 1 
(20) 

Equation (20) shows the working capacity of refinery in the first operational time period that is equal to the 

summation of the remaining initial capacity and extra capacity.  

𝑊𝑃𝑖𝑠𝑡𝑤 ≤ 𝑐𝑎𝑖 + 𝐸𝑃𝑖  
∀i ∈ NR, s ∈ S, 𝑡 ∈ 𝑇, 𝑤

∈ 𝑊 
(21) 

Equation (21) indicates that the working capacity of refinery cannot be greater that the summation of the 

initial production capacity and extra capacity during the recovery stage.  

𝑊𝑃𝑖𝑠𝑡𝑤 = 𝑊𝑃𝑖𝑠(𝑡−1)(𝑤−1) + 𝑅𝑝𝑖𝑠𝑡𝑤  
∀i ∈ Nr, s ∈ S, 𝑡 ∈ 𝑇, 

1 < 𝑤 ≤ 𝑤𝑛 
(22) 

Equation (22) expresses that the working capacity of refinery in time period t is limited by the summation 

of the working capacity in time period t-1 and the recovered production capacity in time period t.  

𝑅𝑝𝑖𝑠𝑡𝑤 = 0 
∀i ∈ Nr, s ∈ S, 𝑡 ∈ 𝑇, 

1 < 𝑤 ≤ 𝑤𝑟 
(23) 

Equation (23) enforces that the recovery amounts of production capacity in refinery are assumed to be zero 

before the start of recovery time (wr). 

∑ 𝑊𝑃𝑖𝑠𝑡𝑤

𝑤𝑛

𝑤𝑟<𝑤

= 𝑐𝑎𝑖 + 𝐸𝑃𝑖  ∀i ∈ NR, s ∈ s, 𝑡 ∈ 𝑇 (24) 

 Equation (24) illustrates that the final amount of working capacity in each refinery should be reach to its 

initial value (i.e., the summation of the initial capacity and extra capacity) in those recovery times that 

restoration is able.  

𝐸𝑃𝑖 ≤ 𝑢𝑝𝑖 ∗ 𝑐𝑎𝑖  ∀i ∈ NR (25) 
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Equation (25) controls the upper bound of extra production capacity.  

(𝑝𝑜𝑢𝑡−𝑖𝑠𝑡𝑤
2 − 𝑝𝑖𝑛−𝑖𝑠𝑡𝑤

2 ) − 𝛿𝑖𝑗(𝑋𝑖𝑗𝑠𝑡𝑤)
2
≥ 𝑀1(∑𝐵𝑖𝑗𝑒𝑡𝑤

𝑒

− 1) ∀𝑖, 𝑗 ∈ 𝑁, 
𝑠 ∈ 𝑆, 𝑡𝜖𝑇, 𝑤 ∈ 𝑊 

(26) 

(𝑝𝑜𝑢𝑡−𝑖𝑡𝑤
2 − 𝑝𝑖𝑛−𝑖𝑡𝑤

2 ) − 𝛿𝑖𝑗(𝑋𝑖𝑗𝑠𝑡𝑤)
2
≤ 𝑀1(∑𝐵𝑖𝑗𝑒𝑡𝑤

𝑒

− 1) ∀𝑖, 𝑗 ∈ 𝑁, 𝑠 
∈ 𝑆, 𝑡𝜖𝑇, 𝑤 ∈ 𝑊 

(27) 

  Equations (26-27) calculate the pressure drop of the primary pipeline according to the NG flow rate and 

pipeline resistance, Notably, Equations (26) and (27) together calculate the pressure drop between nodes in 

the primary pipeline. Specifically, when there is flow from i to j (𝐵𝑖𝑗𝑒𝑡 = 1), the left-hand side of these 

constraints must be equal to zero. However, when 𝑋𝑖𝑗𝑠𝑡𝑤 is zero, Equations (26) and (27) can get any value, 

positive or negative, and since it cannot be any more than the square of the maximum pressure difference, 

so, we set "M1" equal to (𝑃𝑚𝑎𝑥)
2. This issue is also valid for Equations (28) and (29).  

 

(𝑝𝑜𝑢𝑡−𝑖𝑠𝑡𝑤
2 − 𝑝𝑖𝑛−𝑖𝑠𝑡𝑤

2 ) − 𝛿𝑖𝑗(𝑋𝑏𝑖𝑗𝑠𝑡𝑤)
2
≥ 𝑀1(∑𝐺𝑖𝑗𝑒𝑡𝑤

𝑒

− 1) ∀𝑖, 𝑗 ∈ 𝑁, 
𝑠 ∈ 𝑆, 𝑡𝜖𝑇, 𝑤 ∈ 𝑊 

(28) 

(𝑝𝑜𝑢𝑡−𝑖𝑡𝑤
2 − 𝑝𝑖𝑛−𝑖𝑡𝑤

2 ) − 𝛿𝑖𝑗(𝑋𝑏𝑖𝑗𝑠𝑡𝑤)
2
≤ 𝑀1(∑𝐺𝑖𝑗𝑒𝑡𝑤

𝑒

− 1) ∀𝑖, 𝑗 ∈ 𝑁, 
𝑠 ∈ 𝑆, 𝑡𝜖𝑇, 𝑤 ∈ 𝑊 

(29) 

   Equations (28-29) calculate the pressure drop of the backup pipeline according to the NG flow rate and 

pipeline resistance,  

The pipeline resistance 𝛿𝑖𝑗 is computed using formulation 𝛿𝑖𝑗 = (
1
𝑐1⁄ )

2 𝐺𝑇𝑓𝑙𝑖𝑗𝑍𝑓

𝑑𝑖𝑎𝑖𝑗
5  (

𝑃𝑏
𝑇𝑏
⁄ )

2

, that depends 

on friction factor 𝑓, base pressure𝑃𝑏, base temperature𝑇𝑏, gas gravity 𝐺, average gas flowing temperature 

𝑇𝑓 and gas compressibility factor 𝑍, pipe length 𝐿𝑖𝑗 and pipe diameter 𝑑𝑖𝑎𝑖𝑗 (Menon 2005). The parameters 

𝑐1, 𝑓, 𝑃𝑏,𝑇𝑏, 𝐺, 𝑇𝑓 and 𝑍 are presumed to be set equal to  1.1494 × 10−3, 0.01, 100 KPA, 288 K, 0.66, 283 

K, and 0.805 in our computational study.  

∑𝐶𝑜𝑖𝑢𝑡𝑤
𝑢∈𝑈

≤ 1 ∀𝑖 ∈ 𝑁𝐶, 𝑡𝜖𝑇, 𝑤 ∈ 𝑊 (30) 

Equation (30) states that there is only one type of turbo compressor in each compressor station. 

𝐶𝑜𝑖𝑢𝑡𝑤 ≥ 𝐶𝑜𝑖𝑢𝑡−1𝑤−1 
∀𝑖 ∈ 𝑁𝐶, 𝑢 ∈ 𝑈, 1 < 𝑡
≤ 𝑇, 1 < 𝑤 ≤ 𝑊 

(31) 

Equation (31) expresses that if a compressors station is located in a period, it should be remained until the 

end of the planning horizon. 

𝑝𝑜𝑢𝑡−𝑖𝑠𝑡𝑤 ≤ (1 + 𝜔)𝑝𝑖𝑛−𝑖𝑠𝑡𝑤 +𝑀2(1 −∑𝐶𝑜𝑖𝑢𝑡𝑤
𝑢

) ∀𝑖 ∈ 𝑁𝐶, 
𝑠 ∈ 𝑆, 𝑡𝜖𝑇, 𝑤 ∈ 𝑊 

(32) 

 Equations (32)-(34) define the pressure relations in the compressor station. Equation (32) makes clear that 

if a compressor station is installed, the output pressure cannot be greater than ω times the input pressure.  

𝑝𝑜𝑢𝑡−𝑖𝑠𝑡𝑤 ≤ 𝑝𝑖𝑛−𝑖𝑠𝑡𝑤 +𝑀2(∑𝐶𝑜𝑖𝑢𝑡𝑤
𝑢

) ∀𝑖 ∈ 𝑁𝐶, 
𝑠 ∈ 𝑆, 𝑡𝜖𝑇, 𝑤 ∈ 𝑊 

(33) 

𝑝𝑜𝑢𝑡−𝑖𝑠𝑡𝑤 ≥ 𝑝𝑖𝑛−𝑖𝑠𝑡𝑤 
∀𝑖 ∈ 𝑁𝐶, 

𝑠 ∈ 𝑆, 𝑡𝜖𝑇, 𝑤 ∈ 𝑊 
(34) 

Also, Equation (33) and (34) ensure that if the compressor station is not installed in that node, then the 

output pressure is equal to the input pressure.  
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∑𝑋𝑖𝑗𝑠𝑡𝑤
𝑖∈𝑁

+∑𝑋𝑏𝑖𝑗𝑠𝑡𝑤
𝑖∈𝑁

≤ 𝜈∑𝑈𝐶𝑜𝑗𝑢𝑡𝑤
𝑢𝜖𝑈

 ∀𝑗 ∈ 𝑁𝐶, 𝑡𝜖𝑇, 
𝑤 ∈ 𝑊 

(35) 

Equation (35) shows the flow balance constraint in the compressor station.  

𝑝𝑖𝑛−𝑖𝑠𝑡𝑤 , 𝑝𝑜𝑢𝑡−𝑖𝑠𝑡𝑤 , 𝑋𝑖𝑗𝑠𝑡𝑤 , 𝑄𝑖𝑠𝑡𝑤 , 𝐸𝑃𝑖 , 𝑅𝑝𝑖𝑠𝑡𝑤 ,𝑊𝑃𝑖𝑠𝑡𝑤 ≥ 0  (36) 
𝐺𝑖𝑗𝑒𝑡𝑤 , 𝐵𝑖𝑗𝑒𝑡𝑤 , 𝐶𝑜𝑖𝑢𝑡𝑤 , 𝑌𝑖𝑗𝑒𝑡𝑤 , 𝑌𝑏𝑖𝑗𝑒𝑡𝑤𝜖{0,1}  (37) 

 

   As it is clear, the proposed mathematical model is a mixed integer nonlinear programming model because 

of the presence of the squared pressure and flow variables in equations (26)-(29). Therefore, in the first 

phase, we partially linearize the model by eliminating the squared pressure variables via defining new 

variables 𝑝𝑠𝑖𝑛−𝑖𝑠𝑡𝑤 and 𝑝𝑠𝑜𝑢𝑡−𝑖𝑠𝑡𝑤 instead of 𝑝𝑖𝑛−𝑖𝑠𝑡𝑤
2  and 𝑝𝑜𝑢𝑡−𝑖𝑠𝑡𝑤

2 , respectively. To generalize the 

relevant constraints, the left-hand-side and right-hand-side of equations (4)-(6), (26) and (28), (32)-(34) 

should be squared as follows.   

𝑝𝑠𝑜𝑢𝑡−𝑖𝑠𝑡𝑤 = (𝑃𝑚𝑎𝑥)
2 ∀𝑖 ∈ 𝑁𝑅, 𝑠 ∈ 𝑆, 𝑡 ∈ 𝑇, 

𝑤 ∈ 𝑊 
(38) 

𝑝𝑠𝑖𝑛−𝑖𝑠𝑡𝑤 ≥ (𝑃𝑚𝑖𝑛)
2 ∀𝑖 ∈ 𝑁𝑑, 𝑠 ∈ 𝑆, 𝑡 ∈ 𝑇, 

𝑤 ∈ 𝑊 
(39) 

𝑝𝑠𝑜𝑢𝑡−𝑖𝑠𝑡𝑤 ≤ (𝑃𝑚𝑎𝑥)
2 ∀𝑖 ∈ 𝑁𝑑, 𝑠 ∈ 𝑆, 𝑡 ∈ 𝑇, 

𝑤 ∈ 𝑊 
(40) 

(𝑝𝑠𝑜𝑢𝑡−𝑖𝑠𝑡𝑤 − 𝑝𝑠𝑖𝑛−𝑖𝑠𝑡𝑤) − 𝛿𝑖𝑗(𝑋𝑖𝑗𝑠𝑡𝑤)
2
≥ 𝑀1(∑𝐵𝑖𝑗𝑒𝑡𝑤

𝑒

− 1) ∀𝑖, 𝑗 ∈ 𝑁, 𝑠 ∈ 𝑆, 𝑡 ∈ 𝑇, 
𝑤 ∈ 𝑊 

(41) 

(𝑝𝑠𝑜𝑢𝑡−𝑖𝑡𝑤 − 𝑝𝑠𝑖𝑛−𝑖𝑡𝑤) − 𝛿𝑖𝑗(𝑋𝑏𝑖𝑗𝑠𝑡𝑤)
2
≤ 𝑀1(∑𝐺𝑖𝑗𝑒𝑡𝑤

𝑒

− 1) ∀𝑖, 𝑗 ∈ 𝑁, 𝑠 ∈ 𝑆, 𝑡 ∈ 𝑇, 
𝑤 ∈ 𝑊 

(42) 

𝑝𝑠𝑜𝑢𝑡−𝑖𝑠𝑡𝑤 ≤ (1 + 𝜔)2𝑝𝑠𝑖𝑛−𝑖𝑠𝑡𝑤 + (𝑀2)
2(1 −∑𝐶𝑜𝑖𝑢𝑡𝑤

𝑢

) ∀𝑖 ∈ 𝑁𝐶, 𝑠 ∈ 𝑆, 𝑡 ∈ 𝑇, 
𝑤 ∈ 𝑊 

(43) 

𝑝𝑠𝑜𝑢𝑡−𝑖𝑠𝑡𝑤 ≤ 𝑝𝑠𝑖𝑛−𝑖𝑠𝑡𝑤 + (𝑀2)
2(∑𝐶𝑜𝑖𝑢𝑡𝑤

𝑢

) ∀𝑖 ∈ 𝑁𝐶, 𝑠 ∈ 𝑆, 𝑡 ∈ 𝑇, 
𝑤 ∈ 𝑊 

(44) 

𝑝𝑠𝑜𝑢𝑡−𝑖𝑠𝑡𝑤 ≥ 𝑝𝑠𝑖𝑛−𝑖𝑠𝑡𝑤 ∀𝑖 ∈ 𝑁𝐶, 𝑠 ∈ 𝑆, 𝑡 ∈ 𝑇, 
𝑤 ∈ 𝑊 

(45) 

   At the second stage, we employ the piece-wise linear approximation in order to linearize the model 

completely due to the presence of the squared flow variables in the equations (41) and (42). In the following, 

this method is described in three stages: 

1- Determine the variation range of flow variable (minimum and maximum value of flow variable): 

𝑥𝑖𝑗𝑠𝑡𝑤
𝑚𝑖𝑛 = 0 𝑥𝑖𝑗𝑠𝑡𝑤

𝑚𝑎𝑥 = ∑ 𝐷𝑒𝑗𝑡𝑤
𝑗∈𝑁𝐷

 

2- Divide the range of flow into some intervals. For this purpose, the lower bound and upper bound 

of each interval are calculated as follows:  

𝑙𝑜𝑤𝑒𝑟 𝑏𝑜𝑢𝑛𝑑 𝑜𝑓 𝑒𝑎𝑐ℎ 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙:  

𝛼𝑖𝑗𝑠𝑡𝑤𝑘 = 𝑥𝑖𝑗𝑠𝑤𝑡
𝑚𝑖𝑛 + (𝑘 − 1) ∗ [

(𝑥𝑖𝑗𝑠𝑤𝑡
𝑚𝑎𝑥 − 𝑥𝑖𝑗𝑠𝑤𝑡

𝑚𝑖𝑛 )
|𝑘|
⁄ ] 

𝑢𝑝𝑝𝑒𝑟 𝑏𝑜𝑢𝑛𝑑 𝑜𝑓 𝑒𝑎𝑐ℎ 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙: 

𝐵𝑖𝑗𝑠𝑡𝑤𝑘 = 𝑥𝑖𝑗𝑠𝑤𝑡
𝑚𝑖𝑛 + 𝑘 ∗ [

(𝑥𝑖𝑗𝑠𝑤𝑡
𝑚𝑎𝑥 − 𝑥𝑖𝑗𝑠𝑤𝑡

𝑚𝑖𝑛 )
|𝑘|
⁄ ] 

 

The more intervals are made, the more accurate approximate value of flow. 𝑘 is the number of intervals. 

3- In each interval, the value of flow is equal to the linear combination of the lower bound and upper 

bound of the interval.  
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𝑥𝑙−𝑖𝑗𝑠𝑡𝑤 =∑𝜆𝑖𝑗𝑠𝑡𝑤𝑘
𝑘

𝛼𝑖𝑗𝑠𝑡𝑤𝑘 + 𝜇𝑖𝑗𝑠𝑡𝑤𝑘𝛽𝑖𝑗𝑠𝑡𝑤𝑘  ∀𝑖, 𝑗, 𝑠, 𝑡, 𝑤 (46) 

   Because the flow variable is squared in the formulation, the value of squared flow should be equal to 

linear combination of the square of the lower bound and upper bound of the interval. Also, 𝜆𝑖𝑗𝑠𝑡𝑤𝑘 and 

𝜇𝑖𝑗𝑠𝑡𝑤𝑤𝑘 get values only if the flow value falls in the interval formed by the lower and upper bounds 

(∑ Υ𝑖𝑗𝑠𝑡𝑤𝑘 = 1𝑘 ). 

𝐴𝑖𝑗𝑠𝑡𝑤𝑘 = 𝛼𝑖𝑗𝑠𝑡𝑤𝑘
2 

𝐵𝑖𝑗𝑠𝑡𝑤𝑘 = 𝛽𝑖𝑗𝑠𝑡𝑤𝑘
2
 

𝑥𝑙−𝑖𝑗𝑠𝑤𝑡
2 =∑𝜆𝑖𝑗𝑠𝑡𝑤𝑘

𝑘

𝐴𝑖𝑗𝑠𝑡𝑤𝑘 + 𝜇𝑖𝑗𝑠𝑡𝑤𝑘𝐵𝑖𝑗𝑠𝑡𝑤𝑘  ∀𝑖, 𝑗, 𝑠, 𝑡, 𝑤 (47) 

𝜆𝑖𝑗𝑠𝑡𝑤𝑘 + 𝜇𝑖𝑗𝑠𝑡𝑤𝑘 ≤ Υ𝑖𝑗𝑠𝑡𝑤𝑘 ∀𝑖, 𝑗, 𝑠, 𝑡, 𝑤, 𝑘 (48) 

∑Υ𝑖𝑗𝑠𝑡𝑤𝑘 = 1

𝑘

 ∀𝑖, 𝑗, 𝑠, 𝑡, 𝑤 (49) 

Υ𝑖𝑗𝑠𝑡𝑘𝑤𝑤 ∈ {0,1} 

0 ≤ 𝜆𝑖𝑗𝑠𝑡𝑤𝑘 , 𝜇𝑖𝑗𝑠𝑡𝑤𝑘 ≤ 1 
 (50) 

Finally, the linearized equation of equation (26) in the main model is equal to:  

(𝑝𝑠𝑜𝑢𝑡−𝑖𝑠𝑡𝑤 − 𝑝𝑠𝑖𝑛−𝑖𝑠𝑡𝑤) − 𝛿𝑖𝑗(∑𝜆𝑖𝑗𝑠𝑡𝑤𝑘
𝑘

𝐴𝑖𝑗𝑠𝑡𝑤𝑘 + 𝜇𝑖𝑗𝑠𝑡𝑤𝑘𝐵𝑖𝑗𝑠𝑡𝑤𝑘) ≥ 𝑀1(∑𝐵𝑖𝑗𝑒𝑡𝑤
𝑒

− 1) ∀𝑖, 𝑗, 𝑠, 𝑡, 𝑤 (51) 

This issue is valid for the 𝑋𝑏𝑖𝑗𝑠𝑡𝑤 variable. 

3-2-The proposed possibilistic chance constrained programming approach  
   As mentioned before, the demand input parameter is considered as an epistemic uncertainty in the model 

due to lack of sufficient historical data.  Therefore, in order to formulate the imprecise demand parameter, 

it is required to rely on domain expert’s subjective data based on their contemplative opinions and 

professional experiences. In this regard, this uncertain parameter should be modeled via Possibility 

distribution in the form of trapezoidal or triangular fuzzy numbers. Here, the possibilistic chance constraint 

programming (PCCP) approach, one of the subsets of fuzzy mathematical programming, is applied to deal 

with the imprecise demand parameter in the presented model. This method relies on the expected value of 

fuzzy numbers and the possibility (Pos) and necessity (Nec) measures to convert the uncertain model into 

a crisp equivalent one. Also, this method let the Decision Maker (DM) specifies the confidence level of 

constraint's satisfaction. The necessity measure is used to cope with uncertain parameter because this 

measure demonstrates the corresponding minimum possibility level under the most pessimistic view. Since 

the nature of constraints is to show the mandatory limitations this kind of measure is used. 

    Assume that 𝜉 = (𝜉1, 𝜉2, 𝜉3) is a triangular fuzzy number with member function 𝜇(𝑥) that can be defined 

by the following equation: 

 

𝜇 𝜉̃(𝑥) =

{
 
 
 

 
 
 

 

𝑓𝜉(𝑥) =
𝑥 − 𝜉1

𝜉2 − 𝜉1
                 𝑖𝑓 𝜉1 ≤ 𝑥 ≤ 𝜉2  

1                                                   𝑖𝑓 𝑥 = 𝜉2        

𝑔𝜉(𝑥) =
𝜉3 − 𝑥

𝜉3 − 𝜉2
            𝑖𝑓 𝜉2 ≤ 𝑥 ≤ 𝜉3         

0                                       𝑖𝑓 𝜉3 ≤ 𝑥  𝑜𝑟 𝑥 ≤ 𝜉1

         }
 
 
 

 
 
 

 

suppose r be a real number and according to Babazadeh et al. (2019), the necessity measure is determined 

as follows: 

𝑁𝑒𝑐{𝜉 ≤ 𝑟} = 1 − 𝑠𝑢𝑝{𝜇(𝑥)𝑥>𝑟}     (52) 

Also, the expected value of 𝜉 can be defined as following based on Pishvaee et al. (2012): 
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𝐸𝑉(𝜉) =
𝐸1
𝑐 + 𝐸2

𝑐

2
=
∫ 𝑓𝜉

−1(𝑥)𝑑𝑥
1

0
+ ∫ 𝑔𝜉

−1(𝑥)𝑑𝑥
1

0

2
=

1
2
(𝜉1 + 𝜉2) +

1
2
(𝜉2 + 𝜉3)

2
=
𝜉1 + 2𝜉2 + 𝜉3

4
 

(53) 

 

Also, the corresponding necessity measures of 𝜉 is as follows:  

𝑁𝑒𝑐(𝜉 ≤ 𝑟) =

{
 
 

 
    1                                                            𝑖𝑓 𝜉3 ≤ 𝑟

𝑟 − 𝜉3

𝜉3 − 𝜉2
                                            𝑖𝑓 𝜉2 ≤ 𝑟 ≤ 𝜉3 

0                                                        𝑖𝑓 𝑟 ≤ 𝜉2  }
 
 

 
 

 

 

(54) 

Therefore, based on equation (53) and Inuiguchi and Ramic (2000) we will have: 

𝑁𝑒𝑐(𝑟 ≥ 𝜉) ≥ 𝛼 ↔ 𝑟 ≥ (1 − 𝛼)𝜉2 + 𝛼𝜉3 (55) 

 

𝛼 is the confidence level of chance constraints in which determine Regarding DM’s ideas in the lowest 

satisfaction degree of PCC. 

   According to the above-mentioned explanations, the compact form of the necessity-based possibilistic 

programming model is presented as follows. Where vectors C, F, D represent the fixed cost, variable cost 

and demand data. Also, A, B, T, L and P correspond to the coefficient matrices, and x and y denote the 

continuous and binary variables, respectively. Now, suppose that vectors F, D and C are the imprecise 

parameters in the proposed compact form model. 

𝑀𝑖𝑛𝐸[𝑤1] = 𝐸[𝐶̃]𝑦 + 𝐸[𝐹̃]𝑥  

𝑀𝑖𝑛𝐸[𝑤2] = 𝑥  

S.T.  

𝐴𝑥 = 0  

𝐵𝑥 ≤ 𝑇𝑦  

𝑁𝑒𝑠{𝐿𝑥 ≥ 𝑑̃} ≥ 𝛼  

𝑃𝑦 ≤ 1  

𝑦 ∈ {0,1}, 𝑥 ≥ 0 (56) 

 

   According to the above-mentioned definitions, the above model (56) can be transformed to the equivalent 

crisp one as follows: 

𝑀𝑖𝑛𝐸[𝑤1] = (
𝐶(1) + 2𝐶(2) + 𝐶(3)

4
) 𝑦 + (

𝐹(1) + 2𝐹(2) + 𝐹(3)

4
) 𝑥 

 

𝑀𝑖𝑛𝐸[𝑤2] = 𝑥  

s.t.  

𝐴𝑥 = 0  

𝐵𝑥 ≤ 𝑇𝑦  

𝐿𝑥 ≥ (1 − 𝛼)𝑑2 + 𝛼𝑑3  

𝑃𝑦 ≤ 1  

𝑦 ∈ {0,1}, 𝑥 ≥ 0 (57) 

 

4-Case study 
  Energy has a crucial role in the life and economic development. Among the various types of energy, NG 

is widely used as the cleanest fossil fuel with the least environmental impact. This issue is significant, 

particularly for the countries that have the biggest NG reservoirs like Iran. Because they can access massive 

profits from the export of it to neighboring countries through proper management in the NG production and 
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consumption. On the other hand, due to Iran's location on the seismic belt of the world and the dependence 

of 95.6% of urban unites and 57.8 rural unite to NG network, it is essential to design resilient NGTN 

infrastructure so that can continue its mission in the event of a disturbance. The considered case study is 

related to the northern part of the country in which yearly suffers from the natural gas shortage due to far 

from refineries. In this case study, Hashemi Nejad refinery supplies the NG for the Razavi Khorasan, Nord 

Khorasan, Golestan and Mazandaran provinces. Also, four potential compressor stations including Razavi, 

Farooj, Neka and Noor are considered to compensate the lost pressure. The problem is considered for a 1-

year strategic planning horizon and 12-month operational planning horizon. Table 3 reports the value of 

key parameters in the model. It is noteworthy that All information related to the case study specially the 

critical parameters are gathered by Tabatabaee (2016).   

Table 3. Characteristics of the network nodes in one month. 

Capacity of refineries and import (𝒄𝒂𝒊) 
(million cubic meter (mm3)) 

maximum and minimum permissible gas pressure in the 

network 

Hashemi Nejad 1500 𝑃𝑚𝑎𝑥  90 bar 

Demand of provinces (𝑫𝑬𝒋𝒕) 

(million cubic meter (mm3)) 

𝑃𝑚𝑖𝑛 75 bar 

Maximum pressure rise multiplier at a compressor 

Razavi Khorasan 410 𝜔 1.6 

Nord Khorasan 164 Diameter of pipeline 

Golestan 210 
𝑑𝑖𝑎 762mm 

Mazandaran 716 

 

   As mentioned earlier, the NG demand parameter in the mathematical model is under epistemic 

uncertainty. So, at first, the most possible quantities of demand parameters are gained by historical data. 

And then, the prominent points of corresponding triangular fuzzy numbers are estimated by experts' 

opinions as follows: 

𝐷𝑒̃𝑗𝑡𝑤 = (0.8𝐷𝑒̃𝑗𝑡𝑤, 0.95𝐷𝑒̃𝑗𝑡𝑤 , 1.2𝐷𝑒̃𝑗𝑡𝑤) 

   High impact of different disruption risks occurrence on the natural gas network, has forced NGTN to 

utilize various resilience strategies in order to reduce their consequences. Therefore, in this cases study, 

three potential mitigation resilience strategies including adding extra production capacity in refineries, 

installing backup pipelines and fortifying the pipelines were encountered. Also, it is assumed that recovery 

strategy is employed to restore the lost capacity of the refinery production capacity completely at the end 

of planning horizon. The disruption risks in the case study are handled based on three independent scenarios, 

small, medium and large scale. The small-scale scenario recognizes the least severe and the large-scale 

scenario recognizes the most severe case. As a result, each scenario has a different impact on the capacity 

of pipelines due to fortification levels and refinery production capacity.  

4-1- Results and discussion  
It should be noted that the proposed model is coded in GMAS 24.1.3 software with Cplex solver on a 

laptop with the Intel Core i7 processor running at 1.8GHz up to 1.99GH and with 16 GB of RAM. In 

addition, all the monetary data is considered in Iranian currency (i.e., 𝑇𝑜𝑚𝑎𝑛). The confidence level of 

chance constraints is assumed to be 0.7. Table 4 demonstrates the resulted optimal structure of NGTN in 

the case study at different disruption scale. From table 4, we obtain that compressor station Razavi, Farooj 

and Neka compensate the lost pressure in almost all situations. However, the number of turbos in each 

compressor station is added in larger disruptions. Another observation is that with the rise in the scale of 

disruptions, additive production capacity of refinery is more because the more part of working capacity is 

disrupted at the beginning of planning horizon. Then recovery planning should be done during next periods 

until the last period that the production capacity is recovered completely. Figure 3 illustrates the recovery 
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planning of production capacity in the disrupted refinery with time delay of one month. Also, the sixth and 

seventh columns of table 4 reports the mitigation strategies for pipelines. as the results show, the backup 

pipelines are installed from Hashemi Nejad refinery, Razavi stations and Farooj station to increase the flow 

rate, or keep flow if one of the parallel pipelines is disturbed. It is noteworthy that two pipelines must be 

installed from each refinery so that if one of the parallel pipelines is disrupted, the refinery can continue its 

supply by another pipelines. The number of fortified pipelines in order to maximize the remaining capacity 

against disruption risk is represented in the seventh column. Figure 3 displays the optimal structure of the 

given NG network in Iran. 

 
Table 4. Configuration of NGTN and mitigation strategy at different disruption scale 

 
Disruption 

scale  

Primary 

pipeline  

Location of 

compressor station 

and number of 

turbos 

Working 

capacity 

of 

refinery  

Capacity 

expansion  

Number of 

backup 

pipeline 

Number of 

fortified 

pipelines  

Small 6 

Razavi (1) 

Farooj (1) 

Neka (1) 

1200 0 0 4 

Medium 6 

Razavi (1) 

Farooj (1) 

Neka (2) 

765 30 1 4 

Large 7 

Razavi (2) 

Farooj (2) 

Neka (2) 

Noor (1) 

314 70 3 5 

Compressor stations

Consumer zones

Hashemi Nejad refinery 

Backup pipeline

Primary pipeline

 

Fig 2. The illustration of NGTN in Iran. 
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Fig 3. Restoration of production capacity of refinery in the large-scale scenario 

 

4-1-1- Analysis on the trade-off between total cost and resilience 

   In this part, the famous Augmented 𝜀-constraint method is applied to prove the conflicting objective 

functions (Mavrotas, 2009). By using this method, a good approximation of the Pareto optimal could be 

achieved. For this purpose, each objective function of the model is first optimized separately in order to 

find two extreme efficient points of the Pareto frontier. Then, by adding one of the objective functions to 

the constraints set with a right-hand side (𝜀𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟) step-by-step, other Pareto optimal solutions could 

be achieved (equation 58).  

𝑀𝑖𝑛𝑓1(𝑥) − 𝛿 × (𝑠𝑙2 + 𝑠𝑙2 +⋯𝑠𝑙𝑝)  

𝑠. 𝑡.      

𝑓𝑝(𝑥)+𝑠𝑙𝑝 = 𝜀𝑝;  ∀𝑝 = 2,… . 𝑝  

𝑥 ∈ 𝑋, 𝑠𝑙𝑝 ∈ 𝑅
+ (58) 

 

   Where x is the vector of decision variables, 𝑓1(𝑥),… . , 𝑓𝑝(𝑥) are the p objective functions and X is the 

feasible region. Also, 𝛿 is an adequately small number (usually between 10−3 and 10−6).  By changing the 

parametrical variation in the right-hand side of constrained objective function (𝜀𝑝;  ∀𝑝 = 2,… , 𝑝), different 

pareto solutions are obtained. Note that 𝑠𝑙𝑝 are the slack or surplus variables that ensure the model to 

produce only efficient solutions. 

   After solving the model, six Pareto-optimal solutions are generated and their results are shown in figure 

4. The results approved that the considered objective functions are in contrast with each other as a decrease 

the disability of network leads to an increase in total costs and vice versa. Notably, the objective function 

of cost tends to decrease installing the pipeline and compressor stations, or to install pipeline with fewer 

resilience strategies. On the other hand, the second objective function for meeting all demand nodes against 

disruption and decreasing the risk in the network design phase requires expanding production capacity, 

utilizing pipelines with high fortification level, using more parallel pipelines and compressor stations with 

more turbo compressors. For example, when 𝑧1=1587693 and 𝑧2=0.9 (the first Pareto-optimal solution), 

just 6 pipelines in which consist of zero parallel pipelines, two pipelines with second fortification level and 

one compressor station with one turbo compressor in the station. Whereas when 𝑧1 = 5891934 and 𝑧2 =
0.075 (the last Pareto-optimal solution), 9 pipelines are installed that include 3 parallel pipelines with 

second fortification level and four compressor stations with two turbo compressors.  
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Fig 4. The Pareto Front found to solve conflicting objective functions 

 

4-1-2- Analysis on the efficiency of the PCCP 

   In this section, the validation of the obtained results from the possibilistic programming model is done 

via generating 10 random realizations of the problem. Each random realization is calculated with respect to 

the two extreme points of the relevant triangular fuzzy numbers. Then attained solutions that were gained 

by the PCCP model based in nominal data [𝑥∗, 𝑦∗] will be replaced in the model. The brief form of this 

model is as follows: 

𝑀𝑖𝑛 𝑤1 = 𝐶𝑟𝑒𝑎𝑙𝑦
∗ + 𝐹𝑟𝑒𝑎𝑙𝑥

∗ + 𝛿1𝑅  

s.t  

𝑤2 ≤ 𝜀  
𝐴𝑥∗ = 0,  

𝐵𝑥∗ ≤ 𝑇𝑦∗,  

𝐿𝑥∗ + 𝑅 ≥ 𝑑𝑟𝑒𝑎𝑙   

𝑃𝑦∗ ≤ 1,  
𝑅 ≥ 0. (59) 

 

   In this linear programming model, there are only one variable, 𝑅 which are counted as the divergence 

from chance constraints according to different realizations and the parameters 𝛿𝑖  is counted as the penalty 

values.  

   Performance of the PCCP and deterministic models has been showed in figure 5 via the corresponding 

values for average and standard divergence of the cost objective functions under 10 random realizations at 

0.7, 0.8 and 0.9 confidence levels. As it is evident from figure 5, the average and standard deviation value 

of the PCCP model has been less than the deterministic model. Therefore, it can be claimed that the PCCP 

model has performed better than the deterministic model. Also, as it is clear, with the increase the 

confidence level of possibilistic chance-constrained, the standard deviation and average of objective 

function decrease because of the chance constraints should be satisfied in the stricter range.  
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Fig 5. The solutions of the deterministic and PCCP models under the average and standard deviation value  

 

4-1-3- Analysis on the trade-off between total cost and resilience under different Percentages of lost 

capacity and various time delay. 

   Figure 6 shows the Pareto curves between total cost and resilience with time delay of one month and 𝜋 

varying from 10% to 30%. The trend of the Pareto curves displays the trade-off between total cost and 

resilience. Also, if the total cost is fixed, the optimal disability value of network reduces with the decreasing 

of the lost capacity. It is noteworthy 𝜋 reflect the severity of disruptions and a smaller 𝜋 points that more 

production capacity and flow capacity are available after disruptions. on the other hand, disruptions occur 

with lower severity.  

 

 

Fig 6. Pareto curves between total cost and network resilience under different lost capacity percentages.  

   Also, the impact of various time delay from one to three month with 𝜋 = %20 is investigated. Due to 

figure 7, the result shows that time delay between the occurrence of disruptions and the start of recovery 

has a substantial impact on NGTN resiliency. If we assume that the total cost is fixed, longer time delay 

results in more NGTN disability.  
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Fig 7. Pareto curves between total cost and network resilience under various time delay 

 

4-1-4- Analysis on the impact of resilience strategies.  

   As mentioned in Section 3, the proposed model adopts the following resilience strategies to withstand 

different disruption scales: (a) adding production capacity for refineries, (b) installing backup pipelines and 

(3) fortifying pipelines. In this section, the effect of these strategies is evaluated on the resilience objective 

function as the main goal of NGTN. For this, we consider the following five approaches: 

(1) Applying all strategies. 

(2) Extending production capacity in refinery. 

(3) Applying only backup pipelines. 

(4) Applying fortifying pipelines. 

(5) Applying no strategies.  

   Figure 8 shows the results under different disruption scales. It is obvious that all resilience strategies have 

impact in the resilience of network as well as first approach imposes the highest level of resilience in 

comparison with other approaches. More exactly, based on the results can find that adopting the resilience 

strategies of extending production capacity of refinery, installing backup pipelines and fortifying pipelines 

can improve approximately 90%, 85% and 50%, respectively. It is noteworthy that using three resilience 

strategies simultaneously gains 93% resilience value. Also, the resilience enhancement is more apparent 

with rising the disruption scales. 

 

Fig 8. The resilience performance of different approaches under different disruption scales. 
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4-2- Managerial insights 

   In general, the northern regions of the natural gas transmission network face with three major challenges 

that need to be addressed: 

 Failure of Hashemi Nejad refinery: since the Hashemi Nejad refinery is the only supplier of this 

network, so with the failure of this facility, all NG consumers will experience shortages. Therefore, 

it is suggested to strengthen the network resilience by constructing natural gas storage in this sector 

as a redundancy strategy.   

 Failure of pipeline: One of the challenges that has the greatest impact on the network resilience is 

the transmission pipelines failure. Therefore, it is necessary to build two parallel pipelines for the 

output of each important facilities (e.g., refinery and compressor stations) so that when the main 

pipeline is disrupted, the backup pipeline or parallel can be used to meet consumer's demand.  

 Reduction of time delay in the beginning of recovery actions: If one of the refinery equipment fails 

and the problem is not resolved, the entire of refinery will be affected immediately and the network 

performance will be stopped. So, timely recovery of refinery equipment or reduction of time delay 

in beginning of recovery actions is critical in maintaining its performance. In this regard, the most 

important action is to send the repair and recovery team to damaged section quickly.  

 

5-Conclusions  
   Design of resilient natural gas transmission network takes into account different types of challenges in 

the field of production, transmission and consumption. For this purpose, a multi-objective multi-period 

optimization model for designing resilient natural gas transmission network is developed while working 

capacity of refinery and transmission capacity of pipeline are vulnerable to disruption risks. Also, NG 

demand is considered as an operational risk in this model. So, a two-stage scenario-based stochastic-

possibilistic programming model is used to cope with operational and disruption risks Simultaneously. 

Capacity expansion, backup pipeline for designing loop network and fortifying of pipeline as the mitigation 

strategies as well as the recovery planning of lost capacities of refinery are employed to enhance resilience 

in this work. a resilience index is modeled for optimizing the resilience of NGTN quantitatively based on 

restoration planning of lost capacity.  Finally, a Necessity-based possibilistic programming model is used 

to convert the possibilistic programming model into its crisp counterpart. 

   Finally, the presented model is implemented in a real case study i.e. one of the natural gas transmission 

pipeline in north of Iran. The 𝜀-constraint method is applied to generate pareto-optimal solutions. This set 

of pareto front, authorize the DMs to manage a trade-off between maximizing the NG network resilience 

through more employing of mitigation and recovery strategies or minimizing the NG network cost. The 

result showed that using the resilience objective function as a decreasing the maximum cumulative fraction 

of unsupplied demand (relative to the met demand before the disruption), the NGTN has been built at a 

higher cost with more facilities and resilience options (i.e. more capacity expansion, more primary pipeline, 

more backup pipeline, more fortified pipelines and compressor stations with more number of turbos) but 

the least amount of unsupplied demand. The result also presented that the possibilistic chance constraint 

programming model has performed better than the deterministic model using standard deviation and 

average of cost objective function. The numerical results display that utilizing the extra production capacity 

of refinery, back-up pipeline and pipeline fortification at the same time can growths the resilience levels of 

NGTN more than 93 percent under large scale disruption scenario. 

   It is possible to extend the model in future, with considering underground gas storage to reinforce the 

resilience of NGTN especially when the refinery production capacity is disrupted. Another research topic 

is to consider diversity strategy such as aboveground storages for storing LNG near consumption areas 

especially in cases where underground gas storages (UGS) are not available due to geography.  Another 

future study is to apply other non-deterministic programming approaches such as robust programming 

approaches. Also, it is suggested to use Geographic Information System (GIS) to select more suitable 
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candidate locations for natural gas pipelines and underground gas storage.  Research can also investigate 

the recovery phase of disrupted pipelines to return their duty as soon as possible. Another line of future 

development is paying attention to solve large-scale problems by applying exact or meta-heuristic 

algorithms. Finally, considering other tactical decisions in modeling such as marketing, contracts and 

pricing are suggested for future research.  
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