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Abstract 

Decision making plays an important role in economics, psychology, philosophy, 
mathematics, statistics and many other fields. In each field, decision making consists of 
identifying the values, uncertainties and other issues that define the decision. In any 
field, the nature of the decisions is affected by environmental characteristics. In this 
paper, we are considered the production planning problem in a stochastic and complex 
environment, i.e. the environment of electronic equipment production, where planning 
is faced with variable results and changeable requests. In this complicated environment, 
we are encountered with joint replenishment, variable yields and exchanging demands 
and many other complex variables related to inventory management and control systems 
that have complicated and unpredictable behavior and could not be modeled in a simple 
way. We are trying to model this environment as a stochastic problem. The aim of 
mathematical model is managing and controlling inventories in such a complex 
production environment. We also try to solve the proposed stochastic problem by 
estimation procedures. The planning problem is devised as a gain-maximizing 
stochastic program. Also we use two mathematical and simulation software to predict 
the behavior of production system in various situations. The results of simulations are 
mentioned in the paper. 

 

Keywords: Manufacturing, Decision making, Inventory policies, Stochastic yield  

1- Introduction 

   In every collecting environment the yield’s way is managed by paying little heed to whether the thing 
meets the client’s necessities. In a couple cases, a harmed respectable can be repaired and in diverse cases it 
might must be hurled. There are various circumstances where a thing which not meets its determination, may 
be fitting for some other use. For instance, in the electronic business, the capacitors and resistors are suitable 
examples. The utilization that an electronic connector finds is to some degree managed by the precision of its 
strings and the metal's exactness plating. This is genuinely fundamental in the electronic and particularly in 
the semi-conductor industry. Electronic gear generation frameworks and distinctive circumstances that 
incorporate impelled advances, things and creation developments are rapidly being used to make novel 
things and headways. Therefore, the creation increments can be outstandingly unsteady (Crevier, Cordeau et 
al. 2007, Lin and Huang 2014, Ashayeri, Ma et al. 2015, Lin and Chen 2015).  
   In this paper, we consider conditions in which the product categories can be ranked. We suppose that a 
product in a higher category can be replaced by a product that is lower in the hierarchy. Under these 
conditions, the manufacturer may sometimes downgrade the category of a product rather than backorder a 
lower-grade item. This kind of activity may be persuaded by some reasons, for case - to avoid client 
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disappointment; to decrease set-up expenses; or to reduce inventory costs. We are occupied with recognizing 
suitable demand arrangements in a domain of stochastic yields and substitutable demands. Our enthusiasm 
for this issue came about because of a particular application in the semi-conductor industry. For the purpose 
of solidness we will portray this application in more noteworthy subtle element. The case discussed in this 
paper is especially relevant to the semi-conductor industry. In the semi-conductor industry, items and 
assembly technologies change quickly. The assembling procedure is mind boggling and regularly not 
exceptionally surely knew. Therefore yields change essentially. Choice guides that encourage stock 
administration in this questionable environment can be assumed as an essential part in enhancing 
productivity (Ponsignon and Mönch 2014, Zhang, Qin et al. 2014, Rotondo, Young et al. 2015). 
   A number of electronic components, such as semi-conductor chips, are produced from wafers. Each wafer 
may produce thousands of chips. The chips produced in such a facility using the same wafer often show 
different electrical properties. In other words, the requests are changeable. In addition, the mixture of chips 
produced from the wafer differs from one lot to the next. As a consequence, in this system, the results and 
requests are changeable because the chips are cooperatively restored (Yao, Jiang et al. 2011). In this paper, 
we consider a mathematical model to help managers to decide (a) how many wafers to produce each time 
and (b) how to assign chip inventories to the end users. The problem is formulated as a stochastic program. 
The size of the model grows rapidly; therefore, approximation algorithms are used to solve the stochastic 
program. 
   The wafer production facility is shared by many product families. This facility includes many costly 
machines, and several product families share these resources. Consequently, production batch queues are in 
front of these machines. The three elements that production managers monitor to control the proper capacity 
levels are trade-offs between work-in-process (WIP) costs, lead times and the cost of extra capacity (Adacher 
and Cassandras, 2014 and Hosoda, Disney et al. 2015). Supporting this decision requires theoretical models 
that can provide insight into the long-term behavior of the facility. Queuing network models of the wafer 
production facility are practical in this respect (Bitran and Tirupati 1988). In almost every manufacturing 
environment, the nature of the yield is dictated by how well the item coordinates the needs of the client. In a 
few cases, a blemished decent can be repaired; in different cases, it may not be useable.          Much of the 
time, an item that does not meet the necessities of an application may be suitable for some other utilization. 
For instance, the nature of capacitors and resistors in the hardware business is controlled by their resistances 
(Sethi, Taksar et al. 1995). 
   In this paper, we consider conditions in which the output categories are ranked. We suppose that a product 
in a higher category can be replaced by a product in lower stage of the hierarchy. Under these conditions, the 
manufacturer may sometimes downgrade the category of a product rather than backorder a lower-grade item. 
We are trying to determine proper inventory and control policy in an environment of stochastic variables. 
Our aim in this problem arose from a case study in a real world semi conductor production environment. 
However, a broad range of inventory management and control problem nearly have equivalent 
characteristics.  
   In electronic industry, technologies can change quickly. The manufacturing processes are complex and 
frequently not well understood. As a result, the manufacturing yields can differ greatly. Decisions that 
support simple inventory management in an unknown condition can significantly increase profitability 
(Flapper, Gayon et al. 2014, Sarkar, Mandal et al. 2015). In this paper, we examine (i) the processes, (ii) the 
elements and (iii) the applications of these decisions for customers. “Process” refers to the production 
process for a wafer, and “element” refers to diode. Relevant to each process is a set of elements that can be 
produced using that process. The real yields are random variables. The distributions of these random 
variables are controlled by the production process that is being performed (Jane and Laih 2005). This type of 
action may be prompted by a variety of causes, such as eliminating customer dissatisfaction, decreasing 
setup costs, and decreasing inventory costs (Feng, Wua et al. 2010). We suppose that customers can be 
divided into groups. Within each group there is a ranking such that a product that is proper for an element in 
the group is also proper for all elements lower in the ranking. The relation between processes, products and 
groups is shown in figure 1. 
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Figure 1. Relations between processes, products and groups 
   Our objective is to propose a model that helps managers to determine how many elements to produce by 
each process. Once the products are known, the model will help the managers determine how to assign the 
elements to the customers. One goal of this work is to improve the management of element inventories. We 
devised the problem as a benefit-maximizing convex stochastic program and developed evolved 
approximation algorithms to solve the program. Based on a two-time problem structure, we suggest 
heuristics for assigning the elements to the customers in a multi-period setting.  

2- Literature Review  

   There is a vast body of literature related to inventory and production planning. In most of the inventory 
models, the yield is assumed to be 100% or is assumed to be definite and known. Few papers address yield 
variability. Vienott analyzed the early literature on essential lot-sizing models (Veinott, 1960). Silver 
obtained the economic order quantity (EOQ) when the quantity from the supplier matched the quantity 
ordered. He allowed the probability density of the quantity obtained to be a function of the quantity ordered 
(Silver, 1976). Kalro and Gohil expanded Silver’s model to the case where the request during the stock-out 
period is either relatively or completely backordered (Karlo and Gohil 1982). Shih considered a single-period 
model with random requests, variable yield and no ordering costs (Shih 1980).  
Mazzola, McCoy, and Wagner analyzed a multi-period problem using an EOQ model in which the 
production yield followed a binomial distribution and the request could be backlogged. They tested several 
heuristics to separate the time problems (Mazzolla, McCoy et al. 1987).  
    The heuristics with the most potential were used to adapt the definite lot-sizing policies, which were 
optimally computed using the Wagner-Whitin or the Silver-Meal heuristic. Some researchers have 
demonstrated a multi-stage single period single item issue. They accepted that the extent of inadequate 
pieces delivered at every stage is an arbitrary variable. The choice variables are the amounts to be created at 
every stage. These choices are to be made after you know the quantity of good pieces delivered by the past 
stage. At every stage you bring about generation and holding expenses. Unsatisfied interest results in 
punishments as backorder expenses. They demonstrate that the expense acquired at every stage is a curved 
capacity of the amount delivered at that stage and other useful results (Lee 2014, Lee, Oh et al. 2014, 
Melouk, Fontem et al. 2014, Sprenger and Mönch 2014, Yeh, Realff et al. 2014). 
   Another interesting problem in this area that has been considered by some researchers is by-product 
problem that has been contemplated by Pierskalla and Deuermeyer for the first time (Deuermeyer and 
Pierskalla, 1978). In this problem, we consider the control of a generation framework that comprises of two 
procedures that produce two items. Process A produces both items in some altered (deterministic) extent 
while process B creates one and only one item. We expect that the demands are arbitrary. Researchers detail 
the issue as an arched program and determine a few properties of the ideal approach and demonstrate that the 
choice space (stock levels) can be separated into 4 districts relying upon regardless of whether a generation 
procedure is utilized (Tan, Lee et al. 2014, Chung and Heshmati 2015, Samsatli, Samsatli et al. 2015). 
   There is a considerable literature on computational techniques for settling stochastic programs (Chew, Lee 
et al. 2014, Elbanhawi and Simic 2014, Adulyasak, Cordeau et al. 2015, Capaldo and Giannoccaro 2015, 
Fagerholt, Gausel et al. 2015, Li and Womer 2015, Mohammadi, Musa et al. 2015, Zhang, Zheng et al. 
2015). Dantzig performed one of the earliest investigations in this field (Dantzig 1955). Olsen demonstrated 
that the demand of arrangements of discrete rough guesses fulfills the arrangement of the ceaseless issue 
under genuinely slight conditions (Olsen, 1976). Birge and Wets adequately examined that the close 
estimation gets ready for a few stochastic advancement issues (Birge and Wets, 1986).  
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   Thus far, there have been few published models of production processes in which the demands are 
changeable and have stochastic results. In a sense, our model generalizes the idea of a “fault” by allowing a 
number of quality classes. Although the analysis is limited to a special change form, this form is likely the 
most ordinary change form. First, we express the general model in which the demands and lead times are 
probabilistic; then, we explain the modeling assumptions and the formulation (Fujimoto and Park 2014, 
Dasgupta and Roy 2015, Shin, Park et al. 2015). Table 1 shows a proposed classification of various models 
in this research area. 
 

Table 1. Classification of models in manufacturing environment in terms of demand (order) and yield  
Demand/order 

 
Yield 

non-substitutable substitutable 

deterministic (Rajaram and Tang 2001),(De Mazancourt and 
Schwartz 2010),(Mak and Shen 2009),(Coad and 

Cullen 2006),(Osterloff 2003) 

(Karaesmen and Van Ryzin 
2004),(Gallego, Katircioglu et al. 

2006),(Chang, Jula et al. 2008),(Chen 
2003) 

Stochastic (Jin 2012),(Song 2009),(Mookherjee and Friesz 
2008), (Lee and Lu 2015) 

(Karaesmen and Van Ryzin 
2004),(Martagan and Ekşioğlu 2013) 

 
   To the best of our knowledge, there are very few papers demonstrating a creation process where the 
demands are substitutable and the yields are stochastic. One might say our model sums up the idea of 
“deformity” by allowing various evaluations of value. We do limit the investigation to a specific substitution 
structure. On the other hand, this structure is likely to be the most characteristic and basic substitution 
structure. 

3- Modeling assumptions and problem formulation 

   To expand the mathematical model, we had to make a few key assumptions regarding the demand designs 
and the varying nature of the processes. The customers for the diodes are manufacturers of electronic goods 
who identify their needs over a period of approximately 6 months. The carriage schedule identifies the 
quantity to be sent each week. Accordingly, we suppose that the demands are dynamic and definite. As 
previously stated, several models of inventory control are available. In some models, deterministic demands 
(or demands with small alternate possibilities that can be discarded) are used (Polyakovskiy and M'Hallah 
2014, Varas, Maturana et al. 2014, Zhang and Wang 2014).  Nonetheless, there are models with more 
sensible suspicions that consider probabilistic solicitations. In this paper, we concentrate on the first class of 
models and its suppositions (Safaei and Thoben 2014, Eğilmez and Süer 2015, Zhu, Li et al. 2015). In any 
case, we dole out a segment of the paper for the second class of models.  
   In the first category, a minimum of two models, the additive and the multiplicative, are used to vary the 
output. In the additive model, the number of type k items obtained from producing n units is kkno ε+ , where 

ko  is a constant that depends on the operation, and kε  is an arbitrary variable. In the multiplicative model, 
the output is directly given by kno , where ko  is an arbitrary variable. The sum of the two ko  values must be 
less than or equal to one. We modify the multiplicative model and assume a limited number of outcomes. 
The objective of our model is to maximize the expected gains. Customers higher in the hierarchy pay a 
higher price. The costs include the production cost, holding cost and backorder cost. We assume that there 
are no setup costs. We now formulate the problem based on the above assumptions. We first describe the 
model for deterministic demand. To simplify the presentation, we first consider a single-period problem with 
zero lead time and disregard capacity limitations. We then expand our consideration to multi-family, multi-
period problems and describe how to include capacity limitations. 
   Because we begin with unlimited capacity, the problem can be distinguished by families. In this section, 
we consider the single-family problem. Moreover, we define the problem by assuming that there are only 
two customers in the family. The members of the family are numbered in descending order (i.e., the highest 
member of the family is denoted by 1). We also number the items. An item can only be assigned to a family 
member with a number that is appropriate for the item’s number. Thus, item #1 can be used for customer 1 
or 2, whereas item #2 can be used only for customer 2. 
We suppose that production begins at the start of the day and ends in the evening; therefore, the products are 
known. In the evening, the items are assigned to the customers. The general goal of our problem is to 
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maximize profit. We suppose that customer 1 pays a higher price than customer 2. All of the excess 
inventories can be sold at a rescue price. Backorder, inventory holding and production costs are incurred 
without any setup costs. In this structure, the number of units to produce in the morning must be decided, and 
the item assignment in the evening must be optimized. The following variables are used: 

ijN : the number of i items assigned to customer j (because item 2 cannot be assigned to customer 1, we do 

not obtain 21A );  

tiπ : the backorders for customer i, moved into period t; 

iR : the rescue price for item i; 

tiD : the request from customer i in period t; 

oS : the supposition concerning the outputs; 

tiI : the inventory of item i, moved into period t; 
C : the production cost per unit; 
M : the number of units produced; 

)( aa vu : the sector of the item with the ath issue of the arbitrary variables; 

iP : the price paid by customer i; and 

iθ : the backorder cost for customer i. 
The periods are indexed in reverse order. The index specifies the number of periods remaining in the 
planning horizon. In this notation, period 1 is the last period in the planning horizon, and period 2 is the next 
to the last period. The scheme of this sequence is illustrated in figure 2. 
 

 
Figure 2. The time indexing 
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   1212022212 ππ +=++ DNN   (19) 

 

  002,01,02,01,22,12,11 ≥IINNN ππ    (20) 

                                                                                
Constraints (2) and (3) represents the inventory balance. The right-hand side of the equation represents the 
inventory of each element that is obtainable by the end of the day (because the production and the yields are 
known in the evening). Constraints (4) and (5) represent the customers’ demands. The right-hand side of the 
equation is the net demand, and the left-hand side illustrates how the demand is fulfilled. 

3-1- Convexity 

    We first illustrate that the one-period problem is convex.  
Hypothesis 1: for any outcome, ,.)( aa uGu  is a concave function of 11,, πIA  and D1.  
Hypothesis 2: the morning problem is convex.  
Hypothesis 3: ),( 111 πIf  is concave.  
These hypotheses are rational if the demand is not definite. The demand change framework can also be 
highly repetitive, allowing us to force capacity constraints. However, the framework would be demolished if 
the setup costs are significant and must be included. The hypotheses can also be expanded to a multi-period 
problem.  

4 - Item Assignment Process 

   In a single-period problem, the assignment process is simple. To simplify the description, suppose that the 
starting inventories and backorders are zero. Let 2211 θθ +≥+ PP  and 21 RR ≥ . The first inequality assures 
that the cost of preceding a selling to customer 1 is greater than that of customer 2. The second inequality 
requires that the rescue price of item 1 is higher than that of item 2. We also require iRiiP ≥+ θ . As a result, 
it is suboptimal to backorder the demand for customer i and hold inventories of item i. Under these 
conditions, item j is first assigned to customer i. If these products are sufficient to match the requests, item 1 
does not need to be assigned to customer 2; consequently, the entire surplus inventory will be utilized. The 
only conditions under which item 1 is assigned to customer 2 occur when the inventory of item 1 exceeds the 
request of customer l and the inventory of item 2 is less than the request of customer 2. In this condition, it 
will be optimal to lower the price of item 1 if the rescue price 1R  is less than 22 θ+P . Otherwise, it is 
optimal to obtain the inventories of item 1 and backorder the amount requested by customer 2. Hereafter, we 
will suppose that it is optimal to downgrade.  
   Next, we analyze the assignment process in a two-period problem. Suppose that the yields of the next to 
the last period are known and that assignment decisions must be made. In our model, the costs and the sale 
prices remain constant from period to period. Consequently, there will not be any backorder from customer j, 
and inventories of item j will be held. Again, the only interesting case is when there is a surplus of item 1 and 
a scarcity of item 2. In a single-period problem, we downgrade (if it is optimal to do so) until either the 
request of customer 2 is entirely satisfied or until we run out of item 1. Typically, this situation does not 
occur in a two-period problem. Only some of the surplus may be downgraded, and the final period may 
begin with an inventory of item 1 and by backordering the request of customer 2 (Barattieri 2014, Chang, 
Xia et al. 2015). 

4-1- The structure of ),(1 πIf  

   In this subsection, we make the following assumptions. 
(1) 0* 11 =jjI π  for j = 1, 2. This assumption characterizes situations in which it is not optimal to backorder 
the demand of customer j and move item j into inventory in the next to the last period.  
(2) jj DI 11 ≤  for j = 1, 2. Considering the other cases are neither interesting nor practical.  
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We make also a small adjustment in the notation by including the demands from the final periods in the 
topics of function (.,.)1f . The definition of the function remains the same in all other respects. 
We first illustrate how to transform the problem with initial inventories and backorders to one without initial 
inventories or backorders. Next, we test )0,0,,( 12111 DDf  over the area 01,1 ≥D  to double, which illustrates 

that in the ),( 1211 DD  space )0,0,,( 12111 DDf  is linear along any initially spreading beam.  
 
 
Hypothesis 4: 
If jDjI 11 ≤  for j=1, 2 then 

)0,0,121212,111111(1122111
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Therefore, we can reformulate the evening problem as follows: 
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   In the next hypothesis, we illustrate that duplicating the demands is the optimal solution to duplication 
problem in the single-period problem with zero inventories and backorders. 
 
 
Hypothesis 5: 

)0,0,12,11(1)0,0,12,11(1,0 DDfDDfthenLet ωωωω =≥  
Hypothesis 6: 
There exists an ordering, ∞≤≤≤≤≤≤ nαααα ...3210 , such that )0,0,12,11(1,12,1/11 DDfiDDi +≤≤ αα  

is linear.  

4-2- Item Assignment in the Penultimate Period 

   Recall that after assigning item 1 to customer 1 and item 2 to customer 2, we will have σ  units of item 1 
and ∆  units of unsatisfied requests from customer 2. We have shown that assigning a unit of item 1 to 
customer 2 increases the penultimate period gains by 122 dP ++θ  and changes the final period gains from 

),0,0,,12,11(1 ∆σDDf to )1,0,0,1,12,11(1 −∆−σDDf . If the net change is designatedΓ , then 

)1,0,0,1,12,11(1),0,0,,12,11(1122 −∆−−∆+++=Γ σσθ DDfDDfdP .  
Based on hypothesis 4, 

)0,0,112,111(1)0,0,12,11(11122 −∆++−−∆−−+−++=Γ DDfDDfPdP σσθ . 

Let *
11D , and *

12D  be the net final period demands, i.e., ψσ +−= 11
*
11 DD  and ψσ −+= 12

*
12 DD  are the 

quantities of item 1 that are demoted. By demoting item 1 the ratio of *
12/*

11 DD  increases. Specifically, it is 

optimal to demote item 1 if 0>Γ . The value of Γ  will change whenever the demoting process moves us 
from one linear area of the function )0,0,*

12,*
11(1 DDf  to the next. According to hypothesis 6, this process 

occurs every time *
12/*

11 DD  becomes larger than iα  for some value of i. The demoting ends when Γ  
becomes negative, which leads to the following result (hypothesis 7). 
There exists a non-negative number *α  (perhaps ∞= ) such that it is optimal to proceed with demotion if 
and only if the following states are fulfilled:  

.0)3(

;0)2(

;**
12/*

11)1(

≥−∆

≥−

<

ψ

ψσ

α

and

DD

 

 
   In our problem, the combination of the output is arbitrary. Theoretically, we do not know the part of each 
item that will be used in the final product. We only know the probability of having a special part, which is 
independent from the production rate. Therefore, the optimal solution in a single-period problem could be to 
double the demands. Given the uncertainty of the results, hypothesis 7 is also intuitively attractive. Demoting 
changes parts of the net request and increases the proportion of item 1 that is necessary in the final period. 
Consequently, it is rational to cease demoting if the parts of item 1 that are required increase after some 
critical value *α . Although the essence of the optimal demoting strategy is instinctive, *α  is hard to control 
because it relies on the cost parameters and the resulting distribution. Nevertheless, hypothesis 7 is intuitive 
and is the basis for the solution procedures that we suggest (Narayanan and Robinson 2010). 
   The nature of the optimal demoting strategy for a two-product, two-period problem is defined. The results 
can be expanded to a multi-product problem. Unfortunately, this procedure is not always optimal if the 
number of periods is greater than 2. In this case, the results expand to a multi-period problem only with 
definite yields. With stochastic yields, the demoting process is complicated and cannot be easily 
distinguished. Considering the difficulty of identifying the optimal demoting policy for multiple periods, we 
suggest using heuristics in finite-horizon problems. The rules are derived using hypothesis 7. We recommend 
the accompanying heuristics: 
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1) If *
,

1

0
*

,1/*
,1 inn

i

j inDjnD +≤∑
−

= +−+− αττ  in period τ , then assign item n to customer n+1, where *
,1 jD −τ  is the 

practical or net request in period 1−τ , i.e., *
,1 jD −τ  considers the backorders and inventories. *α  is 

determined such that ann
i

j nujnuP ≤+≤∑
−

= ++ )*
1,

1

0 1/( α . 

2) This heuristic is essentially identical to heuristic (1). However, let vu ′′= /*α , where u′  and v′  are the 
average results. Additionally, safety stocks are obtained.  
 

5- Computational Procedures 

   In this section, we investigate the procedures for calculating the quantities to be manufactured. We begin 
with unconstrained, single-family problems and then consider problems with capacity constraints. As we 
stated in the abstract, we use two different softwares for modeling and simulating the production situation in 
the firm and by changing significant parameters in the production process, sensitivity analysis is 
implemented for various conditions those dealing with it. 
   One choice for controlling production quantities is to solve the problem using linear programming. One 
particular issue with this method is the size of the linear program. Consider a family with ten customers and 
ten products; a six-period problem will have 2500 constraints and 6500 variables. The problem size increases 
equally quickly if we increase the number of periods. Approximation procedures are required to solve this 
problem using reasonable computational resources. Among the different methods that can be selected, one 
method is to solve a single-period problem. In this method, the impact of the future is cached by the rescue 
price of the inventories and the cost of backorders. Although the single-period problem can be simply solved, 
the quality of the solutions given by this method is poor. A method that is regularly used to solve large 
stochastic programs requires the results to be collected. When we collect the results, a set of results are 
represented by their expected values. As the level of collection increases, the quality of the solution 
decreases, and the computational requirements increase. As a consequence, a balance should be struck 
between the computational requirements and the precision of the solution. 
   We suppose that the yields are stochastic in the first period and definite in the following periods. 
Consequently, we are collecting the outcomes in periods other than the present period. For each period, we 
solve this estimated problem to determine the quantity of the product to be produced. Once the yields are 
obtained, they are allocated based on an assignment heuristic. The problem is solved, and the next period 
begins with new initial inventories and backorder states. Therefore, we solve the problem based on a finite 
horizon. We have tested the performance of the collection heuristic on a set of problems. To control the error 
caused by collection, we determined the objective value without any collection. The size of our test problems 
was greatly limited by the rate with which the size of the actual problem grows. The test problems consisted 
of two-product families. In each case, there were two possible outcomes for the yield, and the time horizon 
was 6 periods. To determine the expected profit from the collection procedure, we examined every possible 
set of yield outcomes over the horizon. Table 2 shows the features of the test problems. In this table, we 
illustrate the different request states and capacity conditions that we encounter in each problem. 
 

Table 2. Test problems 
Problem # demand condition Capacity condition 

1 static No capacity constraint 
2 static Capacity constraint 
3 dynamic No capacity constraint 
4 dynamic Capacity constraint 

 

   Thus, there are 16 issues in which we could precisely dissect the rough guess and % slip values for the 
target esteem in every issue. Note that the conditions are the same in every issue, i.e. creation cost: $10. The 
distinctive states of the issue are shown in tables 3 and 4. 
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Table 3. Test problem conditions 
 Item 1 Item 2 

Selling price 25 18.75 
Backordering cost 2.5 1.875 

Holding cost 1.25 1.25 
 

Table 4. Test problems conditions and each objective value 
Problem #1 

static demand, no capacity constraint 
 Item 

1 
Item 

2 
probability 

Yield 
Outcome 

1 
0.25 0.35 0.31 

Outcome 
2 

0.225 0.7 0.69 

demand 231 500  
Objective value 

Exact 
9906 

Approx 
9710 

%error 
2 

 

Problem #2 
dynamic demand, no capacity constraint 

Yield same as P#1 
Demand 

Period 1 2 3 4 5 6 
Item 1 212 250 212 250 231 231 
Item 2 612 612 612 612 612 612 

Objective value 
Exact 
10065 

Approx 
9682 

%error 
4 

 

Problem #3 
static demand, capacity constraint 

Yield and demand same as P#1 
Capacity: 1500 
Objective value 

Exact 
9856 

Approx 
9561 

%error 
3 

 
 

Problem #4 
dynamic demand, capacity constraint 

Yield same as P#1 
demand same as P#2 

Capacity: 1500 
Objective value 

Exact 
9799 

Approx 
9559 

%error 
3 

 

Problem #5 
static demand, no capacity constraint 

 Item 
1 

Item 
2 

probability 

Yield 
Outcome 

1 
0.25 0.35 0.5 

Outcome 
2 

0.225 0.7 0.5 

request 375 861  
Objective value 

Exact 
10756 

Approx 
9435 

%error 
11 

 

Problem #6 
dynamic demand, no capacity constraint 

Yield same as P#5 
Demand 

Period 1 2 3 4 5 6 
Item 1 350 400 350 400 375 375 
Item 2 861 861 861 861 861 861 

Objective value 
Exact 
10938 

Approx 
9438 

%error 
14 

 
 

Problem #7 
dynamic demand, capacity constraint 

Yield and demand same as P#5 
Capacity 1200 

Objective value 
Exact 
10305 

Approx 
8993 

%error 
15 

 

Problem #8 
dynamic demand, capacity constraint 

Yield same as P#5 
Demand same as P#6 

Capacity: 1500 
Objective value 

Exact 
9948 

Approx 
9058 

%error 
9 
 

 

Problem #9 
static demand, no capacity constraint 

 Item 
1 

Item 
2 

probability 

Yield 
Outcome 

1 
0.44 0.75 0.5 

Outcome 
2 

0.06 0.75 0.5 

demand 250 1000  
Objective value 

Exact 
19950 

Approx 
18580 

%error 
7 

 

Problem #10 
dynamic demand, no capacity constraint 

Yield same as P#9 
Period 1 2 3 4 5 6 
Item 1 250 250 250 250 250 250 
Item 2 938 1063 938 1063 1000 1000 

Objective value 
Exact 
19950 

Approx 
18410 

%error 
8 

 

 
Problem #11 

static demand, capacity constraint 
Yield and request same as P#9 

Capacity: 1500 
Objective value 

Exact 
19833 

Approx 
18044 

%error 
9 

 

Problem #12 
dynamic demand, capacity constraint 

Yield same as P#9 
Demand same as P#10 

Capacity: 1500 
Objective value 

Exact 
19790 

Approx 
17773 

%error 
11 
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Problem #13 

static demand, no capacity constraint 
 Item 

1 
Item 

2 
probability 

Yield 
Outcome 

1 
0.313 0.750 0.5 

Outcome 
2 

0.188 0.750 0.5 

demand 19408 19399 0 
Objective value 

Exact 
19408 

Approx 
19399 

%error 
0 

 

Problem #14 
static demand, no capacity constraint 

 Item 
1 

Item 
2 

probability 

Yield 
Outcome 

1 
0.125 0.69 0.5 

Outcome 
2 

0.875 0.31 0.5 

demand 6406 5550 13 
Objective value 

Exact 
6407 

Approx 
5550 

%error 
13 

 

Problem #15 
static demand, no capacity constraint 

 Item 
1 

Item 
2 

probability 

Yield 
Outcome 

1 
0.25 0.63 0.5 

Outcome 
2 

0.75 0.37 0.5 

demand 14580 13631 7 
Objective value 

Exact 
14580 

Approx 
14882 

%error 
7 

 

Problem #16 
static demand, no capacity constraint 

 Item 
1 

Item 
2 

probability 

Yield 
Outcome 

1 
0.375 0.563 0.5 

Outcome 
2 

0.625 0.438 0.5 

demand 15371 14561 5 
Objective value 

Exact 
15372 

Approx 
14562 

%error 
5 

 

       
 
   The error in the objective value varies from 3% to 14%. The error increases with increasing variance in the 
yield. The variability in the products is greater in problems 5-9 than in problems 1-4. The errors in problems 
1-4 are notably lower than those in problems 5 - 9. These numbers indicate that the error in the collection 
procedure is clearly affected by the variability in the yield. The effect of the yield variability on the quality of 
the heuristic solutions is further demonstrated by test problems 14, 15 and 16. The average yields are 
identical in these problems. However, the variability is largest in problem 15 and smallest in 17. The 
variation in the approximation error is consistent with the change in the variability. The summary of this 
analysis is illustrated in table 5. 
 

Table 5. Test problems- Effect of field variability on error 
 Variance (problems 1- 4, in %) Variance (problems 5 - 9, in %) 

Static demand 2 11 
Dynamic demand 4 14 

Stat. demand with cap. const. 3 15 
Dyn. demand with cap. const. 3 9 

 

5-1- Multi-family, capacitated problems 

   Until now, we have limited our consideration to a single-family problem. We now consider a multi-family 
problem and assume that we have a capacity constraint that limits the total quantity produced. In the absence 
of a capacity constraint, the problem can be separated by family, resulting in multiple single-family 
problems. We expand on a greedy procedure to solve the single-period problem. Because the capacity 
limitation affects all of the families, the size of constrained problems is notably larger than that of an 
unconstrained problem. For example, a single-period problem with eight families, each with ten customers 
and ten yield outcomes, will have 37500 constraints and 93750 variables. The number of constraints and 
variables grows exponentially with the number of families (Barbarosoglu and Özdamar, 2000).  
   The problem size increases equally quickly if we increase the number of periods. The problem size may 
become smaller if we relax the capacity constraint. Therefore, an obvious strategy is to relax the capacity 
constraint and use Lagrangian relaxation methods (Priyan and Uthayakumar 2014, Xanthopoulos, 
Koulouriotis et al. 2015). We choose this method, but we do not use linear programming to solve the 
resulting sub-problem. Instead, we expand a greedy procedure. At every stage of our algorithm, we compute 
the slight value to be used to assign an extra unit of production to a family. In the next section, we describe 
in considerable detail the algorithm for solving the single-period, multi-family constrained problem. 
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5-2- The Greedy Procedure for a Single-period Problem 
   The multi-family, constrained problem is given by the following. 
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   The index f indicates the family. The function (.)1,foGS  represents the assumed value of the evening 
problem for family f. The framework of the evening problems in the multi-family, single-period case is 
similar to that of the evening problem for the single-family case. Because each (.)1,foGS  is a concave 
function whose value depends only on mf, with a different value of m for fi ≠ , the capacitated problem is a 
concave knapsack problem. As a result, the optimal technique is a greedy procedure that assigns the next unit 
of production to the family with the highest slight profit. Below, we define an approximation procedure that 
assigns δ  units of production at each step of the assignment process. 
STEP 1: initialize. 
Calculate ffmfCfmfGoSf γλ =−∂∂= ]/(.,.)1,[  

0=∀ ff γ , where 

fλ = a slight value used to assign a unit of production to family j and 

fγ = the capacity assigned to family f. 
STEP 2: identify the family with the highest slight value.  
               ][*

fArgMaxf λ= ; If 0* ≤fλ  STOP (optimality condition) 

STEP 3: assign production to family f*. 
               e

ff
′′+= ** γγ , where e′ = min {where e  denotes the unassigned capacity} 

 
STEP 4: check if the capacity has been entirely assigned. If so, STOP.  
STEP 5: update the slight value for family f*.  
      Calculate

**
]**/(.,.)

1,*[*
fqf

mf
c

f
m

f
GoS

f =
−∂∂=λ . 

       Return to Step 2. 
For 0>e , this procedure is an approximation procedure. The final solution may not be optimal. We describe 
a procedure for calculating fλ  below. 

Analyze a family, f, and let f
mα  be the probability of observing that a yield outcome of m. Then, 
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Where f
m,1ω  and f

m,2ω  are the shadow prices of constraints 2 and 3, respectively, with ffm γ= . These 
shadow prices can be specified by solving the corresponding linear program and can also be calculated 
exactly. f

mi,ω  is the slight value of an extra unit of item i, given the manufacture of fm  units with an 

outcome of m. Because we realize the yield, we can specify how the next unit of item i will be used and its 
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value under the optimal assignment process. For example, if f
mufm ,1  is less than the request by customer l, 

the value of the next unit of item 1 would be equal to the selling price plus the backorder penalty for 
customer 1. 1,

f
mu is the yield of item 1 of family f under outcome m. An algorithm for specifying the shadow 

prices by assigning the items to the customers is shown in Figure 3.  

 
 

Figure 3. Algorithm to compute the shadow price 
 
   We begin with customer 1 and go down the scale. For customer c, we first assign item k. If the yield of 
item c is sufficient, the shadow price for item k is the same as its rescue value. If the demand of customer c 
cannot be fulfilled by item c, the shadow price of item c is set equal to the selling price plus the backorder 
cost of customer c. We then move up the scale (beginning from item c-1) to see if we can assign item c-i 

)11( −≤≤ ci  to customer c. Before we demote item c-i, we must check the following. 
(a) Whether there are any excesses of item c-i and  
(b) Whether the selling price plus the backorder cost for customer c surpasses the rescue price of item c-i. 
We assign item c-i to customer c only if the answer to both the questions is yes. If we demote, the shadow 
price of item c-i is updated. The item can have two new shadow prices. 
(1) If the excess quantity of item c-i is equals to or exceeds the residual needs of customer c, the shadow 
prices of items c-i through c are set equal to the rescue price of item c. 
(2) If the excess quantities of items c-i are insufficient, the shadow prices of item c-i are set to the selling 
prices plus the backorder cost for customer c.  

Compute output of all items

k=1

Allocate item k to customer k

Demand of k met? Item k shadow price=item k salvage value

Item k shadow price=customer k selling price+backorder cost

yes

no

START

j=k-1
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j=0

salvage value of item j>selling
+backorder cost of customer k?

k=k+1

stocks of item j available?

allocate item j to customer k. item j shadow price=
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Demand for customer
 j backordered?
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j=j-1

for items j to k 
shadow price=salvage value of j

no

yes

yes

no

no

END

j>0

no

1

yes

1
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The demoting process for customer c is ended if (1) the rescue price of item c-i is greater than the selling 
price plus the backorder cost for customer c or (2) there are no more excesses. 
The algorithm requires )2( fZfMO  steps to calculate fλ , where Mf is the number of outcomes for family f, 

and Zf is the number of items in family f. 
 

6- Conclusions 

   In this paper, we have modeled a production-planning problem based on a real case in the electronic 
industry. The most important aspect of this work was recognizing and building the problem. In this area, the 
yields vary notably, and the demands are changeable. In addition, different items may be received from each 
production lot. We have formulated the problem as a probabilistic one. Based on the framework of a two-
period problem, we have determined a class of heuristics to assign items to customers. The heuristics assign 
items to customers in a way that keeps the net demands for the items in equilibrium. The aim of the 
heuristics is to prevent the net demand for any item from surpassing the predetermined level of the total 
demand for all of the items. These assignment strategies are characteristic of the yield possibilities with 
multiplicative yields.  
   We also assume approximation procedures to solve single-family limited horizon problems with and 
without capacity constraints. We approximate the problem by assuming that the yields are definite in all but 
the first period on the horizon. We have tested this procedure on sample problems. The size of the test 
problems was restricted by the size of the specific problems. The errors in the objective value varied between 
3% and 14%. The possibility ranking in the yield had a significant effect on the performance of the heuristic 
procedure. We have established a greedy procedure for solving the single-period, multi-family capacitated 
problem. 
   Finally, we consider a real world problem that introduces a risk-based method that combines Monte Carlo 
simulation with traditional method to evaluate and support in choosing the best RE plan given sustainability 
analyses. The proposed method does not need criteria weighting or accurate quantitative computation as it 
clarifies the decision making process by solving problems relied on qualitative or quantitative information. 
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