
151 

 

 

Measuring performance of a three-stage structure using data 

envelopment analysis and Stackelberg game 
 

Ehsan Vaezi1, Seyyed Esmaeil Najafi1*, Seyyed Mohammad Hajimolana1, Farhad 

Hosseinzadeh Lotfi2, Mahnaz Ahadzadeh Namin3 

 

1Department of Industrial Engineering, Science and Research Branch, Islamic Azad University, 

Tehran, Iran 
2Department of Mathematics, Science and Research Branch, Islamic Azad University, Tehran, Iran 

3Department of Mathematics, Shahr.e Qods Branch, Islamic Azad University, Tehran, Iran 

 

ehsan.vaezi@srbiau.ac.ir, e.najafi@srbiau.ac.ir, Molana@srbiau.ac.ir, farhad@hosseinzadeh.ir, 

mahnazahadzadehnamin@gmail.com 

  

Abstract 

In this paper, we consider a three-stage network comprised of a leader and two 
followers in respect to the additional desirable and undesirable inputs and 

outputs. We utilize the non-cooperative approach multiplicative model to 

measure the efficiency of the overall system and the performances of decision-
making units (DMUs) from both, the optimistic and pessimistic views. 

Moreover, we utilize the concept of a goal programming and define a kind of 

cooperation between the leader and followers, so that the objectives of the 

managers are capable of being inserted in the models. In actual fact, a kind of 
collaboration is considered in a non-cooperative game. The non-cooperative 

models from this view cannot be converted into linear models. Therefore, a 

heuristic method is proposed to convert the nonlinear models into linear models. 
After obtaining the efficiencies based on the double-frontier view, the DMUs 

are ranked and classified into three clusters by the k-means algorithm. Finally, 

this paper considers a genuine world example, in relevance to production 
planning and inventory control, for model application and analyzes it from the 

double-frontier view. The proposed models are simulations of a factory in a real 

world, with a production area as leader and a warehouse and a delivery point as 

two followers. This factory has been regarded as a dynamic network with a time 
period of 24 intervals. 

Keywords: Network DEA, game theory, Stackelberg game, goal programming, 

double-frontier, undesirable output. 

 

1- Introduction 
   Evaluation and the measurement of performance lead to smart or intelligent systems with incentives 

for individuals for the desired behavior. Performance measurement is one of the fundamental 

managerial processes, for analyzing their own performance and likewise, surveying the conformity 
between the performance and the set of goals. The outcome of the evaluation can provide the grounds 

for taking the correct measures in decision-making for the future. Performance appraisal is a key part 

in the formulation and implementation of organizational policies.  
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   Today, all organizations have somehow, depicted the importance, of having a measuring system, for 
performance. As a principle, every organization should and till wherever feasible, measure its 

performance capacities.  

  The absence of an effective assessment or evaluation system is directly related to the disintegration 

of an organization and this shortcoming is considered an organizational disease; for without 
measuring, there shall be no basis for judgments, opinions and evaluations. As whatever cannot be 

evaluated, cannot be even fittingly managed. So as to ensure a correct management, every 

organization must use scientific models for the evaluation of performance, so that its efforts and the 
results achieved from its performance can be appraised. Several factors have an impact on the growth 

and development of countries. Researches executed in this arena indicate that efficiency impacts 

enhance the speed of economic development. These surveys have revealed that in the past years, there 
is a difference in the economic growth and development of countries due to modification in the level 

of efficiency and productivity of factors relative to production. Thence, an increment in performance 

and efficiency of organizations is an inevitable necessity, for survival, in global markets today.  This 

issue is not confined to a particular sector or industry and in a limited period of time shall encompass 
all the sectors of economy. A performance assessment is a process which appraises measures, 

evaluates and judges the performance of an organization during a given period.  This measuring of 

performance is carried out by comparing the present circumstances with that of the desirable or ideal 
conditions, which are based on pre-determined indexes. In general, the objectives of assessing the 

performance are a response to the results in specifying quality improvement measures and to reduce 

costs, as well as comprehend, as to what is being evaluated. The performance evaluation topics can be 
examined from different views. There are two traditional and modern views in this regard. The 

traditional view focuses solely on the work of the past period and is shaped by the requirements of the 

past. In this view, the time and space conditions of the system are ignored and may cause deviations 

as a result of work. A new view has targeted education, growth and development of evaluated 
capacities and performance improvements. This approach identifies the weaknesses and strengths of 

the systems. In the new view, the problem is studied in the context of time and a systemic attitude is 

dominant. Organizational units are only a part of the whole system.  As a result, a new view leads to 
growth and development, improvement of performance, and the realization of the goals of the 

organization. In recent years, several models and approaches have been proposed for measuring 

efficiency, based on two general parametric and non-parametric methods. In this research, the Data 

Envelopment Analysis (DEA) is used as a nonparametric approach. This method selects the efficient 
units and provides the efficiency frontier. This frontier is a criterion for the evaluation of other units. 

In this paper, we will measure the performance by using the data envelopment analysis method for the 

following five reasons. First, it evaluates the performance of the organization on the basis of a logical 
model with a flexible structure. Second, it detects inefficient units. Third, the degree of inefficiency of 

the units is determined. Fourth, there is no prior standard level and the comparison criterion is another 

unit that operates under the same conditions. Fifth, DEA determines the patterns and references for 
the inefficient units among of the efficient units. 

   The DEA is a theoretical framework which discusses the analyzing of efficiency and its application 

in the arena of production planning and inventory control is observed very poorly. In the past two 

decades, the manufacturing or production sector has grown significantly and being attentive towards 
production is one of the key goals of Iran’s programs. An increment in the importance of the 

production sector, during the recent years and anxiety as to efficiency growth in this sphere, has a 

direct correlation with the economic system. A rise in costs, has led to pressurizing the production 
units to increase their organizational efficiency. A rise in costs, has led to haul, the production units 

towards incrementing their organizational performance. The best manner to ensure an efficiency 

increase would be to carry out a correct and logical use of the resources available.  This could only be 
accomplished by ensuring a correct managerial performance, including a coherent evaluation of the 

returns attained. In continuation, the paper unfolds as follows: Section (2) reviews the literature on the 

data envelopment analysis approach. Section (3), describes the methodology and model formulation. 

In section (4), the heuristic approach has been described, so as to resolve the non-cooperative view of 
the network analysis. Section (5) of the paper describes a factory, evaluating it dynamically and 

section (6) concludes the paper.  
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2- Literature review 
   Data Envelopment Analysis (DEA) is a non-parametric method for measuring the relative efficiency 

of a set of analogous decision-making units (DMUs), with multiple inputs and outputs (Hwang et al., 
2013). This method is considered a frontier or boundary function surrounding and involving the input 

and output factors. It not only determines the most efficient units, but it also analyses the inefficient 

ones (Kritikos, 2017). Charnes et al. (1978) developed the initial DEA task of Farrel (1957), the said 

model was known as (Charnes-Cooper Rhodes) or the “CCR Model”. Banker et al. (1984) expanded 
the DEA models and presented the (Banker-Charnes-Cooper) or the “BCC Model”. The classical data 

envelopment analysis models, such as, the CCR and BCC, assume that the systems are considered as 

black boxes; and due to the shortcomings in considering the intermediary variables and the internal 
interactions of the system, valuable information is eliminated (Lee et al., 2016). Fare and Grosskopf 

(2000) indicated to the disadvantages and weak points of the classical DEA models and referred to the 

Network Data Envelopment Analysis Model (NDEA). These models defined the interactions and 
intermediate variables and similarly, by utilizing the series and parallel sub-divisions, dealt with 

evaluating the efficiency of complex systems. Since the NDEA Models take into account the internal 

interactions of systems, hence, a more realistic performance of the systems can be demonstrated. In 

network models the performance of the entire system is calculated in relevance to the constraints or 
restrictions of the internal processes and the interactions between the general efficiency and that of the 

processes is established. Though, in the classic DEA Models, if the DMU has internal processes, the 

efficiency of these internal processes and the general process is computed independently and the 
correlations between the general efficiency and that of the processes is not conventional (Chen & 

Yan, 2011). Kao (2009) categorized the network models into three sets, namely, series, parallel and 

hybrid. Kao stated that, when activities in a system are protracted in respect to each other, the system 
is of a series structure; and whenever activities are in a parallel form alongside each other, the system 

has a parallel structure. Similarly, when there is a hybrid condition between the series and parallel 

aspects, a hybrid mode is engaged. In order to calculate the efficiency of the entire network, both, in 

the series or parallel mode, usually, the efficiency coefficient attained in the stages relative to each 
other and the weighted average efficiency or the stages are normally and respectively utilized. In a 

series or parallel structure, a DMU is efficient when all its sub-processes are efficient (Kou et al., 

2016). Several studies have been carried out in relevance to NDEA and in respect to which, the task 
of Cook et al. (2010) can be indicted. They developed a multi-stage model, in which each stage is able 

to consider the additional inputs and outputs. In fact, in this model, the outputs of each stage can be 

regarded as the final product and exit the system and or enter the next stage as an input. Thereby, each 

stage can take the additional inputs into consideration, as not being the outputs of the prior stage. 
Zhou et al. (2018), review the literature on network data envelopment analysis (NDEA) applications 

in sustainability using citation-based approaches from 1996 to 2016. In the past few years, in 

relevance to network analysis, new discussions have been contributed in view of the game theory, 
such that this theory has become one of the vital methods in the analysis of NDEA or have been 

converted into multi-stage models (Liang et al., 2008). Li et al. (2012) rendered a model for a two-

stage structure, a phase of which holds a more important standpoint for managers. They have named 
this phase as “leader” and the other phase as “follower”. In order to calculate the efficiency, initially, 

the efficiency of the leader phase was maximized to the optimum and then the efficiency of the 

follower phase was brought to hand, by maintaining a constant efficiency for the leader phase.  This 

model was known as a decentralized controlled or a Stackelberg game, which has been widely used 
by researchers in the recent years. An et al. (2017), took a network, comprising of two stages with a 

collaborative condition between them into consideration and computed the efficiency of this network 

in the cooperative and non-cooperative conditions on a (leader-follower) basis. The results 
demonstrated that, the overall efficiency in cooperative conditions was higher than that of the non-

cooperative one. Wu et al. (2016) contemplated on and computed the efficiency of a two-stage 

network, in another similar research, with undesirable outputs in cooperative and non-cooperative 
conditions. The results of this research, which considers the total efficiency as the sum of the 

efficiency component, denotes that, the efficiency of the sub-DMUs is in the condition of a leader in 

the maximal and as a follower in the minimal. In yet another research by Zhou et al. (2018), a network 

consisting of a leader and some followers were evaluated in a black box and non-cooperative modes 



154 

 

and the results were compared. In this study which aimed at minimizing costs, the CCR data 
envelopment analysis model was utilized.  In other researches that were performed in the grounds of 

leader-follower, the research by Du et al. (2015) can be designated. They analyzed a parallel network 

in the cooperative and non-cooperative mode. Rezaee et al. (2016) combine DEA and Nash 

bargaining game as a cooperative game theory approach to evaluate the performance of two stage 
network. Shafiee (2017) considers a two-stage network and use non-cooperative Stackelberg game 

with rough set theory to evaluate the performance of DMUs under uncertainty. Amirkhan et al. (2018) 

rendered a model for a three-stage structure that all of the stages cooperate together to improve the 
overall efficiency of main DMU. In this study, a new three-stage DEA model is developed using the 

concept of three-player Nash bargaining game for PSTS processes.  

      In the recent years, special attention has been paid to undesirable factors in DEA Models. Such 
that, Liu et al. (2016) utilized the clustering methods and described this sphere as one of the four 

critical spheres or domains of DEA, from the researchers’ viewpoint. Fare and Grosskopf (1989), for 

the initial time, mentioned the aspect of undesirable factors, in evaluating efficiency performance. 

Seiford and Zhu (2002) considered a network structure and proposed a model for efficiency 
evaluation that increased the desirable output and decreased the undesirable output. A non-radial 

network DEA model is suggested by Jahanshahloo et al. (2005), for considering the undesirable 

outputs. Badiezadeh and Farzipoor (2014) reflected on a production line, as a system with undesirable 
outputs and measured the overall efficiency of the system under consideration and the internal 

interactions of DMUs.  Lu and Lo (2007) classified the undesirable outputs within a framework of 

three modes: The first method was to overlook all the undesirable outputs. The second method was to 
restrict the expansion of the undesirable outputs, or by considering these undesirable outputs as a 

nonlinear DEA model. The third method taken under contemplation for the undesirable outputs, was 

as an input, or signified with a negative sign, as an output and or by imposing a single downward 

conversion. In the past few years, the role of the undesirable factors in DEA models has made 
considerable progress and the tasks of Wang et al. (2013) and Wu et al. (2015) can be indicated to.  

        The DEA with a double-frontier studies two efficiencies for each DMU. One is called the 

optimistic efficiency or best relative efficiency and other efficiency is known as the pessimistic 
efficiency or the poorest efficiency (Amirteimoori, 2007). In the optimistic efficiency each DMU is 

compared with a set of efficient DMUs that are located on the efficiency frontier; whereas,  in the 

pessimistic efficiency the comparison of each DMU is made with a set of inefficient DMUs that are 

located on the inefficiency frontier (Parkan and Wang, 2000 ). The value of the optimistic approach is 
less than or equates to (1); and from the pessimistic viewpoint is more than (1) or equal to (1). The 

efficiency value of the optimistic approach is less than (1), when the DMU under evaluation is not on 

the efficiency frontier; whereas, it equates to (1) when the DMU under assessment or evaluation is on 
the efficiency frontier. The pessimistic value approach is more than (1) when the DMU under 

evaluation is not on the inefficiency frontier; but is equivalent to (1) when the DMU under evaluation 

is on the efficiency frontier (Azizi and Wang, 2013; Jahanshahloo and Afzalinejad, 2006). In actual 
fact, the double-frontier, views each DMU from two perspectives and any conclusion which implies 

to only one of these two viewpoints shall result in a one-sided and an incomplete perspective (Azizi 

and Ajirlu, 2011). The measurement of efficiency, based on the optimistic and pessimistic views in a 

mutual fashion, shall lead to an increment in accuracy for the purpose of ranking the DMUs 
(Badiezadeh et al., 2018). Doyle et al. (1955) for the first time obtained the efficiency of DMUs from 

the two optimistic and pessimistic viewpoints. Entani et al. (2002) attained the double-frontier in 

order to measure the efficiency for each lower bound and upper bound DMU as optimistic and 
pessimistic efficiencies respectively. So as to combine the results of the optimistic and pessimistic 

approaches, which would usher a general or overall efficiency, several other researchers suggested 

mathematical combinations (i.e. averaging between the optimistic and pessimistic values) (Azizi, 
2014). Wang and Chen (2009) used a geometric mean to combine the results of an optimistic and 

pessimistic viewpoint for ranking the DMUs. In the recent years, numerous other researchers have 

utilized the double-frontier to measure efficiency and in this relative Jiang et al. 2012; Wang and Lan 

2013; Yang and Morita 2013; Azizi et al. 2015; Jahed et al. 2015 and Badiezadeh et al. 2018 can be 
indicated. 

   The researches carried out utilized and were based on DEA, which were mainly in static 

environments. For the initial time, Sengupta (1995), dealt with efficiency evaluations in dynamic 
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environments. Dynamic models are models where, data is continuously changing over several 
incessant periods or cycles; and each time period is considered as a DMU. Similarly, the correlation 

between the periods in these models, utilizes additional inputs and outputs amid these periods 

(Jafarian Moghaddam and Ghoseiri 2011). Since (the epoch of) Sengupta’s task, several articles have 

been published in the sphere of dynamic networks, which differ in relevance to case studies and the 
manner in which the efficiency of the DMUs are calculated. In other words, models in relative to 

Kawaguchi et al. (2014) and Wang et al. (2014) can be mentioned respectively, for performance or 

efficiency evaluation in hospital environments and banks in a dynamic genre.   
    A multiple criteria decision-making can be divided into two groups, consisting of multi-criterion 

and multi-objective decision-making. A goal programming is one of the multi-objective decision-

making techniques, which assists in encompassing several aims synchronously; and by minimizing 
the deviation between these objectives, the optimal solution can be determined. In this method, the 

objective function of the key problem is somehow formulated by the auxiliary variables that are 

namely deviations from the goal condition, so that the total set of undesirable deviations of the ideals 

are minimized (Ransikarbum and Mason, 2016). This technique specifies as to the goals achieved and 
the ones which have not been so. In addition to which, by utilizing a goal programming, the amount of 

deviation of each of these goals from their ideal level comes to hand (Shabanpour et al., 2017). A goal 

programming was performed by Charnes and Cooper in 1961 (Dhahri and Chabchoub, 2007). In the 
past few years, numerous researchers have used the goal programming method and rendered new 

models and for such models, one can refer to Chen et al. (2017); Trivedi and Singh (2017) and He et 

al. (2016). Methods in relevance to goal programming modes are extremely diverse and even make 
provisions to optimize contradictory goals. Jolai et al. (2011) set up and utilized goal programming for 

three kinds of analysis: 1-Specifying the essential resources to fulfill a set of goals under 

consideration, 2-Determining the intensity of attaining goals, 3-Determining the optimal and 

substantial response with due attention to the amount of resources available and the priority of 
objectives or goals. Yousefi et al. (2017) suggest a hybrid goal programming-data envelopment 

analysis model in a network structure to present improvement solutions and rank units (all efficient 

and inefficient) based on experts’ requirements. 
    In accordance with the points mentioned, most of the researches performed in the network 

deliberate on two stages, but the current research takes a three-stage process into consideration, 

which, in addition to the intermediary variables, has additional and undesirable inputs and outputs as 

well. We utilize an optimistic and pessimistic viewpoint, to secure efficiency and increase accuracy. 
Moreover, we utilize the concept of a goal programming and define a kind of cooperation between the 

leader and followers, so that the objectives of the managers are capable of being inserted in the 

models. The chief goal of this paper is to impose the opinions of the managers in the models and 
analyze them, as well as compare results. Hence, a kind of collaboration is considered in a non-

cooperative game. The non-cooperative models cannot be turned into linear models, from the 

optimistic and pessimistic views, because of the additional inputs and outputs. Therefore, we use a 
heuristic technique to convert the nonlinear models into linear models. Finally, this paper proposed a 

clustering method based on the double-frontier view by using the k-means algorithm. 
 

3- Methodology 
   Each research is a systematic activity, in which either knowledge develops, or a situation is 
described and explained, or ultimately a particular problem is solved. Given that each research begins 

with a specific problem and purpose at hand, therefore, researches are of different types. Accordingly, 

this research is an applied research. The statistical population of this research includes the production, 
maintenance and distribution network of a factory (Nasiri Dairy factory), which is defined as an 

annual planning horizon in 24 periods. In this study, the methodology is designed in four steps. In the 

first step, the variables and data are collected based on the observation, interview and library studies.  

In the second step, a network data envelopment analysis (NDEA) approach is designed to measure the 
performance of DMUs based on the optimistic, pessimistic and double-frontier views. In the third 

step, a heuristic approach is designed, so as to resolve the optimistic and pessimistic models. Finally, 

in the fourth step, the decision-making units are ranked and classified by the k-means algorithm. In 
Fig. 1, the methodology is shown in four steps. 
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Fig 1. Steps of methodology 

3-1- Model description 
   We consider a set of n homogeneous decision making units (DMUs) that are denote by DMUj 

(j=1,..., n), and each DMUj (j=1,…,n) has three-stage, as shown in Fig. 2, where all the stages are 

connected together in series.  We denote, the inputs of the first stage by xi1j
1  (i1=1,…,I1) and the 

undesirable outputs of the first stage by yr1j
1  (r1=1,…,R1). We denote, the intermediate measures 

between first stage and second stage by zd1j
1  (d1=1,…,D1) and between second stage and third stage 

by zd2j
2  (d2=1,…,D2). The additional inputs and outputs of the second stage are denoted by xi2j

2  

(i2=1,…,I2) and yr2j
2  (r2=1,…,R2),  respectively. Finally, we denote, the additional inputs of the third 

stage by xi3j
3  (i3=1,…,I3) and the outputs of the third stage by yr3j

3  (r1=1,…,R3). We adopt vi1
1 , vi2

2  and 

vi3
3  as the weights of the inputs to the first, second and third stages, respectively. Kao and Hwang 

(2008) used the same weights for the intermediate measures. In accordance with this, we value the 

intermediate measures in this research, irrespective of its dual role (as an input in one stage or as an 

output in the next stage). We assume that the weights relative to the intermediate measures between 
stages 1 and 2 and similarly, weights in relevance with the intermediate measures between stages 2 

and 3 are uniform. Therefore, we adopt wd1

1  and wd2

2  as the weights of the intermediate measures 

between stage 1, stage 2 and stage 3, respectively. The weights of the outputs for the first, second and 

third stages second stage are denoted by ur1
1 , ur2

2  and ur3
3 , respectively. 
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Fig 2. Structure of three-stage leader-follower system with additional inputs and undesirable outputs 

 

   Researchers are more inclined to utilize input-oriented models for efficiency analysis, mainly for 

three reasons. The first is that, demand reveals a growing trend, the estimation of which is an intricate 

matter. The second is that, managers have a better control on the inputs, rather than the outputs. The 
third is that, the model reflects the initial objectives of policy-makers, on the basis of being 

responsible in responding to the demands of the people. Furthermore, the units must reduce costs and 

or restrict the use of resources. Thereby, in this research, an input- oriented model is utilized. 
According to the opinions of managers, we shall describe and consider the first stage in the role of a 

“leader”, the second stage as the “first follower” and the third stage as the “second follower”. Thence, 

we demonstrate the optimistic and pessimistic efficiencies of the leader’s stage with θo
L and φo

L 

respectively; the optimistic and pessimistic efficiencies of the second and third stages as θo
1F

, θo
2F

 and 

φo
1F, φo

2F respectively; and the optimistic and pessimistic efficiencies of the second and third stages 

together are shown as θo
12F

 and φo
12F respectively.  In this section, which comprises of the proposed 

approach of this paper, efforts have been made to insert the goals of the managers into the models. We 
designate the first stage as the “leader” and assume that the second and third stages together, are in the 

form of a “follower”. Under these conditions, the leader optimizes its efficiency so that the efficiency 

of the followers does not reduce from a certain level, or in actual fact, the leader maximizes its 
efficiency to forestall the eradication of the followers. Actually, the leader-follower characteristic is a 

non-cooperative game, which we hybrid with a cooperative approach in this section. In accordance 

with this, we describe the maximal efficiency of the leader stage from the optimistic viewpoint as 
hereunder: 

 

θo
L*

=max {θo
L| θo

1F
 ≥ c1, θo

2F
 ≥ c2, θj

L
 ≤ 1, θj

1F
 ≤ 1, θj

2F
 ≤ 1, j=1,…,n  }                                                         (1)

  

   All the variables in the model (1) are non-negative. Model (1) secures the maximal efficiency of the 
leader stage, on condition that, the efficiency of none of the stages is more than (1); and for DMU0 the 

follower stages (second and third stages) are not lower than the values of c1 and c2 respectively. The 

values of c1 and c2 are actually the minimal efficiency of the second and third stages which are 
numerals at intervals of (0 and 1) in accordance with the goals of managers. It should be noted that if 

the values of c1= c2 ε =are considered such, so that they are closer to (0), then the two constraints 

 θo
1F ≥ c1  and  θo

2F ≥ c2are simply redundant. So the model (1) is feasible. But there could be a 

possibility that in reality, the goals of managers is not capable of being attained and the model turns 
into a superfluous one. Hence, we utilized the concept of ‘goal programming’ and the two assigned 

values 𝛼1and 𝛼2 are reduced (θo
1F ≥ c1-𝛼1  θo

2F ≥ c2-𝛼2) from the opinion of managers under 

contemplation, so that by using model (2), conditions for securing the goal of managers is surveyed. 

Model (1) is a fractional model and by utilizing the Charnes-Cooper conversion (1962), as well as 

contemplating on the goal programming concept, as illustrated hereunder, it is converted into a linear 
model. 

  

θo
L*

= max ∑ wd1

1D1

d1=1
zd1o

1 - ∑ ur1

1R1

r1=1
y

r1o
1 -M(α1+α2)                          

        s.t.    ∑ vi1
1I1

i1=1
xi1o

1 = 1                     

                  ∑ wd1

1D1

d1=1
zd1j

1 - ∑ ur1

1R1

r1=1
y

r1j
1 - ∑ vi1

1I1

i1=1
xi1j

1  ≤ 0,      j=1,…,n                                                   (2) 

∑ wd2

2D2

d2=1
zd2j

2 + ∑ ur2

2R2

r2=1
y

r2j
2 - ∑ vi2

2I2

i2=1
xi2j

2 - ∑ wd1

1D1

d1=1
zd1j

1  ≤ 0,      j=1,…,n                   
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                  ∑ ur3

3R3

r3=1
y

r3j
3 - ∑ vi3

3I3

i3=1
xi3j

3 - ∑ wd2

2D2

d2=1
zd2j

2  ≤ 0,      j=1,…,n   

                 (c
1
- α1) ∑ wd1

1D1

d1=1
zd1o

1 + (c
1
- α1) ∑ vi2

2I2

i2=1
xi2o

2 - ∑ wd2

2D2

d2=1
zd2o

2 - ∑ ur2

2R2

r2=1
y

r2o
2  ≤ 0  

                 (c
2
- α2) ∑ vi3

3I3

i3=1
xi3o

3 + (c
2
- α2) ∑ wd2

2D2

d2=1
zd2o

2 - ∑ ur3

3R3

r3=1
y

r3o
3  ≤ 0  

                  ur1

1 ,ur2

2 ,ur3

3 ≥ ε; r1=1,…,R1; r2=1,…,R2; r3=1,…,R3;    

                  vi1
1 ,vi2

2 ,vi3
3 ≥ ε; i1=1,…,I1;   i2=1,…,I2;   i

3
=1,…,I3; j=1,…,n.  

                  wd1

1 ,wd2

2 ≥ ε; d1=1,…,D1;  d2=1,…,D2.  
 

   In the model (2) the optimum efficiency has been demonstrated with the symbol (*) and “M” 

denotes a large numeral, which factually is a penalty that causes the manager’s goal to be achievable. 

It should be mentioned that in the case where, α1=0, α2=0, the model (2) is feasible from the point of 

the manager’s goal and if this is not the issue, we request the manager to reduce his goals ( ci) to the 

measurement of αi  to make the model possible. On the basis of the task of Wang et al. (2005), we 

modify model (2), as hereunder to obtain the efficiency of the leader stage from the pessimistic view. 

Similar to our optimistic approach, we obtain the pessimistic efficiency of the leader stage, under 

conditions where the follower stages are at a distance from the inefficient frontier, i.e.  φ
o
2F ≥ c4- α4, 

 φ
o
1F ≥ c3- α3 in which case, c3, c4 ≥ 1.  

φ
o
L*= min ∑ wd1

1D1

d1=1
zd1o

1 - ∑ ur1

1R1

r1=1
y

r1o
1 + M(α3+α4)                           

         s.t.   ∑ vi1
1I1

i1=1
xi1o

1 = 1                     

                  ∑ wd1

1D1

d1=1
zd1j

1 - ∑ ur1

1R1

r1=1
y

r1j
1 - ∑ vi1

1I1

i1=1
xi1j

1  ≥ 0,      j=1,…,n                 (3) 

∑ wd2

2D2

d2=1
zd2j

2 + ∑ ur2

2R2

r2=1
y

r2j
2 - ∑ vi2

2I2

i2=1
xi2j

2 - ∑ wd1

1D1

d1=1
zd1j

1  ≥ 0,      j=1,…,n                   

                  ∑ ur3

3R3

r3=1
y

r3j
3 - ∑ vi3

3I3

i3=1
xi3j

3 - ∑ wd2

2D2

d2=1
zd2j

2  ≥ 0,      j=1,…,n   

                  ∑ wd2

2D2

d2=1
zd2o

2 + ∑ ur2

2R2

r2=1
y

r2o
2 - (c

3
- α3) ∑ wd1

1D1

d1=1
zd1o

1 - (c
3
- α3) ∑ vi2

2I2

i2=1
xi2o

2  ≥ 0  

                  ∑ ur3

3R3

r3=1
y

r3o
3 - (c

4
- α4) ∑ vi3

3I3

i3=1
xi3o

3 - (c
4
- α4) ∑ wd2

2D2

d2=1
zd2o

2  ≥ 0  

                  ur1

1 ,ur2

2 ,ur3

3 ≥ ε; r1=1,…,R1; r2=1,…,R2; r3=1,…,R3;    

                  vi1
1 ,vi2

2 ,vi3
3 ≥ ε; i1=1,…,I1;   i2=1,…,I2;   i

3
=1,…,I3; j=1,…,n.  

                  wd1

1 ,wd2

2 ≥ ε; d1=1,…,D1;  d2=1,…,D2.  
 

    Analogous to the optimistic approach of “M” that is a large numerical, which in this circumstance 
and with due attention to the type of objective function has been supplemented to the model in order 

to fulfill the manager’s goal. It should be observed that in the case where α1=0, α2=0, the model (3) is 

feasible in respect to the opinion of the manager or else we shall request the manager to reduce his 

goals of (ci)  to the measurement of αi to make the model possible. Therefore, the maximal optimistic 

efficiency of the leader stage θo
L*

 and the minimal pessimistic efficiency of the leader stage φ
o
L*is 

brought to hand respectively, from models (2 and 3). To compute the efficiency of the followers we 

shall assume the second and third stages as one stage and obtain the efficiency of the follower stage. 
We hybrid the efficiencies of the second and third stages, being attentive to the fact that they are in 

series and define them as figures θo
12F

= θo
1F

 . θo
2F

 in accordance with the tasks of Kao and Hwang 

(2008). Hence, the maximal efficiency together for the follower stages from the optimistic viewpoint 

is brought to hand as rendered hereunder: 
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θo
12F*

=max 
∑ wd2

2D2
d2=1

zd2o
2 + ∑ ur2

2R2
r2=1

yr2o
2

∑ vi2

2I2
i2=1

xi2o
2 + ∑ wd1

1D1
d1=1

zd1o
1

. 
∑ ur3

3R3
r3=1

yr3o
3

∑ vi3

3I3
i3=1

xi3o
3 + ∑ wd2

2D2
d2=1

zd2o
2

                        

          s.t.    
∑ wd1

1D1
d1=1

zd1j
1 - ∑ ur1

1R1
r1=1

yr1j
1

∑ vi1

1I1
i1=1

xi1j
1

≤1,       j=1,…,n  

                   
∑ wd2

2D2
d2=1

zd2j
2 + ∑ ur2

2R2
r2=1

yr2j
2

∑ vi2

2I2
i2=1

xi2j
2 + ∑ wd1

1D1
d1=1

zd1j
1

≤1,      j=1,…,n                (4) 

                  
∑ ur3

3R3
r3=1

yr3j
3

∑ vi3

3I3
i3=1

xi3j
3 + ∑ wd2

2D2
d2=1

zd2j
2

≤1,       j=1,…,n  

                   
∑ wd1

1D1
d1=1

zd1o
1 - ∑ ur1

1R1
r1=1

yr1o
1

∑ vi1

1I1
i1=1

xi1o
1

=θo
L*

  

                   ur1

1 ,ur2

2 ,ur3

3 ≥ ε; r1=1,…,R1; r2=1,…,R2; r3=1,…,R3;    

                   vi1
1 ,vi2

2 ,vi3
3 ≥ ε; i1=1,…,I1;   i2=1,…,I2;   i

3
=1,…,I3; j=1,…,n.  

                   wd1

1 ,wd2

2 ≥ ε; d1=1,…,D1;  d2=1,…,D2.  

 
   The maximal and overall efficiency of the second and third stages is gained by model (4), on 

condition that, the efficiency of none of the stages equates to more than (1); and to the approach of Li 

et al. (2012), the efficiency of the leader’s stage should remain constant. On the founding’s of the 
tasks of Wang et al. (2005), we describe model (4) as given below, in order to attain the minimal 

efficiency of the overall follower stages from the pessimistic view.  

φ
o
12F*=min 

∑ wd2

2D2
d2=1

zd2o
2 + ∑ ur2

2R2
r2=1

yr2o
2

∑ vi2

2I2
i2=1

xi2o
2 + ∑ wd1

1D1
d1=1

zd1o
1

. 
∑ ur3

3R3
r3=1

yr3o
3

∑ vi3

3I3
i3=1

xi3o
3 + ∑ wd2

2D2
d2=1

zd2o
2

                        

          s.t.    
∑ wd1

1D1
d1=1

zd1j
1 - ∑ ur1

1R1
r1=1

yr1j
1

∑ vi1

1I1
i1=1

xi1j
1

≥1,       j=1,…,n  

                   
∑ wd2

2D2
d2=1

zd2j
2 + ∑ ur2

2R2
r2=1

yr2j
2

∑ vi2

2I2
i2=1

xi2j
2 + ∑ wd1

1D1
d1=1

zd1j
1

≥1,      j=1,…,n                (5) 

                  
∑ ur3

3R3
r3=1

yr3j
3

∑ vi3

3I3
i3=1

xi3j
3 + ∑ wd2

2D2
d2=1

zd2j
2

≥1,       j=1,…,n  

                   
∑ wd1

1D1
d1=1

zd1o
1 - ∑ ur1

1R1
r1=1

yr1o
1

∑ vi1

1I1
i1=1

xi1o
1

=φ
o
L*  

                   ur1

1 ,ur2

2 ,ur3

3 ≥ ε; r1=1,…,R1; r2=1,…,R2; r3=1,…,R3;    

                   vi1
1 ,vi2

2 ,vi3
3 ≥ ε; i1=1,…,I1;   i2=1,…,I2;   i

3
=1,…,I3; j=1,…,n.  

                   wd1

1 ,wd2

2 ≥ ε; d1=1,…,D1;  d2=1,…,D2.  
 

   Models (4 and 5) are nonlinear and in the fourth section of this paper, an innovative approach in 

resolving it is utilized. In assuming that, the models are solved and given that the stages are in series 
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(figure 2), we define the total and maximal optimistic efficiency and the minimal and total pessimistic 

efficiency are respectively specified as below: 

θo
overall*

=  θo
L*

 . θo
12F*

, φ
o
overall*=  φ

o
L* . φ

o
12F*                                                                                            (6) 

Wang and Chin (2009) used an approach for ranking DMUs from both, the optimistic and pessimistic 

views. We then define the overall efficiency according to the double-frontier in formula (7) as below: 

∅o
*=√θo

overall*
.φ

o
overall*                                                                                                                                          (7) 

 

3-2- Clustering 
   With the result of Formula (7), we can rank the DMUs. This ranking is based on the optimistic and 
pessimistic views. In the following, we use the k-means algorithm to cluster the DMUs into several 

groups. K-means clustering is a simple unsupervised learning algorithm that is used to solve 

clustering problems. It follows a simple procedure of classifying a given data set into a number of 
clusters, defined by the letter "k," which is fixed beforehand. The clusters are then positioned as 

points and all observations or data points are associated with the nearest cluster, computed, adjusted 

and then the process starts over using the new adjustments until a desired result is reached. The 
groups are determined in such a way that the similarity between the members of a group is high and 

the similarity between members of different groups is low. Given a set of observations (x1, x2, …, 

xn), where each observation is a d-dimensional real vector, k-means clustering aims to partition the n 

observations into k (≤ n) sets S = {s1, s2, …, sk} so as to minimize the within-cluster sum of squares 

(WCSS) (i.e. variance). Formally, the objective is to find: arg min
s

∑ ∑ ‖x − μi‖
2

x∈si

k
i=1 =

arg min
s

∑ |si|Var si
k
i=1  where μi is the mean of points in si. In the K-Means algorithm, the k-member 

is randomly selected from among the n members as cluster centers. Then the n-k remaining members 

are assigned to the nearest cluster. After assigning all members, the cluster centers are recalculated 

and the members are assigned to the clusters according to the new centers, and this continues until the 

centers of each cluster remain constant. In this paper, we use the k-means technique to cluster the 
results of the described models (cluster based on the result of the formula (6)) and these results are 

shown in the case study section. In order to select the best cluster, based on expert opinions and 

previous studies, a suggested range for the number of clusters was initially identified. In accordance 
with the opinions of managers, we suggest to cluster the DMUs into three groups (k=3) with similar 

characteristics. 

4- Heuristic approach to solve nonlinear models 
   In this section we will use a solution to gain the efficiency of the followers. Due to the presence of 

additional inputs and outputs in the first, second and third stages, models (4 and 5) are nonlinear. To 

solve these models we use a heuristic approach as hereunder: 

4-1- A heuristic method from optimistic view  
   We are aware that the objective function of model (4) is the multiplicative efficiency of the two-

stages, i.e. θo
12F*

=max θo
1F

. θo
2F

. We take θo
1F as a variable in the objective function which modifies 

between the [0, θo
1F-max ] interval.  We describe θo

1F
 as given below, so that we are able to move it 

between intervals.  

θo
1F 

= θo
1F-max 

- k1∆ε,           k1=0,1,…, [
θo

1F- max 

∆ε
] +1                                                                                (8) 

    We take ∆ε as a step size and consider it an extremely small amount and describe θo
1F-max 

 as the 

maximum efficiency of the first follower stage and its value is capable of being computed by the 

model below.  

θo
1F-max

=max {θo
1F| θj

L
 ≤ 1, θj

1F
 ≤ 1, θj

2F
 ≤ 1,   j=1,…,n }                                                                                          (9)                
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   Model (9) secures the maximum efficiency of the first follower stage, under conditions where the 

efficiency of all the stages is less than (1). In actual fact, this model irrespective, of the leader-

follower correlations, attributes the highest efficiency to the second stage. This model is a fractional 

model and by utilizing the Charnes-Cooper conversion (1962), as illustrated hereunder, it is converted 

into a linear model.  

θo
1F-max

= max ∑ wd2

2D2

d2=1
zd2o

2 + ∑ ur2

2R2

r2=1
y

r2o
2                          

              s.t.   ∑ vi2
2I1

i1=1
xi2o

2 + ∑ wd1

1D1

d1=1
zd1o

1 = 1                     

                      ∑ wd1

1D1

d1=1
zd1j

1 - ∑ ur1

1R1

r1=1
y

r1j
1 - ∑ vi1

1I1

i1=1
xi1j

1  ≤ 0,      j=1,…,n                                            (10) 

∑ wd2

2D2

d2=1
zd2j

2 + ∑ ur2

2R2

r2=1
y

r2j
2 - ∑ vi2

2I2

i2=1
xi2j

2 - ∑ wd1

1D1

d1=1
zd1j

1  ≤ 0,      j=1,…,n                       

                      ∑ ur3

3R3

r3=1
y

r3j
3 - ∑ vi3

3I3

i3=1
xi3j

3 - ∑ wd2

2D2

d2=1
zd2j

2  ≤ 0,      j=1,…,n   

                      ur1

1 ,ur2

2 ,ur3

3 ≥ ε; r1=1,…,R1; r2=1,…,R2; r3=1,…,R3;    

                      vi1
1 ,vi2

2 ,vi3
3 ≥ ε; i1=1,…,I1;   i2=1,…,I2;   i

3
=1,…,I3; j=1,…,n.  

                      wd1

1 ,wd2

2 ≥ ε; d1=1,…,D1;  d2=1,…,D2.  
 

   In determining the value of θo
1F-max 

 by model (10), we convert model (4) into the following model.                                                                                                                       

θo
12F*

=max {θo
1F

.θo
2F | θj

L
 ≤ 1, θj

1F
 ≤ 1, θj

2F
 ≤ 1, θo

L
=θo

L*
,θo

1F
= 

Oo
2

Io
2 , θo

1F ∈[0, θo
1F-max ],  j=1,…,n  }        (11)  

                                                                                                                          

    In the model (11) we considered θo
1F 

 in the objective function as a variable and the constraint which 

specified this variable, together with its interval of modification was added to the model. In model 

(11), we have demonstrated the efficiency of the second stage or θo
1F

 briefly, in a form of output to an 

input. The model (11) is a fractional one and by utilizing the Charnes-Cooper conversion (1962), as 

illustrated hereunder, it is converted into a linear model.   

θo
12F*

= max θo
1F 

. ∑ ur3

3R3

r3=1
y

r3o
3        

           s.t.   ∑ vi3
3I3

i3=1
xi3o

3 + ∑ wd2

2D2

d2=1
zd2o

2 = 1                     

                   ∑ wd1

1D1

d1=1
zd1j

1 - ∑ ur1

1R1

r1=1
y

r1j
1 - ∑ vi1

1I1

i1=1
xi1j

1  ≤ 0,      j=1,…,n                                                       (12) 

∑ wd2

2D2

d2=1
zd2j

2 + ∑ ur2

2R2

r2=1
y

r2j
2 - ∑ vi2

2I2

i2=1
xi2j

2 - ∑ wd1

1D1

d1=1
zd1j

1  ≤ 0,      j=1,…,n                    

                   ∑ ur3

3R3

r3=1
y

r3j
3 - ∑ vi3

3I3

i3=1
xi3j

3 - ∑ wd2

2D2

d2=1
zd2j

2  ≤ 0,      j=1,…,n   

                ∑ wd1

1D1

d1=1
zd1o

1 - ∑ ur1

1R1

r1=1
y

r1o
1 -θo

L* ∑ vi1
1I1

i1=1
xi1o

1 = 0  

                   ∑ wd2

2D2

d2=1
zd2o

2 + ∑ ur2

2R2

r2=1
y

r2o
2 -θo

1F* (∑ vi2
2I2

i2=1
xi2o

2 + ∑ wd1

1D1

d1=1
zd1o

1 ) =0  

                θo
1F ∈[0, θo

1F-max ] 

                   ur1

1 ,ur2

2 ,ur3

3 ≥ ε; r1=1,…,R1; r2=1,…,R2; r3=1,…,R3;    

                   vi1
1 ,vi2

2 ,vi3
3 ≥ ε; i1=1,…,I1;   i2=1,…,I2;   i

3
=1,…,I3; j=1,…,n.  

                   wd1

1 ,wd2

2 ≥ ε; d1=1,…,D1;  d2=1,…,D2.  
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   In model (12) and by utilizing formula (8), we increase the value of k1 from (0) to its higher level, in 

order to solve the new model each time with θo
1F 

. We solve the returns of the entire conditions of the 

k1 model and the responses of the model is assigned as θo
12F

(k1). By comparing all the values of 

θo
12F

(k1), we define θo
12F*

 as the maximal efficiency of the total sum of the follower stages from the 

optimistic view. It should be noted that, we have tested our proposed approach under two conditions 
and each time have considered a stage as a variable. Given that the efficiency of a stage is somewhat 

unique, thereby, the results of these two methods have come to hand with an extremely good 

approximation and in order to explain our approach, we have denoted one of these two conditions 

above.  

 

3-2- A heuristic method from pessimistic view 
   We know that the objective function of model (5) is the multiplicative efficiency of two stages, 

i.e. φo
12F*=min φo

1F. φo
2F. Similar to our optimistic view, we take φo

1F as a variable in the objective 

function that modifies between the [φ
o
1F-min ,M] interval. We describe φo

1F as rendered below so that 

we can move it within the interval.  

φ
o
1F = φ

o
1F-min + k1∆ε,         k1=0,1,…, [

M-φo
1F- min 

∆ε
] +1                                                                            (13) 

        We consider “M” to be a large amount and alike the optimistic approach, ∆ε as a step size and an 

extremely small amount. φo
1F-min  is described as the minimum efficiency of the first follower stage 

and its sum can be computed by the following formula.  

φ
o
1F-min= min {φ

o
1F | φ

j
L ≥ 1, φ

j
1F ≥ 1, φ

j
2F ≥1,   j=1,…,n }                                                                                  (14)

                  

   Model (14), secures the minimum efficiency of the first follower stage, on condition that the 

efficiency of all the stages is more than (1). In fact, this model, regardless to the leader-follower 

correlation, attributes the least amount of efficiency to the second stage. This model is a fractional 

model and by employing the Charnes-Cooper conversion (1962), it is converted into a linear model as 

given hereunder:  

φ
o
1F-min= min ∑ wd2

2D2

d2=1
zd2o

2 + ∑ ur2

2R2

r2=1
y

r2o
2                          

              s.t.   ∑ vi2
2I2

i2=1
xi2o

2 + ∑ wd1

1D1

d1=1
zd1o

1 = 1                     

                      ∑ wd1

1D1

d1=1
zd1j

1 - ∑ ur1

1R1

r1=1
y

r1j
1 - ∑ vi1

1I1

i1=1
xi1j

1  ≥ 0,      j=1,…,n               (15) 

∑ wd2

2D2

d2=1
zd2j

2 + ∑ ur2

2R2

r2=1
y

r2j
2 - ∑ vi2

2I2

i2=1
xi2j

2 - ∑ wd1

1D1

d1=1
zd1j

1  ≥ 0,      j=1,…,n                       

                      ∑ ur3

3R3

r3=1
y

r3j
3 - ∑ vi3

3I3

i3=1
xi3j

3 - ∑ wd2

2D2

d2=1
zd2j

2  ≥ 0,      j=1,…,n   

                      ur1

1 ,ur2

2 ,ur3

3 ≥ ε; r1=1,…,R1; r2=1,…,R2; r3=1,…,R3;    

                      vi1
1 ,vi2

2 ,vi3
3 ≥ ε; i1=1,…,I1;   i2=1,…,I2;   i

3
=1,…,I3; j=1,…,n.  

                       wd1

1 ,wd2

2 ≥ ε; d1=1,…,D1;  d2=1,…,D2.  

     In specifying the value of φo
1F-min by model (15), model (5) is modified and converted to the 

model below: 

φ
o
12F*=min {φ

o
1F.φ

o
2F | φ

j
L ≥ 1, φ

j
1F ≥ 1, φ

j
2F ≥ 1, φ

o
L=φ

o
L*, φ

o
1F= 

Oo
2

Io
2 , φ

o
1F ∈[φ

o
1F-min ,M],  j=1,…,n }    (16) 
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    It should be brought to attention that, in the model (16), we take φo
1F in the objective function as a 

variable and alike the optimistic approach, constraints which specify this variable, along with its 

interval of modification is supplemented to the model. The model (16) is a fractional model and by 

using the Charnes-Cooper conversion (1962), it is converted into a linear model as given hereunder: 

φ
o
12F*= min φ

o
1F . ∑ ur3

3R3

r3=1
y

r3o
3        

           s.t.   ∑ vi3
3I3

i3=1
xi3o

3 + ∑ wd2

2D2

d2=1
zd2o

2 = 1                     

                   ∑ wd1

1D1

d1=1
zd1j

1 - ∑ ur1

1R1

r1=1
y

r1j
1 - ∑ vi1

1I1

i1=1
xi1j

1  ≥ 0,      j=1,…,n               (17) 
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2D2
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zd2j

2 + ∑ ur2
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r2j
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1D1

d1=1
zd1j

1  ≥ 0,      j=1,…,n                    

                   ∑ ur3

3R3

r3=1
y

r3j
3 - ∑ vi3

3I3

i3=1
xi3j

3 - ∑ wd2

2D2

d2=1
zd2j

2  ≥ 0,      j=1,…,n   

                ∑ wd1

1D1

d1=1
zd1o

1 - ∑ ur1

1R1

r1=1
y

r1o
1 -φ

o
L* ∑ vi1

1I1

i1=1
xi1o

1 = 0  

                   ∑ wd2

2D2

d2=1
zd2o

2 + ∑ ur2

2R2

r2=1
y

r2o
2 -φ

o
1F* (∑ vi2

2I2

i2=1
xi2o

2 + ∑ wd1

1D1

d1=1
zd1o

1 ) =0  

                φ
o
1F ∈[φ

o
1F-min ,M] 

                    ur1

1 ,ur2

2 ,ur3

3 ≥ ε; r1=1,…,R1; r2=1,…,R2; r3=1,…,R3;    

                    vi1
1 ,vi2

2 ,vi3
3 ≥ ε; i1=1,…,I1;   i2=1,…,I2;   i

3
=1,…,I3; j=1,…,n.  

                    wd1

1 ,wd2

2 ≥ ε; d1=1,…,D1;  d2=1,…,D2.  
 

    In model (17) and by employing formula (13), we increment the value of k1 to its utmost level, in 

order to solve the model each time with the new   φo
1F . we resolve the entire the returns of the 

conditions of the k1 model and the responses of the model is denoted by φo
12F(k1) . By comparing all 

the values of φo
12F(k1), we define φo

12F*as the minimal efficiency of the total sum of the follower 

stages from the pessimistic view. It should be noted that, similar to the optimistic approach, we have 

tested our proposed approach under two conditions and each time have considered a stage as a 

variable; with due attention to the fact that, the efficiency of a stage is somewhat unique, thereby, the 

results of these two methods have come to hand with an extremely good approximation and in order 

to explicate our approach, we have represented one of these two conditions above.  

 

5- Case Study description 
   In the authentic world, a factory produces three products. This factory has a production area, a 

warehouse area and a delivery point. We consider each one of these as a stage. The production area 

plays the role of the “leader” and the other two, the role of “followers”. We have contemplated on this 

factory for within a length of 24 time periods and as a dynamic network. In this network, a number of 

outputs during a time period of t in the second stage are converted to a number of inputs in the second 

stage during a time period of t+1. We assume each time period to be a DMU. Hence, the inputs and 

outputs of each DMU are according to the following. We assign the production costs of the three 

products produced as an input of the first stage and denote it as (x1
1, x2

1, x3
1). The transport costs for 

produce from the first to the second stage is described as an undesirable output of the first stage, 

which we show as y1
1. The intermediary produce between the first and second stages, is the quantity of 

produce of each commodity, which is demonstrated as (z1
1, z1

2, z1
3). The additional outputs for the 

second stage are respectively, the cost of reserving storage location x1
2 cost of holding goods x2

2 and 

the goods remaining in the warehouse from the previous period, which is illustrated as (x3
2, x4

2, x5
2). We 
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define the output of the second stage as the quantity of the remaining goods in the warehouse for the 

subsequent period of time, and represent it with (y1
2, y

2
2, y

3
2). The intermediary products between the 

second and third stages are the quantities of delivery of each commodity, which is demonstrated by 

(z1
4, z1

5, z1
6). We describe the additional inputs of the third stage as the transport costs of goods to the 

third stage and this is illustrated as x1
3. Finally, the output of the third stage is the profit from the sale 

of goods, which is indicated by y1
3. In continuation, we illustrate the input values for the 24 time 

periods in table 1 and the mean values and outputs in table 2.  
 
 

Table 1. The inputs of the factory for 24 period in 2016 

 
DMU 

 

Production cost 

Cost of 

reserving 

storage 
location 

Cost of 
holding 

goods 

 

Goods 

remaining from 
last period 

Cost of 

Transport 
goods to 

delivery 

points 

x1
1 x2

1 x3
1 x1

2 x2
2 x3

2 x4
2 x5

2 x1
3 

1 29120000 36160000 51520000 1700000 1430000 0 0 0 3680000 

2 50960000 63280000 77280000 1700000 1430000 0 0 0 6235000 
3 80080000 99440000 128800000 1700000 1430000 0 0 0 9915000 

4 101920000 126560000 180320000 1700000 1430000 0 0 0 12880000 

5 43680000 54240000 77280000 1700000 1430000 0 0 0 5520000 

6 50960000 63280000 103040000 1700000 1430000 0 0 0 6645000 
7 94640000 126560000 154560000 1700000 1670000 0 0 0 11755000 

8 145600000 180800000 257600000 1700000 3620000 0 2 0 15435000 

9 145600000 180800000 257600000 1700000 3170000 6 8 4 19115000 
10 145600000 180800000 257600000 1700000 1730000 4 6 4 20555000 

11 145600000 180800000 257600000 1700000 1430000 0 0 2 19220000 

12 145600000 180800000 257600000 1700000 1430000 0 0 0 16815000 
13 87360000 99440000 128800000 1700000 1430000 0 0 0 10290000 

14 50960000 63280000 77280000 1700000 1430000 0 0 0 6235000 

15 50960000 63280000 103040000 1700000 1430000 0 0 0 6645000 

16 43680000 54240000 77280000 1700000 1430000 0 0 0 5520000 
17 80080000 99440000 128800000 1700000 1430000 0 0 0 9915000 

18 94640000 117520000 154560000 1700000 1430000 0 0 0 11755000 

19 72800000 90400000 128800000 1700000 1430000 0 0 0 9200000 
20 87360000 108480000 154560000 1700000 1430000 0 0 0 11040000 

21 87360000 108480000 128800000 1700000 1430000 0 0 0 10630000 

22 109200000 135600000 180320000 1700000 3830000 0 0 0 9915000 
23 145600000 180800000 257600000 1700000 1430000 8 8 4 22080000 

24 145600000 180800000 257600000 1700000 1430000 0 0 0 18400000 
 

     In the table 1, the values of (0), for each period indicate that, the goods have not remained in the 

warehouse since the previous period (columns 7 to 9). The following table 2, also shows values with 
(0), which illustrate that the goods for the subsequent period have not remained in the warehouse 

(columns 9 to 11). 
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Table 2. The outputs and the intermediate measures of the factory for 24 periods in 2016 

Profit 

Goods 

remaining for 
next period 

Cost of 
Transport 

goods to 

warehouse 

Quantity of goods 

delivered 
 

Quantity of goods 

produced 

 

DMU 

 

y1
3 y3

2 y2
2 y1

2 y1
1 z3

2 z2
2 z1

2 z3
1 z2

1 z1
1 

31800000 0 0 0 1960000 4 8 8 4 8 8 1 

51110000 0 0 0 3310000 6 14 14 6 14 14 2 

82910000 0 0 0 5270000 10 22 22 10 22 22 3 
111300000 0 0 0 6860000 14 28 28 14 28 28 4 

47700000 0 0 0 2940000 6 12 12 6 12 12 5 

60190000 0 0 0 3550000 8 14 14 8 14 14 6 
98810000 0 2 0 6460000 12 26 26 12 28 26 7 

130610000 4 8 6 9800000 16 34 34 20 40 40 8 

162410000 4 6 4 9800000 20 42 42 20 40 40 9 

177380000 2 0 0 9800000 22 46 44 20 40 40 10 
166880000 0 0 0 9800000 22 40 40 20 40 40 11 

153510000 0 0 0 9800000 20 40 34 20 40 40 12 

83640000 0 0 0 5430000 10 22 24 10 22 24 13 
51110000 0 0 0 3310000 6 14 14 6 14 14 14 

60190000 0 0 0 3550000 8 14 14 8 14 14 15 

47700000 0 0 0 2940000 6 12 12 6 12 12 16 

82910000 0 0 0 5270000 10 22 22 10 22 22 17 
98810000 0 0 0 6250000 12 26 26 12 26 26 18 

79500000 0 0 0 4900000 10 20 20 10 20 20 19 

95400000 0 0 0 5880000 12 24 24 12 24 24 20 
86320000 0 0 0 5640000 10 24 24 10 24 24 21 

82910000 4 8 8 7230000 10 22 22 14 30 30 22 

190800000 0 0 0 9800000 24 48 48 20 40 40 23 
159000000 0 0 0 9800000 20 40 40 20 40 40 24 

 

    In continuation, we secure the efficiency of the factory from a leader-follower scenario. For this 

purpose,  c1= c2=0.6 and  c3= c4=1.05 are considered as goals of managers. The values of 

(αi=0, i=1,2,3,4) have come to hand from models (2 and 3) and show that the goals of the managers 

has been attained. In the leader-follower scenario, on the basis of the opinions of managers, ∆ε=0.01 

and M=3 have been considered. Similarly, the value for 𝜀 in all the models has been considered as 
0.05 by the managers. We have executed the heuristic method expressed in the section (4). The values 

achieved for 𝑘1 together with the maximal optimistic efficiency and the minimal pessimistic 

efficiency of the first stage has been illustrated in the table 3. 
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Table 3. Results of the maximum and minimum efficiencies of the first stage and k values 

leader-follower scenario  
DMU 

 

 

Pessimistic View Optimistic View 

φo
1F-min   k1 θo

1F-max   k1 

1.05 0 0.94507 26 1 
1.05 0 0.9691 17 2 

1.06867 1 0.98283 19 3 

1.17167 5 0.9794 17 4 
1.05 0 0.95193 20 5 

1.05 0 1 18 6 

1.05053 2 1 17 7 
1.08231 0 1 0 8 

1.05 0 1 0 9 

1.05 0 1 9 10 

1.08356 7 1 39 11 
1.09597 20 0.99375 26 12 

1.05 0 1 17 13 

1.05 0 0.9691 17 14 
1.05 0 1 18 15 

1.05 0 0.95193 20 16 

1.06867 1 0.98283 19 17 
1.103 2 0.9897 17 18 

1.103 2 0.96567 20 19 

1.13734 3 0.97253 15 20 

1.05 0 1 19 21 
1.05 0 1 0 22 

1.05 0 1 40 23 

1.27467 13 1 33 24 
 

    In studying the values of k, we were aware that, in this case study, that the pessimistic efficiency of 

the first follower, in most of the cases, is optimized, when the values of k are low (column 4). This 
signifies that, the optimal efficiency value of the second stage or the first follower are proximate to 

their minimum values (columns 5), whereas, in the case of the optimistic efficiency value of the 

second stage, are far from their maximum value, in most circumstances (columns 3). Table 4 gives the 

overall efficiency and the efficiencies of stages based on the optimistic and pessimistic views. 
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Table 4. Results based on the optimistic and pessimistic views 

Pessimistic View  Optimistic View DMU 
 φo

2F*  φo
1F*  φo

L*  φ
o
overall*  θo

2F* 
 θo

1F* 
 θo

L* 
 θo

overall*
 

1.05 1.05 1 1.1025  0.72563 0.68507 1 0.49711 1 
1.05 1.05 1 1.1025  0.61713 0.7991 1 0.49315 2 

1.05 1.07867 1 1.1326  0.63265 0.79283 1 0.50159 3 

1.05 1.22167 1 1.28275  0.60449 0.8094 1 0.48928 4 

1.05 1.05 1 1.1025  0.67144 0.75193 1 0.50488 5 
1.05 1.05 1 1.1025  0.68081 0.82 1 0.55827 6 

1.05 1.07053 1 1.12406  0.60559 0.83 1 0.50264 7 

1.05 1.08231 1 1.13643  0.72931 1 1 0.72931 8 
1.05 1.05 1 1.1025  0.68483 1 1 0.68483 9 

1.05 1.05 1 1.1025  0.67609 0.91 1 0.61525 10 

1.0558 1.15356 1 1.21794  0.60542 0.61 1 0.36931 11 
1.05 1.29597 1 1.36077  0.60002 0.73375 1 0.44027 12 

1.05 1.05 1 1.1025  0.60109 0.83 1 0.49891 13 

1.05 1.05 1 1.1025  0.61713 0.7991 1 0.49315 14 

1.05 1.05 1 1.1025  0.68081 0.82 1 0.55827 15 
1.05 1.05 1 1.1025  0.67144 0.75193 1 0.50488 16 

1.05 1.07867 1 1.1326  0.63265 0.79283 1 0.50159 17 

1.05 1.123 1 1.17915  0.60045 0.8197 1 0.49219 18 
1.05 1.123 1 1.17915  0.66846 0.76567 1 0.51182 19 

1.05 1.16734 1 1.22571  0.62146 0.82253 1 0.51117 20 

1.05 1.05 1 1.1025  0.60153 0.81 1 0.48724 21 
1.05 1.05 1 1.1025  0.79076 1 1 0.79076 22 

1.05 1.05 1 1.1025  0.6 0.6 1 0.36 23 

1.05 1.40467 1 1.4749  0.60471 0.67  1 0.40516 24 
 

    From the second column of table 4, we note that the efficiency scores of period 22 is the highest 

and the efficiency scores of period 23 is the lowest, from the optimistic view.  The sixth column of 

Table 4, show that the efficiency scores of period 24 is the highest and the efficiency scores of periods 
1,2,5,6,9,10,13,14,15,16,21,22 and 23 is the lowest, from the pessimistic view.  By comparing the 

results, we observe that the difference in optimistic and pessimistic views in some cases, for example, 

by looking at the second column of table 4, we find that, the efficiency scores of period 10 is higher 
than period 11 ) 0.61525 >  0.36931) from the optimistic view.  But, from the sixth column of Table 4, 

it can be noted that, period 11 is higher than period 10 (1.1025 > 1.21794) from pessimistic view. 

Therefore, for the final ranking of DMUs, we use the double-frontier or the optimistic and pessimistic 
views that we have explained in the section (3) by formula (7). Table 5 gives the overall efficiency 

and clustering results based on the double-frontier view. 

 

Table 5. The efficiency evaluation and clustering results based on the double-frontier view 

cluster ∅o
overall DMU cluster ∅o

overall DMU 

2 0.74165 13 2 0.74031 1 

2 0.73735 14 2 0.73735 2 

2 0.78453 15 2 0.75372 3 

2 0.74607 16 2 0.79222 4 

2 0.75372 17 2 0.74607 5 

2 0.76181 18 2 0.78453 6 

2 0.77686 19 2 0.75166 7 

2 0.79154 20 1 0.91038 8 

2 0.73292 21 1 0.86892 9 

1 0.9337 22 2 0.82359 10 

3 0.63 23 3 0.67066 11 

2 0.77302 24 2 0.77401 12 
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Based on the second and fifth columns of table 5, the performance of 24 DMUs is rated as follows:  

DMU22 >  DMU8  >  DMU9 > DMU10 > DMU4 > DMU20 > DMU6 = DMU15 > DMU19 > 

DMU12 > DMU24 > DMU18 > DMU3 = DMU17 > DMU7 > DMU5 = DMU16 > DMU13 > 

DMU1 > DMU2 = DMU14 > DMU21 > DMU11 > DMU23, 

   Where, symbol “ > ” means that the performance is better than and symbol “= ” means that the 

performance is equal. It should be noted that, in some cases, for example, in DMU3 and DMU17, the 
rank of the DMUs are equal. This is due to the fact that the demand, the amount of production of each 

good, the amount of delivery and maintenance of each good and other item during periods 3 and 17 

were absolutely equivalent and this factory has the same performance. The third and sixth columns of 
table 5 report that units 8,9,22 are in the first cluster. Units 1...7,10,12,13...21, 24 are located in the 

second cluster. Finally units 11, 23 are located in the third cluster. In the figure 3 we identified three 

groups of DMUs based on the double-frontier view. Since there are no important differences in the 

inputs across the three groups, it implies that groups 2 and 3 have all abilities in place, but are poor in 
executing these capabilities and changing them into high level of performance. Thus, these groups 

must benchmark themselves against group 1 and identify ways to execute their abilities better. We 

have put this research at the disposal of the managers, so that the best decisions can be adopted for the 

abovementioned factory. 

 

Fig 3. The three groups’ classification of the DMUs   
 

 

6- Conclusions 
   The black box approach neglects the internal activities of systems and evaluates performance based 
on the final inputs and outputs. According to the belief of many researchers, this task causes a lack of 

confidence in the evaluation results. The network DEA models can simulate systems with complex 

internal structures by using stages and sub-DMUs and then evaluate the overall efficiencies of 
systems, stages and sub-DMUs, respectively. In this paper, we considered a three-stage network, in 

respect to the additional desirable and undesirable inputs and outputs. Then, we obtained the 

efficiency of this network from the non-cooperative approach. In the leader-follower scenario, we 

considered one stage as the leader and the other two stages together, as a follower. We have made 
efforts to assist managers in network analysis by utilizing diverse non-cooperative approaches; and 

also insert the goals of managers in the models. It was for this purpose that we pursued the goal 

programming concept in the leader-follower scenario; and defined a leader-follower collaboration 
based on the goals of managers. Due to the fact that, a conclusion implying only one of these two, 

  Cluster 2 

   Cluster 3 

 

  Cluster 1 
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optimistic or pessimistic views is one-sided and incomplete, so, in this paper we used the double-
frontier to analyze the network.  Moreover, a heuristic technique was used to convert non-linear 

models into linear models.  

    DEA application in relevance to production planning and inventory control has been observed to an 

extremely slight degree. In this paper, we have contemplated on an example, in the authentic world in 
the grounds of production planning and inventory control. In this paper, a factory producing dairy 

products, with a production area, warehouse premises and a delivery point, including the total costs, 

pertaining to production, storage, warehouse reservation, transport costs from the production area to 
the warehouse and from the warehouse to the delivery point, as well as the profits from sale of goods 

have been considered and simulated. This factory has been regarded as a dynamic network with a time 

period of 24 intervals. The results of the ranking based on double-frontier view showed that, the time 
periods, (22) and (23) were the best and poorest respectively, in context to the efficiency within 24 

phases of time. Similarly, we detected that between the time period of (1) and (24), a fluctuating 

condition occurred and there was an absence, of a specific system, to alleviate efficiency. We used the 

k-means clustering algorithm for clustering units into three clusters based on the double-frontier. The 
clustering results are shown as 3, 19 and 2 units, which are located in the first, second and third 

clusters, respectively. 

    The proposed heuristic approach in this paper was performed for two stages and due to the presence 
of additional inputs and outputs, the stages increase, thereby, making the model more complicated. As 

a result the solving period is extremely elevated. So as to decrease this period, the ("∆ε)" step size can 

be increased. Hence, the value of the step size ("∆ε)" , which determines the accuracy and the time for 
resolving the problem can be reflected on by managers. We put the results of this research at the 

disposal of the managers, so that they procure the best decision for the abovementioned factory. 

Modeling with inaccurate and random data is suggested for research in the future. 
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