Impact of vehicle seat back inclination on occupational driving safety

Document Type : Research Paper

Authors

1 Nicholls State University, Thibodaux, LA, USA

2 Louisiana State University, Louisiana, USA

Abstract

This study determined effect of automobile seat backrest inclination on lattisimus dorsi muscle electromyographic (EMG) activity. Myoelectric activity was determined at two seat backrest angles (90 degrees and 100 degrees inclinations).  Twenty-one (21) participants were engaged in the study. Electromygraphic activity at 90 degrees inclination had slope value of -0.065 mV/minute while 100 degrees had slope value -0.044 mV/minute. Myoelectric data indicated activity at 100 degrees was lesser than at 90 degrees for latissimus dorsi muscles. Results of the experiment were significant (P=0.01). Myoelectric results indicated that activity of the latissimus dorsi muscles decreased with increase in backrest angle.

Keywords

Main Subjects


Andersson, B. (1974). Myoelectric activity in individual lumbar erector spinae muscles in sitting: A study with surface and wire electrodes. Scand J Rehabil Med Suppl3, 91-108.
 
Barszap, A. G., Skavhaug, I. M., & Joshi, S. S. (2016). Effects of muscle fatigue on the usability of a myoelectric human-computer interface. Human movement science49, 225-238.
 
Bouwens, J. M., Fasulo, L., Hiemstra-van Mastrigt, S., Schultheis, U. W., Naddeo, A., & Vink, P. (2018). Effect of in-seat exercising on comfort perception of airplane passengers. Applied ergonomics73, 7-12.
 
Bovenzi, M. (1996, February). Low back pain disorders and exposure to whole-body vibration in the workplace. In Seminars in perinatology (Vol. 20, No. 1, pp. 38-53). WB Saunders.
 
Blood, R. P., Yost, M. G., Camp, J. E., & Ching, R. P. (2015). Whole-body vibration exposure intervention among professional bus and truck drivers: a laboratory evaluation of seat-suspension designs. Journal of occupational and environmental hygiene12(6), 351-362.
 
Chen, J. C., Tigh Dennerlein, J., Chang, C. C., Chang, W., & Christiani, D. C. (2005). Seat inclination, use of lumbar support and low-back pain of taxi drivers. Scandinavian Journal of Work Environment and Health31(4), 258-265.
 
De Carvalho, D. E., & Callaghan, J. P. (2012). Influence of automobile seat lumbar support prominence on spine and pelvic postures: a radiological investigation. Applied ergonomics43(5), 876-882.
 
Dimitrova, N. A., & Dimitrov, G. V. (2003). Interpretation of EMG changes with fatigue: facts, pitfalls, and fallacies. Journal of Electromyography and Kinesiology13(1), 13-36.
 
Dong, R. C., He, L., Du, W., Cao, Z. K., & Huang, Z. L. (2019). Effect of sitting posture and seat on biodynamic responses of internal human body simulated by finite element modeling of body-seat system. Journal of Sound and Vibration438, 543-554.
 
Gruevski, K. M., Holmes, M. W., Gooyers, C. E., Dickerson, C. R., & Callaghan, J. P. (2016). Lumbar postures, seat interface pressures and discomfort responses to a novel thoracic support for police officers during prolonged simulated driving exposures. Applied ergonomics52, 160-168.
 
Guo, L. X., Dong, R. C., & Zhang, M. (2016). Effect of lumbar support on seating comfort predicted by a whole human body-seat model. International Journal of Industrial Ergonomics53, 319-327.
 
Gyi, D. E., Porter, J. M., & Robertson, N. K. (1998). Seat pressure measurement technologies: considerations for their evaluation. Applied Ergonomics29(2), 85-91.
 
Gyi, D. E., & Porter, J. M. (1998). Musculoskeletal problems and driving in police officers. Occupational Medicine48(3), 153-160.
 
Filtness, A. J., Mitsopoulos-Rubens, E., & Rudin-Brown, C. M. (2014). Police officer in-vehicle discomfort: appointments carriage method and vehicle seat features. Applied ergonomics45(4), 1247-1256.
 
Holmes, M. W. R., McKinnon, C. D., Dickerson, C. R., & Callaghan, J. P. (2013). The effects of police duty belt and seat design changes on lumbar spine posture, driver contact pressure and discomfort. Ergonomics56(1), 126-136.
 
Hosea, T. M., Simon, S. R., Delatizky, J., Wong, M. A., & Hsieh, C. C. (1986). Myoelectric analysis of the paraspinal musculature in relation to automobile driving. Spine11(9), 928-936.
 
JOXSSON, S., & Jonsson, B. (1975). Function of the muscles of the upper limb in car driving IV: the pectoralis major, serratus anterior and latissimus dorsi muscles. Ergonomics18(6), 643-649.
 
Kamp, I. (2012). The influence of car-seat design on its character experience. Applied ergonomics43(2), 329-335.
 
Kim, J. H., Zigman, M., Aulck, L. S., Ibbotson, J. A., Dennerlein, J. T., & Johnson, P. W. (2016). Whole body vibration exposures and health status among professional truck drivers: a cross-sectional analysis. Annals of Occupational Hygiene60(8), 936-948.
 
Knox, J. B., Orchowski, J. R., Scher, D. L., Owens, B. D., Burks, R., & Belmont Jr, P. J. (2014). Occupational driving as a risk factor for low back pain in active-duty military service members. The Spine Journal14(4), 592-597.
 
Lardon, A., Dubois, J. D., Cantin, V., Piché, M., & Descarreaux, M. (2018). Predictors of disability and absenteeism in workers with non-specific low back pain: A longitudinal 15-month study. Applied ergonomics68, 176-185.
 
Lurati, A. R. (2018). Health Issues and Injury Risks Associated With Prolonged Sitting and Sedentary Lifestyles. Workplace health & safety66(6), 285-290.
 
McCrary, J. M., Ackermann, B. J., & Halaki, M. (2018). EMG amplitude, fatigue threshold, and time to task failure: A meta-analysis. Journal of science and medicine in sport21(7), 736-741.
 
Mastalerz, A., & Palczewska, I. W. O. N. A. (2010). The influence of trunk inclination on muscle activity during sitting on forward inclined seats. Acta of bioengineering and biomechanics/Wroclaw University of Technology12(4), 19-24.
 
Mozafari, A., Vahedian, M., Mohebi, S., & Najafi, M. (2015). Work-related musculoskeletal disorders in truck drivers and official workers. Acta Medica Iranica53(7), 432-438.
 
Pai, S., & Sundaram, L. J. (2004). Low back pain: an economic assessment in the United States. Orthopedic Clinics35(1), 1-5.
 
Praemer, A., Furner, S., & Rice, D. P. (1999). Musculoskeletal conditions in the United States. American Academy of Orthopaedic Surgeons.
 
Ronchese, F., & Bovenzi, M. (2012). Occupational risks and health disorders in transport drivers. Giornale italiano di medicina del lavoro ed ergonomia34(3), 352-359.
 
Sammonds, G. M., Fray, M., & Mansfield, N. J. (2017). Effect of long term driving on driver discomfort and its relationship with seat fidgets and movements (SFMs). Applied ergonomics58, 119-127.
 
Sowah, D., Boyko, R., Antle, D., Miller, L., Zakhary, M., & Straube, S. (2018). Occupational interventions for the prevention of back pain: Overview of systematic reviews. Journal of safety research66, 39-59.
 
Varela, M., Gyi, D., Mansfield, N., Picton, R., Hirao, A., & Furuya, T. (2019). Engineering movement into automotive seating: Does the driver feel more comfortable and refreshed?. Applied ergonomics74, 214-220.
 
Wang, X., Cardoso, M., & Beurier, G. (2018). Effects of seat parameters and sitters’ anthropometric dimensions on seat profile and optimal compressed seat pan surface. Applied ergonomics73, 13-21.
 
Waly, S. M., Khalil, T. M., & Asfour, S. S. (1985). Physiological basis of muscular fatigue: An electromyographic study. American Journal of Physical Medicine47, 125-135.
 
Zennaro, D., Läubli, T., Krebs, D., Klipstein, A., & Krueger, H. (2003). Continuous, intermitted and sporadic motor unit activity in the trapezius muscle during prolonged computer work. Journal of electromyography and kinesiology13(2), 113-124.
 
Zhang, L., Helander, M. G., & Drury, C. G. (1996). Identifying factors of comfort and discomfort in sitting. Human factors38(3), 377-389.