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Abstract 
Portfolio optimization is one of the most important issues for effective and 
economic investment. There is plenty of research in the literature addressing this 
issue. Most of these pieces of research attempt to make the Markowitz’s primary 
portfolio selection model more realistic or seek to solve the model for obtaining 
fairly optimum portfolios. An efficient frontier in the typical portfolio selection 
problem provides an illustrative way to express the tradeoffs between return and 
risk. With regard to the modern portfolio theory as introduced by Markowitz, 
returns are usually extracted from past data. Therefore, our purpose in this paper 
is to incorporate future returns scenarios in the investment decision process. In 
order to representative points on the efficient frontier, the minimax regret 
portfolio is calculated, on the basis of the aforementioned scenarios. In this way, 
the areas of the efficient frontier that are more robust than others are identified. 
The main contribution in this paper is related to the extension of the 
conventional minimax regret criterion formulation, in multi-objective 
programming problems. The validity of the proposed approach is verified 
through an empirical testing application on the top 75 companies of Tehran 
Stock Exchange Market in 2017. 
Keywords: Multiple objective programming, portfolio optimization, minimax 
regret, robustness

1-Introduction 
The basic framework proposed by Markowitz (1952) has been the most influence for the majority 

of financial models designed to provide a solution to the portfolio selection problem. Exclusively 
based on the criteria of return and risk, he minimizes the correlation between assets, which defines the 
risk of portfolio subjected to the given level of portfolio return value expected by the investor. The 
crucial assumption for this classic bi-objective approach to work is the accuracy of the estimates of 
return and covariance matrices. As the classic model is quite sensitive to its input parameters, the 
existing noise in the available estimates of risk and return will causes erroneous portfolio selection 
output (Hodges, 1976). 
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 In fact, little trust to the accuracy of past data that have been estimated by averaging them caused 
there is little guarantee that those estimates will match with the future values. 

Researchers have always tried to make mathematical models of portfolio selection closer to reality, 
and help investors reach their objectives.  

Also the need for more sophisticated financial tools has created space for exploring robust 
mathematical tools in order to protect a portfolio against input uncertainty.  

Robustness is a concept of crucial importance in financial decision making. Thus, modeling 
processes for treating uncertainty are always necessary, when dealing with portfolio optimization 
problems. This feature typically leads to burdensome problem formulations, as robustness normally 
increases the number of constraints. It is, therefore, desired to maintain an acceptable balance between 
the robust modeling complexity and the overall efficiency of the results. The conventional mean-
variance formulation is a quadratic programming model and its solutions provides the efficient 
frontier or Pareto optimal set of portfolios. On this basis, we attempt in this paper to build robust 
efficient frontiers, namely efficient portfolio sets that are close to optimal, under different scenarios.  

More specifically, the main goal of this article is to develop a robust selection program that 
expands the concept of robust optimization, as it was proposed by Kouvelis and Yu (2013), to the 
multi objective case. Kouvelis and Yu used the concept of “regret” to identify robust solutions in 
optimization problems. Regret is actually the deviation of an obtained solution from the optimum 
solution according to a specific scenario of parameters. In other words, it can be defined as the 
difference between the obtained gain and the gain that we could get if we knew in advance which 
scenario will surely occur. Following Kouvelis and Yu ideas, we use the minimax regret criterion in 
order to identify robust areas in the Pareto front of multi-objective problems. We deal with input 
parameter uncertainty by considering time-varying alternatives for expressing a variety of market 
analysis horizons. In this way we are in position to identify areas of the Pareto front that are more 
robust than other.In this situation the specific areas of the Pareto front are characterized by the weight 
combination used in the objective functions. By applying our model to data from the Tehran Stock 
Exchange Market, we gain evidence that certain objective areas (e.g. risk) display greater robustness 
than others. Moreover, the calculations of the minimax regret value inform us about the amount of 
benefit we trade for robustness, at each choice of weights. For explanatory purposes, informative 
graphs and tables throughout the paper summarize all of our empirical testing results. 

The remainder of this paper is organized as follows: In section 2, we review the history and 
applications of robust optimization models in finance with focus on robust portfolio optimization. In 
section 3, we present the proposed robust modeling approach and we extent the robust formulation to 
the multi-objective context. In Section 4, we test the proposed model with an illustrative application 
on the securities of the Tehran Stock Exchange in 2017. Finally, in section 5, key findings and results 
are presented. 

2-Literature review 
Recent studies in the field of portfolio theory imply that the knowledge of future returns and 

variances, delivered by classic point-estimation techniques based on past data, cannot be thoroughly 
trusted. Since risk and return are characterized by randomness, one should keep in mind that problem 
data could be described by a set of scenarios. Mulvey et al. (1995) were the first to work on models of 
mathematical optimization where data values come in sets of scenarios, while explaining the concept 
of robust solutions and introducing the robust model formulation. In a more financially specialized 
setting, Vassiliadou-Zeniou and Zenios (1996) developed robust optimization tools for managing 
callable bond portfolios. Kouvelis and Yu (2013) published a book on robust discrete optimization. 
Their book addresses multiple aspects in the robust problem formulation process, such as uncertainty 
handling, computational complexity results and algorithmic developments.  

With regard to robust portfolio optimization, Tütüncü and Koenig (2004) described asset's risk and 
return using continuous uncertainty sets and developed a robust asset allocation program solved by a 
saddle-point algorithm. Also, Pinar and Tütüncü (2005) introduced the concept of robust profit 
opportunity in single-period and multi-period formulations. Also, multi-period portfolio optimization 
formulations with additional transactional constraints are found in Bertsimas and Pachamanova 
(2008). Robust optimization approach has also been included in the portfolio selection problem; 
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Goldfarb and Iyengar (2003) used robust optimization approach in the portfolio selection problem. 
Sadjadi et al. (2012) implemented robust optimization approach in Markowitz model with cardinality 
constraints, and solved their model with genetic algorithm. Ghahtarani and Najafi (2013) incorporated 
robust optimization approach and goal programming in the multi-objective portfolio selection 
problem. Gülpınara and Canakoglu (2017) studied portfolio selection problem under temperature 
uncertainty and risk references are incorporated in the suggested robust framework. 

While robust optimization is intended to protect the portfolio against uncertainty, a study of 
robustness of optimal portfolios under stochastic dominance constraints was conducted by Dupacova 
and Kopa (2014). Moreover, Maillet et al. (2015) perform a worst-case minimum variance 
optimization with respect to alternative covariance matrix estimators. Moreover, Maillet et al. (2015) 
perform a worst-case minimum variance optimization with respect to alternative covariance matrix 
estimators. 

A holistic approach of the 60-year old history of the modern portfolio optimization is attempted in 
Kolm et al. (2014). The 20-year old history of robust portfolio optimization is included as well as new 
directions are discussed. Other research articles that summarize recent history and future trends of 
robust portfolio optimization are those of Fabozzi et al. (2010, 2007), Mansini et al. (2014) and 
Scutella and Recchia (2013), where the relation between robustness and convex risk measures is also 
studied. A thorough inspection of both theoretical and practical research in robust optimization was 
made by Ben-Tal et al. (2009).  

Cornuejols and Tütüncü (2006) wrote a book dedicated to optimization in finance. Within the book 
they go through topics of robust optimization in finance, analyzing the theory of robustness and taking 
a look at various types of uncertainty sets, different types of robustness (e.g. objective robustness, 
constraint robustness and relative robustness) and techniques such as sampling and conic 
optimization. They formulate robust portfolio optimization problems in single-period, multi-period 
and relative portfolio selection contexts. In the robust multiobjective field, an effort to characterize the 
location of the robust Pareto frontier with respect to the corresponding original Pareto frontier using 
standard multiobjective optimization techniques was made by Fliege and Werner (2014). 

As mentioned, the methodological contribution of the present work is that it expands the concept of 
the robust solution to the multiobjective case. We incorporate future scenarios for the return and risk, 
which are mainly based on the perspectives of the decision maker. It is an attempt to show how this 
information may be exploited in order to produce robust portfolios against a variety of future 
scenarios. The handling of future returns scenarios are made by using the concept of the minimax 
regret criterion. 

3-Proposed approach 
It is well known where different scenarios are presented the minimax regret criterion is among the 

most popular criteria in decision sciences Savage (1972), along with the maximax, maximin, Hurwitz 
criterion etc. It actually aims at selecting the solution or alternative which is under the worst case 
closer to its scenario optimum. The minimax regret criterion provides less conservative solutions than 
the “pessimistic” approach of the maximin criterion (also used to express “robustness”). The reason is 
that it takes into account the regret, i.e. the deviation of each solution from the best possible solution 
at each scenario. The regret is not an absolute measure of performance of the solutions -as it is the 
case in the maximin criterion- but it is relative to the best available performance for the specific 
scenario. That’s why it is considered to provide less conservative solutions in the sense that they have 
not to be “safe” according to the worst realization of parameters but according to the relevant 
optimum of each scenario. We can find the maximum regret for each solution across the scenarios and 
then comparing these regrets we can find the solution with the minimum of these maximum regrets. 
This minimax regret solution is considered as the robust solution. In order to explain the difference 
between maximin and minimax regret criterion consider the following example: Assume that we have 
5 options that are evaluated in 3 scenarios: a pessimistic scenario, a most likely and an optimistic 
scenario. Imagine for example that we have 5 portfolios and the performances are the returns of each 
portfolio as shown in table 1. 
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Table 1. Example of the maximin criterion with 5 options and 3 scenarios 

 Pessimistic Most 
likely Optimistic Min 

Portf 1 3 10 17 3 
Portf 2 5 9 15 5 
Portf 3 5 6 12 5 
Portf 4 6 8 11 6 
Portf 5 4 7 16 4 

 
According to the maximin criterion the selected portfolio should be portfolio 4 which has the best 

performance in the pessimistic scenario leaving the information from the other two scenarios actually 
unexploited. In the minimax regret approach, we first create the regret matrix as shown below by 
calculating the distance from the optimum for each one of the three scenarios (table 2). 

 
Table 2.The regret matrix and the minimax regret criterion 

 Pessimistic Most 
likely Optimistic Max 

Portf 1 3 0 0 3 
Portf 2 1 1 2 2 
Portf 3 1 4 5 5 
Portf 4 0 2 6 6 
Portf 5 2 3 1 3 

 
In this case the selected approach is the one with the minimum among the maximum regrets which 

is portfolio 2. With the minimax regret approach, we exploit the information from all 3 scenarios and 
we obtain solutions that are more balanced. Compare for example portfolios 2 and 4: The only 
advantage of portfolio 4 is that it outperforms in the pessimistic scenario expressing a more 
conservative view. 

The minimax regret criterion has been also introduced in mathematical programming formulations. 
Specific formulations have been developed in order to express this concept in problems where there 
are multiple scenarios for the model’s parameters. In Hauser et al. (2013) a regret function is 
considered as the function that measures the difference between the performance of the solution with 
and without the benefit of perception. If we choose 𝑥 as decision vector when 𝑠 is the vector of 
realized parameter values (scenario), then the regret associated with having chosen 𝑥 rather than the 
optimal solution associated with scenario 𝑠 (i.e. 𝑥∗ሺ𝑠ሻ) is defined as follows (assume maximization): 

 
𝑟ሺ𝑥, 𝑠ሻ ൌ 𝑓ሺ𝑥∗ሺ𝑠ሻ, 𝑠ሻ െ 𝑓ሺ𝑥, 𝑠ሻ 

 
The perception is considered as the prior knowledge of the parameter scenario that will occur. 

Therefore, the optimal value with these parameters is the best outcome. Without this prior knowledge 
we can compute the minimax regret solution which is the one that has the minimum deviation from 
the optimal value under the worst case. Kouvelis and Yu (2013) accomplish this task for an infinite 
number of solutions according to the feasible region of the problem. Assume the following 
mathematical programming problem: 

 
𝑀𝑎𝑥 𝑧 ൌ 𝑓ሺ𝑥ሻ 
St. 
𝑥 ∈ 𝐹  
 

        (1) 

According to the above formulation, the objective function to be maximized is a combination of the 
decision variable𝑥, where 𝑥 belongs in set𝐹. Assume now that we have a set 𝑆 of scenarios for the 
objective function parameters (𝑆 contains a finite number of |𝑆| scenarios), which means that the 
corresponding objective functions are denoted as𝑓௦ሺ𝑥ሻ. The minimax regret solution within the 
relative regret case is calculated from the following problem (see Kouvelis and Yu (2013), p. 29): 

 
𝑍ெெோ ൌ 𝑀𝑖𝑛 𝑦 
St. 

       (2) 
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𝑓௦ሺ𝑥ሻ  ሺ1 െ 𝑦ሻ𝑧௦       𝑠 ∈ 𝑆 
𝑥 ∈ 𝐹 

 
Where 𝑧௦ is the positive optimal value for the s-scenario and 𝑦 is the variable that expresses the 

relative minimax regret. 
In this work we extend the conventional formulation to the multi-objective case. Specifically, we 

use the weighting method in order to calculate the Pareto optimal solutions of the Pareto front. 
Assume that we have a problem with 𝑃 objective functions: 

 
 

 
𝑀𝑎𝑥 ሺ𝑓ଵሺ𝑥ሻ, 𝑓ଶሺ𝑥ሻ, … , 𝑓ሺ𝑥ሻሻ 
St. 
𝑥 ∈ 𝐹 

    (3) 

By using the weighting method we can calculate non-dominated points which solving the following 
single objective problem that has as objective function the weighting sum of the objective functions at 
hand (assume all objectives are for maximization): 

 

𝑀𝑎𝑥 𝑧 ൌ  𝑤



ୀଵ

ൈ 𝑓ሺ𝑥ሻ 

St. 
𝑥 ∈ 𝐹 

    (4) 

In order to be meaningful the weights and independent of the scale of the objective functions, it is 
better to use the normalization formulas for the objective functions as follows: 

 

𝑀𝑎𝑥 𝑧 ൌ  𝑤



ୀଵ

ൈ
𝑓ሺ𝑥ሻ െ 𝑓,

𝑓,௫ െ 𝑓,
 

St. 
𝑥 ∈ 𝐹 

     (5) 

Where𝑓,, and 𝑓,௫ are the minimum and the maximum values of the objective functions as 
obtained from the payoff table (the payoff table is a 𝑝 ൈ  𝑝 table that includes the individual 
optimization values of the objective functions). The solution of this problem corresponds to a Pareto 
optimal solution of the multi-objective problem. Varying the weights, we obtain a representative set 
of the Pareto optimal solutions of the multi-objective problem. It must be noted that with the 
weighting method the Pareto set is approximated. It is worth noting, that the more the weight 
combinations that are used makes it better in the approximation. 

The concept of our proposed method is to apply the Kouvelis and Yu (2013) formulation to each 
combination of the weights. In this way, we obtain the minimax regret solutions that correspond to 
different areas of the Pareto front. Assuming that we have |𝑆| scenarios for the objective function 
parameters, we describe the weight space to 𝑔 weight combinations and we solve the following 
problem: 

 
𝑀𝑀𝑅ሺ𝑔ሻ ൌ 𝑀𝑖𝑛 𝑦 
St. 

 𝑤




ୀଵ

ൈ
𝑓

௦ሺ𝑥ሻ െ 𝑓,
௦

𝑓,௫
௦ െ 𝑓,

௦  ሺ1 െ 𝑦ሻ𝑧
௦ 

𝑠 ∈ 𝑆 
𝑥 ∈ 𝐹 

        (6) 
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And we solve the above problem for every 𝑔 obtaining the minimax regret solution at 
representative points of the Pareto front. According to the value of the minimax regret solution 𝑦 we 
can draw conclusions about the areas of higher or lower robustness of the Pareto front. 

Applying the above method to the portfolio optimization problem we use two objectives: the Mean 
Absolute Deviation (MAD), as a risk measure to be minimized and the expected portfolio return, as 
an objective to be maximized. For a universe of 𝑁 assets and 𝑇 historical periods, the objective 
functions are given in the formulas below: 

 

𝑀𝑖𝑛 𝑧ଵ ൌ
1
𝑇

 อ 𝑥ሺ𝑅௧ െ 𝑅పഥ ሻ

ே

ୀଵ

อ

்

௧ୀଵ

        (7a) 

 

𝑀𝑎𝑥 𝑧ଶ ൌ  𝑥𝑅పഥ
ே

ୀଵ

       (7b) 

 

Where 𝑅పഥ ൌ  
ଵ

்
∑ 𝑅௧

்
௧ୀଵ  and 𝑅௧ is the return of the 𝑖 െ 𝑡ℎ asset during the 𝑡 െ 𝑡ℎ historical period. 

For linearization of the first objective function, we operate as follows transformation (1991). On 
this basis, 𝑇 additional positive continuous variables 𝑦௧ are used for the representation of each 
period’s absolute deviation from the mean, resulting in 2 ൈ 𝑇 constraints: 

 

 𝑥ሺ𝑅௧ െ 𝑅పഥ ሻ

ே

ୀଵ

 𝑦௧  0     𝑡 ൌ 1,2, … , 𝑇 

 𝑥ሺ𝑅௧ െ 𝑅పഥ ሻ

ே

ୀଵ

െ 𝑦௧  0     𝑡 ൌ 1,2, … , 𝑇 

     (8) 

Then, the objective function is transformed to: 
 

𝑀𝑖𝑛 𝑧ଵ ൌ
1
𝑇

 𝑦௧

்

௧ୀଵ

      (9) 

Therefore, for each weight combinationg, we solve the |S| problems declared in equation (10) to 
identify the optimum value of the weighted sum for every scenarios. 
 

(model 1) 

∀𝑠 ∈ 𝑆: 

      𝑧
௦ ൌ 𝑀𝑎𝑥ሺ𝑤ଵ

 భ,ೌೣ
ೞ ିభ

ೞሺ௫ሻ

భ,ೌೣ
ೞ ିభ,

ೞ  𝑤ଶ
 మ

ೞሺ௫ሻିమ,
ೞ

మ,ೌೣ
ೞ ିమ,

ೞ ሻ 

St. 
𝑥 ∈ 𝐹 

    (10) 

Observe in equation (10) that the first term corresponds to the normalization of an objection 
function to be minimized. After the calculation of the optimal values 𝑧

௦ for the weight combinationg, 
we put them as parameters in the model of equation (6) in order to solve the problem that calculates 
the minimax regret for the specific weight combination using equation (11). 

 

(model 2) 

𝑀𝑀𝑅ሺ𝑔ሻ ൌ 𝑀𝑖𝑛 𝑦 
St. 

ቆ𝑤ଵ
 𝑓ଵ,௫

௦ െ 𝑓ଵ
௦ሺ𝑥ሻ

𝑓ଵ,௫
௦ െ 𝑓ଵ,

௦  𝑤ଶ
 𝑓ଶ

௦ሺ𝑥ሻ െ 𝑓ଶ,
௦

𝑓ଶ,௫
௦ െ 𝑓ଶ,

௦ ቇ  ൫1 െ  𝑦൯𝑧
௦          𝑠 ∈ 𝑆 

𝑥 ∈ 𝐹 

    (11) 

 
Subsequently, we move forward to the next weight combination and we repeat the process 

described with model 1 and model 2. In this manner we scan all the weight combinations calculating 
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the minimax regret solution for each one of them. In total ሺ|S|  1ሻ ൈ |G| problems are solved. The 
smaller the minimax regret represents the more robustness in the corresponding efficient solution. 

The flowchart of the proposed approach for portfolio optimization that uses risk and return as its 
objective functions is illustrated in figure 1. 

 
Fig 1. The flowchart of the method for the minimax regret criterion 

The method is not limited to two objective problems. However, when more than two objective 
functions are considered the computation complexity will hardly increase. This has to do mainly with 
the increased number of weight combinations needed to adequately represent the multi-dimension 
Pareto front. 

4-Empirical testing 
In this section, the main purpose has been considered as applying the proposed model to Tehran 

Stock Exchange Market and solving the portfolio optimization problem by using data of 75 best assets 
as announced by Tehran Stock Exchange Market in 2017, and analyzing the performance of the 
proposed model and algorithms. 

Therefore, we use the 75 stocks of the Tehran Stock Exchange Market, which have the best 
performance among existing stocks. We use five scenarios of return and risk evolution, all of which 
prepared in close participation with a team of portfolio managers. The 5 scenarios for the return and 
the risk are as follows: We used historical data of 80, 60, 40, 20, and 10 weeks, extracting the average 
return and MAD from the corresponding data. Therefore, Scenario 1 that corresponds to 80 weeks 
past horizon denotes a more long-term point of view than Scenarios 2, 3, 4 and 5 that denote a short-
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term behavior. The five efficient frontiers are illustrated in figure 2 and the five payoff tables are 
shown in table 3. 

 
Table 3.The payoff table in the 5 scenarios 

 Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5 
 MAD Return MAD Return MAD Return MAD Return MAD Return 

Min MAD 1.43 12.37 1.26 9.73 1.24 8.71 0.79 20.11 0.71 10.78 
Max Return 2.51 58.93 2.14 44.92 2.44 47.82 1.98 92.46 2.33 94.54 

 
The obtained results from using the minimax regret model are shown in table 4. We used 11 weight 

combinations, namely (0, 1), (0.1, 0.9), (0.2, 0.8) … (0.9, 0.1),(1, 0). The optimum of each scenario 
for the weight combinations (0, 1), (0.1, 0.9) and (1, 0), along with the minimax regret solution are 
shown in table 4, where the first objective function is the minimization of risk and the second one is 
the maximization of return. For each one of them we see the outputs of the 5 scenarios in terms of 
Wsum that represents the weighted sum of objective functions according to equation (5), and also 
return, MAD, the number of stocks in the portfolio and the weights of each one of them presented in 
this table. The minimax regret solution is presented in the last line of each scenario with bold fonts. It 
has to be mentioned that the minimax regret figure expresses how far we are from the individual 
optima of each scenario in the worst case and it is expressed as fraction from 0 to 1. The smaller the 
minimax regret represents the more robustness in the solution. Robust solutions are attractive because 
no matter which scenario will finally occur, we will be close to the optimum of the occurred scenario. 

According to the figure 2, the 5 Pareto fronts correspond to each one of the considered scenarios. 
They are dissimilar because they correspond to different scenarios for the returns. For example, 
scenarios 4 and 5 correspond to higher returns than scenarios 1, 2 and 3 as it can be seen for the 
maximum return regions. In table 4 we can see that setting up the weights is crucial to the 
composition of the portfolios. As we increase the weight of “risk” we see that more securities enter to 
the portfolios. If we quantify the steadiness or robustness of the portfolios by the magnitude of the 
minimax regret figure we can identify regions of the Pareto set that are more robust which presents 
lower minimax regret values. It is remarkable that in the most cases the minimax regret portfolio 
includes more stocks than the optimal portfolios of the individual scenarios. When the weights of the 
objective functions are moving from max return to min risk, the stocks that have the highest return are 
losing weight in the optimal portfolios and they are mostly replaced by stocks that are less profitable 
but they are also less correlated with each other contributing to lowering the risk. Furthermore, we can 
see that the minimax regret solution in all the weight combinations contains more stocks in the final 
portfolio, than the individual scenarios optima. The minimax regret solution across the Pareto front is 
obtained from the minimax regret values for the specific weight combinations. Consequently, we are 
able to detect areas of the Pareto front that present relatively increased robustness in relation to other 
areas. Finally, we calculate the minimax regret solutions for the 11 weight coefficients of the relative 
minimax regret criterion. The results are shown in figure 3. 

 
Fig 2. Representation of the 5 efficient frontiers 
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Table 4. Details of the obtained solutions for 4 weight coefficients 
𝑤ଵ

ൌ 0 
Scenari

o 
W 

sum 
MAD Return 

Stck/Port
f 

1 2 3 4 5 6 7 8 9 1
0 

11 … 75 

 1 
0.917

9 
2.510

2 
58.931 

13 0 0.1 0 0 0 0 0 0.1 0 0 0.
1 

… 0 

 2 
0.999

9 
2.145

0 
44.922 

13 0 0.1 0 0 0 0 0 0.1 0 0 0.
1 

… 0 

 3 
0.998

7 
2.443

4 
47.804 

13 0 0.1 0 0 0 0.
1 

0 0.1 0 0 0.
1 

… 0.0
2 

 4 
0.999

9 
1.976

4 
92.479 

13 0 0.1 0 0 0 0 0 0 0 0 0.
1 

… 0 

 5 
0.928

9 
2.335

3 
94.542 

13 0 0.1 0 0 0 0.
1 

0 0 0 0 0.
1 

… 0 

 MMR= 
0.167

8 
  

13 0 0.1 0 0 0 0.
1 

0 0 0 0 0.
1 

… 0 

𝑤ଵ

ൌ 0.1 
Scenari

o 
W 

sum 
MAD Return 

Stck/Port
f 

1 2 3 4 5 6 7 8 9 1
0 

11 … 75 

 1 
0.906

1 
2.297

4 
58.089 

14 0 0.1 0 0 0 0 0 0.1 0 0 0.
1 

… 0 

 2 
0.907

3 
2.077

2 
44.100 

12 0 0.1 0 0 0 0 0 0.1 0 0 0.
1 

… 0.0
1 

 3 
0.900

0 
2.443

4 
47.821 

13 0 0.1 0 0 0 0 0 0.1 0 0 0.
1 

… 0 

 4 
0.909

7 
1.848

6 
90.348 

14 0 0.1 0 0 0 0 0 0 0 0 0.
1 

… 0 

 5 
0.900

0 
2.335

3 
94.542 

14 0 0.1 0 0 0 0.
1 

0 0 0 0 0.
1 

… 0 

 MMR= 
0.188

4 
  

14 0 0.1 0 0 0 0.
1 

0 0.0
8 

0 0 0.
1 

… 0 

… …  … … … … … … … … … … … … … … … … 

𝑤ଵ

ൌ 0.9 
Scenari

o 
W 

sum 
MAD Return 

Stck/Port
f 

1 2 3 4 5 6 7 8 9 1
0 

11 … 75 

 1 
0.907

8 
1.435

2 
16.961

7 
15 0 0 0.0

5 
0 0.0

2 
0.
1 

0 0 0 0 0 … 0 

 2 
0.901

4 
1.261

0 
11.918

7 
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Fig 3.The MMR values across the Pareto front (relative MMR) 

In figure 3, the lower the relative minimax regret is represented the more robust in the specific area 
of the Pareto front. Therefore, it is clear that there are areas in the Pareto front with higher robustness 
based on the 5 scenarios. For example, the Pareto optimal solutions that referred to weights varying 
from 0.1 to 0.4 are less robust than the Pareto optimal solutions that referred to weights varying from 
0.6 to 1 (robust area of the Pareto front). It is obvious that when minimizing risk is weighted more the 
minimax regret value drops from a level of 19% to a level of 8%. Thus, the area of the Pareto front 
that corresponds to minimizing risk against maximizing return, provide more robust solutions in terms 
of the minimax regret criterion. 

5-Conclusion 
   Investors are always trying to find an appropriate spot to invest, and they choose different ways for 
investment. One of these ways is investing in stock exchange markets and making portfolios. There 
are a lot of methods for making an appropriate portfolio; some of these methods are quantitative and 
some are no quantitative. The major evolution in portfolio selection was presented by Markowitz’s 
primary. Markowitz mean-variance basic model does not include some important issues in the 
portfolio selection problem; these issues have been added to Markowitz primary model by 
researchers. In this research, we equip the multi-objective portfolio analysis tool with robust 
techniques. In particular, we extend the conventional formulation for the minimax regret criterion in 
multi-objective programming problems. Early researches highlight the growing momentum of robust 
portfolio optimization. Robust tools may not only be useful in theoretical research, but they also 
should come in hand for practical investors, as they will allow them to define uncertainty in input 
portfolio parameters, as they perceive it. 

More specifically, we apply the proposed model in real-world data from Tehran Stock Exchange 
Market with 5 scenarios for the corresponding returns. The efficient frontier is approximated with 11 
points each one of them corresponding to a specific weight coefficient for returns and risk. The 
obtained results are meaningful since they suggest the areas of the Pareto front that are more robust. 
The smaller the minimax regret for each weight combination represents the more robust in the specific 
Pareto optimal solution. In our empirical testing case that examines, it was found that the robust areas 
of the Pareto front are those where the weight of risk minimization is increased. Therefore, by using 
the weighting method for generating the Pareto optimal solutions, we can detect the robust asset 
selection results and the robust areas of the efficient frontier. 

For the future research examining the effectiveness of the method in portfolio optimization for 
more objective functions and also in other multi-objective problems could be mentioned. In addition, 
other robustness models in the same context of the minimax regret criterion may be developed in 
combination with other multi-objective techniques which are appropriate for representation of the 
Pareto frontier. 
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