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Abstract 
Mixed-integer polynomial programming (MIPP) problems are one class of mixed-integer 
nonlinear programming (MINLP) problems where objective function and constraints are 
restricted to the polynomial functions. Although the MINLP problem is NP-hard, in 
special cases such as MIPP problems, an efficient algorithm can be extended to solve it. 
In this research, we propose an algorithm for global optimization of the MIPP problems, 
in which, first, the MIPP is reformulated as a multi-parametric programming by 
considering integer variables as parameters. Then, the optimality conditions of resulting 
parametric programming give a parametric polynomial equations system (PES) that is 
solved analytically by Grobner Bases (GB) theory. After solving PES, the parametric 
optimal solution as a function of the relaxed integer variables is obtained. A simple 
discrete optimization problem is resulted for any non-imaginary parametric solution of 
PES, which the global optimum solution of MIPP is determined by comparing their 
optimal value. Some numerical examples are provided to clarify proposed algorithm and 
extend it for solving the MINLP problems. Finally, a performance analysis is conducted 
to demonstrate the practical efficiency of the proposed method. 
Keywords:Mixed-integer polynomial programming (MIPP), parametric programming, 
Polynomial equations system (PES), Grobner bases theory. 

1-Introduction 
The mixed integer non-linear programming (MINLP) problem is a class of optimization problems 

with both continuous and integer variables where the objective function or some of the constraints are 
not linear. Many decision problems such as scheduling (Cafaro et al.,2015), distribution systems (Kaur 
et al.,2014), water networks (Tokos et al.,2013), layout design (de Lira-Flores et al.,2014) supply chains 
under stochastic demand (Li and Yu,2016), construction structures (Kravanja et al.,2013), chemical 
processes (Kraemer et al.,2007), etc., can be modelled as MINLP. In general, these problems are 
modelled as (1) where x is the vector of continuous variables and y is the vector of integer variables.  
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In order to achieve a general finite optimum, the proposed algorithms generally assumed that the 
objective function (f) and all constraint functions ( ,i if g ) are convex. Vectors x and y belong to compact 

and convex subsets in  xnX R  ⊂ and  xnY Z  ⊂  , respectively, and f is defined on the Cartesian (X×Y).  
 
 

(1) 
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However, the stated assumptions do not change the difficulty of MINLP problems and these are still 
NP-hard. Although many studies have been done to solve MINLP problems and different solving 
approaches have been introduced, the algorithm with polynomial computational complexity is not yet 
known to be capable of solving them. In general, these approaches can be divided into two categories: 
deterministic and stochastic. Most of deterministic algorithms for MINLP problems that guarantee 
global optimal solution (as detailed or sometimes approximate) are convex. Convexity and compactness 
of the solution space and objective function ensures that the obtained solution is global optimum. 
Branch and bound methods (Gupta and Ravindran,1985), (Kirst et al.,2016), (Quesada and 
Grossmann,1992) extended cutting plane method (Westerlund and Pettersson,1995) and outer 
approximation (OA) method (Duran and Grossmann,1986), (Fletcher and Leyffer,1994) are examples 
of the deterministic methods to solve the convex MINLP problems. In these approaches, the first 
condition of the integer y is usually ignored and then, by defining the problem or providing some 
methods such as the branch and bound, the optimal solution is determined which satisfies the integer 
condition. A good example for the convex problems is the next investigated research. In (Gu et al., 
2016), an optimization problem is considered that minimizes a function of the form 𝑓𝑓 = 𝑓𝑓0 + 𝑓𝑓1 −
𝑓𝑓2 with the constraint 𝑔𝑔 − ℎ ≤ 0, where 𝑓𝑓0is continuous differentiable, 𝑓𝑓1,𝑓𝑓2 are convex and 𝑔𝑔,ℎ are 
lower semi-continuous convex. Other non-deterministic algorithms (random search) for solving MINLP 
problems are usually based on some properties of nature. These algorithms can also be divided into two 
categories: meta-heuristic and heuristic algorithms; meta-heuristic algorithms such as genetics (Deep et 
al., 2009), Tabu search (Lin et al., 2003), simulated annealing (Cardoso et al., 1997), etc., are adaptable 
to various problems, while heuristic algorithms are used to solve specific problems more efficiently and 
they are sometimes used to improve meta-heuristic algorithms (Bertacco et al., 2007). 

The mentioned algorithms can be implemented mainly on convex problems, and using these 
approaches in non-convex problems allows stopping at the local optimal solution rather than the global 
optimal solution. Therefore, various studies have also been carried out in this field, and some 
approaches are presented for solving non-convex MINLP problems, such as maximum cutting method 
(Anjos  and Vannelli, 2008), (Goemans and Williamson, 1995), clustering (Sherali and Desai, 2005) 
and optimization of polynomials (Lasserre, 2001). In addition, some researchers have presented a 
solution for non-convex MINLP problems through using the existing signomial (generalized geometric) 
expressions. In most cases, non-convex MINLP problems are at least as hard as their convex 
counterparts are considered as NP-hard. 

In recent years, many studies have been conducted to find the global optimal solution of MINLP 
problems and various methods are suggested, such as LCA algorithms, results of which show the 
performance and stability of these algorithms (Yan et al., 2004). In  Eronen et al.,( 2017), the extended 
hyperplane algorithm is generalized for a convex continuously differentiable MINLP problem to solve 
a class of non-smooth problems. A number of studies have also been conducted on the improvement of 
the efficiency of previous algorithms, among which strategies to improve the efficiency and 
convergence of computing OA algorithms and analysis Benders could be noted (Su et al., 2015). It 
should be noted that, efficiency here means that by increasing the problem dimension, the time taken to 
find the optimal solution would have less growth and deviation of the presented solution would be lower 
than that of the global optimal value.  

Recently, some more efficient methods are proposed for a variety of the NLP models, among which 
(Crama and Rodríguez-Heck, 2017) and (Kim and Kojima, 2017) can be mentioned. In Crama and 
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Rodríguez-Heck ( 2017) , a new class of valid inequalities for binary optimization problems is proposed 
to strengthen the LP relaxation of the standard linearization. In Kim and Kojima (2017), conic 
relaxations containing doubly nonnegative programming (DNN) relaxations and semi definite 
programming (SDP) relaxations are investigated to earn the optimal values of binary quadratic 
problems. 

Although none of algorithms proposed to solve the MINLP problems generally can be given 
preference over another, it can be claimed that for special problems, some algorithms are more efficient 
than others are. Therefore, the MINLP problems could be classified into different categories, and 
various approaches could be provided to have greater performance in each class. A specific class of 
MINLP problems is mixed-integer polynomial programming (MIPP), where the objective function and 
constraints are limited to polynomials. MIPP problems can be evaluated specifically and solved by 
developing efficiency approaches. Based on Karush–Kuhn–Tucker (KKT) conditions, the optimal 
solution of an optimization problem is obtained by solving the system of equations. In some cases where 
the objective function or constraints are not linear, the system of equations becomes non-linear and 
generally, it is not possible to solve them analytically and accurately. While if the non-linearity of the 
problem is limited to polynomials, the result is a system of polynomial equations that can be solved 
based on Grobner Bases (GB) theory (Buchberger, 2001). Some research have been previously done, 
which used the GB theory to solve continuous polynomial optimization problems (Chang et al., 1994) 
and (Hägglöf  et al., 1995). In this paper, a new method based on the GB theory is proposed for solving 
MIPP problems. Although these problems are not necessarily convex, the proposed method can 
determine the global optimal solution of these problems. In addition, some MINLP problems are 
convertible to the MILP by using the Taylor series, and their optimal solution can be approximated with 
desired accuracy by using this method.   

The remaining sections are organized as follows. In Section 2, the general form of MIPP and 
parametric polynomial programming (PPP) problems are presented. In Section 3, a methodology is 
proposed for solving the MIPP problem with complete details. Section 4 presents the proposed method 
for solving the MIPP problem as a step-by-step algorithm. In Section 5, three various numerical 
examples are presented to further explain how to use the proposed method. In Section 6, in order to 
investigate the practical efficiency of the proposed algorithm, a performance analysis is done. In Final 
Section, the conclusion and some suggestions for further studies are presented. 

 
2-Mixed-Integer Polynomial Programming (MIPP) and Parametric Polynomial     

Programming (PPP) 
If in the generic form of MINLP, the objective function and constraints are polynomials function 

according to the variable vectors x and y, MIPP problems are obtained. Here, the variables in the 
compact space are defined as the model (2). 

(2) 
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In optimization problems, if at least one of the numerical values of the parameters in the model does 

not exist, then the optimal solution is calculated based on this parameter and for each value of it, the 
corresponding optimal solution is obtained; these types of problems are presented as parametric 
programming problems. Assume that in the model (2), vector y is one of the parameters of the problem 
and vector x is the only variable of the problem. In this case, the model (2) is reformulated as a 
polynomial parametric programming problem (model (3)), in which the optimal solution is obtained 
based on y. 
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3-Methodology  
In order to solve the given MIPP problem (the model (2)), the following three-step methodology is 

proposed: 
Step 1: solve the model (3) as a parametric model to obtain the optimal candidate solution based on  y. 
Call          each of these solutions |x ys . 
Step 2: for each solution |x ys , formulate an integer optimization problem that its objective function is 

based on y as |( ) ( )y
s x yF y f s= . Vector y changes in the allowed domain

1

{ , 1,..., }
yn

yk yk yk
k

L L U
=

+∏ . Call 

each of these problems |( )x yP s . 
Step 3: determine the optimal solution by comparing the optimal and feasible values of each problem

|( )x yP s . 
The following sections describe how to do the above steps in details. 

3-1-Solving the parametric model and finding optimal candidate solution 
The optimal solution of a mathematical programming problem is applied to a system of equations 

(and sometimes inequalitiesa) which is made from the corresponding KKT conditions. In other words, 
a necessary condition for optimality of each answer is that it satisfies the KKT conditions.  
Consider the following mathematical programming problem: 
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Lagrange function corresponding to the above model is defined as (X, λ, μ) = F(X) +
∑ λi
nH
i=1 Hi(X) + ∑ μi

nG
i=1 Gi(X). By applying the KKT conditions, systems of equations and inequalities 

related to this problem are formulated, as seen in table 1. 
 

Table 1. Systems of equations and inequalities of the KKT conditions 
Inequalities set of KKT conditions Equations set of KKT conditions 

 
𝜇𝜇𝑖𝑖 ≥ 0                                𝑖𝑖 = 1,2, … ,𝑛𝑛𝐺𝐺 
𝐺𝐺𝑖𝑖(𝑋𝑋) ≤ 0                        𝑖𝑖 = 1,2, … ,𝑛𝑛𝐺𝐺 

𝜕𝜕𝜕𝜕(𝑋𝑋, 𝜆𝜆, 𝜇𝜇)
𝜕𝜕𝑥𝑥𝑘𝑘

= 0        𝑘𝑘 = 1,2, … ,𝑛𝑛 

𝐻𝐻𝑖𝑖(𝑋𝑋) = 0                 𝑖𝑖 = 1,2, … ,𝑛𝑛𝐻𝐻 
𝜇𝜇𝑖𝑖𝐺𝐺𝑖𝑖(𝑋𝑋) = 0            𝑖𝑖 = 1,2, … ,𝑛𝑛𝐺𝐺  

 
To find the optimal candidate solution of the model (4), the system of equations must be solved first 

and then, each of the obtained solutions that also satisfy inequalities is considered as an optimal 
candidate solution. In most nonlinear cases, solving a system of equations is not possible and its 
solutions can be approximated only by using some numerical methods such as Newton-Raphson. 
Nevertheless, a polynomial equations system (PES) is obtained in MIPP problems, and fortunately, 

a If there are inequality constraints on the problem, some inequalities also exist in the system. 
4 

 

                                                           



 

there are analytical and accurate methods for solving the PES in both numeric and parametric cases. 
PES solving methods are mainly derived from the GB theory, the most important of which is 
Buchberger algorithm (Buchberger, 2001) (read more in Boege et al. (1986)). The Buchberger 
algorithm first obtains the foundations of the initial Grobner PES and then, forms a new PES with its 
answer as equal to the initial PES answers, which can be solved as a system of linear equations is solved. 
This algorithm has been provided in MATLAB, MATHEMATICA, and MAPLE.  

If in the MIPP problem, we consider the integer variables vector y as parameters, then, according to 
Table 1, the parametric PES (5) is obtained. By solving the system (5), its solutions are obtained 
as x(y), λ(y), μ(y). Suppose that |x yS is a set of all non-imaginary solutions of PES; each of | |x y x ys S∈  is 
an optimal candidate solution.  
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3-2-Feasibility and optimality of optimal candidate solution 
For each value in the changes domain of y, each parametric solution | |x y x ys S∈  converts into a 

numerical solution; if this solution satisfies inequalities of the KKT conditions, it is a feasible and 
optimal candidate, and otherwise, it should be removed. For each | |x y x ys S∈ , objective function of the 
MIPP problem converts into a function of y as |( ) ( )y

s x yF y f s= ; each feasible and optimal candidate 
solution gives a value to the objective function, which is an optimal candidate solution. In other words, 
to examine each | |x y x ys S∈ , integer optimization problem |( )x yP s can be defined where its constraints are 
inequalities system related to the KKT conditions and its objective function is reformulation by the 
parametric solution. By solving the model (6), the optimum value of integer variables will be determined 
and according to |x ys  , the optimum value of continuous variables is calculated. Note that for solving 
the model (6), different approaches such as counting, branch and bound and cutting plane methods can 
be used. Also, in some cases where the number of variables is large, meta-heuristic and heuristic 
approaches can be applied to integer optimization (Deep et al., 2009) and (Lin et al., 2003) and (Cardoso  
et al., 1997). However, in this section, providing a new heuristic algorithm can increase the effectiveness 
of the proposed method. 
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3-3-Comparison of the parametric solution and determination of the optimal solution 
For each feasible |( )x yP s , let the optimal value of the objective function be  

|x y

opt
sF  and the optimal 

solution of decision variables be 
| |

( , ( ))
x y x y

opt opt
s sy x y . Moreover, for unjustified problems, let

|x y

opt
sF = +∞ . To 

determine the optimal solution of the MIPP problem, these values should be compared and the minimum 
amount of them has to be determined.  

We define
|

*
| |min{ | }

x y

opt
s x y x yZ F s S= ∈ ; if *Z = +∞ , then the problem is infeasible; otherwise, the 

parametric solution that has led to *Z is the global optimum solution, and we will display it by *
| .x ys  The 
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optimal value of decision variables is obtained by *
|x ys  and it is equal to * *

| |

* *( , ) ( , ( ))
x y x y

opt opt
s s

y x y x y= . Note that 
*

|x ys may not be unique and sometimes more than one | |x y x ys S∈ lead to *Z . 

4-The proposed algorithm for solving MIPP 
The proposed algorithm for solving this type of problems is described as a step-by-step algorithm in 

table 2.  
 

Table 2. The proposed algorithm 
Step 0 Input the MIPP problem with integer variables y and continuous variables x. 

(Minimizing the MIPP problem) 
Step 1 Consider the integer variables as parameters and relax the problem to a 

parametric polynomial programming (PPP) problem. 
Step 2 Formulate Lagrange function corresponding to the PPP problem. 
Step 3 Apply the KKT conditions to the PPP problem and determine equations and 

inequalities system of the KKT conditions. 
Step 4 Formulate the polynomial equations system (PES) from the equations system 

of the KKT conditions. 
Step 5 Solve the PES based on the GB theory (Using the proposed Mathematica 

Software). If PES has no non-imaginary solutions, then the MIPP problem is 
infeasible andthe procedure stops, Otherwise go to Step 6.  

Step 6 Formulate the integer optimization problem corresponding to each non-
imaginary solution of PES, and solve it based on a counting method. 

Step 7 Record the optimum value of objective functions for each integer 
optimization problem, corresponding to each non-imaginary solution, in set 
“O”. For each of them that is infeasible, Record + ∞ in the set “O”. 

Step 8 Find the minimum value of the set O and name it Z*. If Z* is equal to + ∞, 
the MIPP problem is infeasible and the procedure stops; Otherwise go to Step 
9. 

Step 9 Display Z* and (y*, x*) as the optimal solution.  
 

Note that the above algorithm works quite similar for MINLP problems with the difference at Step 
0 where the input MINLP problem is relaxed as the MIPP problem based on the Taylor expansion of 
functions. In these problems, although the number of long sentences from Taylor expansion functions 
increases problem-solving time, a better approximation of a global optimum solution is obtained. 

5-Numerical examples 
In this section, three numerical examples are illustrated to learn how to use the proposed method for 

solving MIPP problems. Example 1 is an MIPP problem with a binary-integer variable. In Example 2, 
the integer variables are not necessarily limited to binary numbers. Finally, example 3 shows an MINLP 
problem that firstly is converted to the MIPP problem and then, is solved by the proposed approach. 

5-1-Example 1: The MIPP problem with binary variables 
This example is in the form of model (7): 
 
 

(7) 

𝑀𝑀𝑀𝑀𝑀𝑀 𝑍𝑍 =  10𝑥𝑥12𝑦𝑦1 + 13𝑥𝑥22𝑦𝑦2 − 𝑥𝑥3𝑦𝑦3 − 100𝑦𝑦1 − 80𝑦𝑦2 + 200𝑦𝑦3 
𝑠𝑠. 𝑡𝑡. 
𝑦𝑦1 + 𝑦𝑦2 + 𝑦𝑦3 = 2                                                                                   
𝑥𝑥12 + 𝑥𝑥22 + 𝑥𝑥32 ≤ 100                                                                                
−10 ≤ 𝑥𝑥𝑘𝑘 ≤ 10          𝑘𝑘 = 1,2,3                                                             
𝑦𝑦𝑘𝑘 ∊ {0,1}                     𝑘𝑘 = 1,2,3 

By relaxing binary variables (y1, y2, y3) as parameters, Lagrange function corresponding to Example 
1 is constructed as follows: 
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𝐿𝐿𝑦𝑦(𝑥𝑥, 𝜆𝜆, 𝜇𝜇) = 10𝑥𝑥12𝑦𝑦1 + 13𝑥𝑥22𝑦𝑦2 − 𝑥𝑥3𝑦𝑦3 − 100𝑦𝑦1 − 80𝑦𝑦2 + 200𝑦𝑦3 + +𝜆𝜆1(𝑦𝑦1 + 𝑦𝑦2 + 𝑦𝑦3 − 2)
+ 𝜇𝜇1(𝑥𝑥12 + 𝑥𝑥22 + 𝑥𝑥32 − 100), 

Using the conditions KKT, the system of equations (8) is formulated, and by solving this set based on 
the GB theory, a set of optimal candidate solutions is obtained (Table 3). Then, the objective function 
is reformulated for each non-imaginary solution and optimum values of them are recorded (Tables 4 
and 5). By comparing the solutions in Table 5, (x1∗ = 0  , x2∗ =  ±10  , x3∗ = 0   , y1∗ = 0   , y2∗ =  1 , y3∗ =
1   , Z∗ = 1420) is the optimal solution of the problem. Notice in this example, μ1 should be a non-
positive because the objective function is maximized.  
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Table 3. The parametric solution of the polynomial equations system in example 1 
State 𝜇𝜇1 𝑥𝑥3 𝑥𝑥2 𝑥𝑥1 Solution 

Non-
imaginary −0.05𝑦𝑦3 −10 0 0 1 

Non-imaginary 0.05𝑦𝑦3 10 0 0 2 
Non-

imaginary −10. y1 0 0 −
0.05�40000. 𝑦𝑦12

𝑦𝑦1
= −10 3 

Non-imaginary −10. y1 0 0 0.05�40000.𝑦𝑦12

𝑦𝑦1
= 10 4 

Non-imaginary −13. y2 0 -10 0 5 
Non-imaginary −13. y2 0 10 0 6 

 
 
 
 
 

Table 4. The objective function for solutions in example 1 
Objective function Solution 

−100𝑦𝑦1 − 80𝑦𝑦2 + 210𝑦𝑦3 1 

−100𝑦𝑦1 − 80𝑦𝑦2 + 190𝑦𝑦3 2 

900𝑦𝑦1 − 80𝑦𝑦2 + 200𝑦𝑦3 3 
900𝑦𝑦1 − 80𝑦𝑦2 + 200𝑦𝑦3 4 

−100𝑦𝑦1 + 1220𝑦𝑦2 + 200𝑦𝑦3 5 

−100𝑦𝑦1 + 1220𝑦𝑦2 + 200𝑦𝑦3 6 
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Table 5. The optimal values for each parametric solution in Example 1 

𝑦𝑦3 𝑦𝑦2 𝑦𝑦1 𝑥𝑥3 𝑥𝑥2 𝑥𝑥1 Optimal objective function Solution 

1 1 0 -10 0 0 130 1 

1 1 0 10 0 0 110 2 

1 0 1 0 0 -10 1100 3 

1 0 1 0 0 10 1100 4 

1 1 0 0 10 0 1420 5 

1 1 0 0 -10 0 1420 6 

5-2-Example 2: The MIPP problem with integer variables 
This example is in the form of model (9): 
 

(9) ( )
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
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
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By considering binary variables y1, as parameters, Lagrange function corresponding to Example 2 is 

constructed as follows: 
𝐿𝐿𝑦𝑦(𝑥𝑥, 𝜇𝜇) = 𝑥𝑥1 + 𝜇𝜇1(𝑥𝑥1𝑦𝑦1 − 4) + 𝜇𝜇2(𝑦𝑦1 − 𝑥𝑥12(𝑥𝑥1 − 2)) , 

The system of equations (10) is formulated by using the KKT conditions, and Table 6 shows solutions 
obtained by solving this set. 
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( )
( )( )

2
1 1 2 1 2 1

1

1 1 1

2
2 1 1 1

,
1 3 2   0

4  0  

2 0  

yL x
y x x

x
x y

y x x

µ
µ µ µ

µ

µ

∂
= + − + =

∂

− =

− −







=




 

According to table 6, it is clear that the parametric solutions 3 and 4 are imaginary; hence, no 
investigation is needed. Solution 1 is unjustified, because for each  y1 ∊ {1,2, … ,8}, µ1 = − 1

y1
, and it is 

inconsistent to the condition of non-negative µ1 . Therefore, we just investigate Solution 2 and its 
corresponding objective function is as follows which is minimized at y=1. The optimal solution of 
example 2 is equal to (y1∗ = 1 , x1∗ = 2.2055 , Z∗ = 2.2055). 

 

𝑧𝑧𝑦𝑦 = 0.66 +
1.67

�16 + 27𝑦𝑦1 + 27�𝑦𝑦1�1.18 + 𝑦𝑦1�
1 3⁄

+ 0.26�16 + 27𝑦𝑦1 + 27�𝑦𝑦1�1.18 + 𝑦𝑦1�
1 3⁄

 
 

(11) 
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Table 6. The solution obtained from solving polynomial parametric equations in example 2 

State 𝜇𝜇2 𝜇𝜇1 𝑥𝑥1 Solution 

Non-
imaginary 0 −

1
𝑦𝑦1

 
4
𝑦𝑦1

 1 

Non-
imaginary 

1
𝑦𝑦1

 0.33�1.33 −
1.67989

�16 + 27 𝑦𝑦1 + 27�𝑦𝑦1 �1.18 + 𝑦𝑦1�
1 3⁄

− 0.26�16 + 27𝑦𝑦1

+ 27�𝑦𝑦1�1.18 + 𝑦𝑦1 �
1 3⁄
� 

0 

0.66

+
1.67

�16 + 27𝑦𝑦1 + 27�𝑦𝑦1�1.18 + 𝑦𝑦1�
1 3⁄

+ 0.26�16 + 27𝑦𝑦1
+ 27�𝑦𝑦1�1.18 + 𝑦𝑦1�

1 3⁄
 

2 

Imaginary  

1
𝑦𝑦1

0.33�1.33 +
0.83 + 1.45𝑖𝑖

�16 + 27𝑦𝑦1 + 27�𝑦𝑦1�1.18 + 𝑦𝑦1�
1 3⁄

+ (0.13
− 0.22𝑖𝑖)�16 + 27𝑦𝑦1

+ 27�𝑦𝑦1�1.18 + 𝑦𝑦1�
1 3⁄
� 

0 

0.66

−
0.83 + 1.45483𝑖𝑖

�16 + 27𝑦𝑦1 + 27�𝑦𝑦1�1.18 + 𝑦𝑦1�
1 3⁄

− (0.13
− 0.22𝑖𝑖)�16 + 27𝑦𝑦1
+ 27�𝑦𝑦1�1.18 + 𝑦𝑦1�

1 3⁄
 

3 

Imaginary  

1
𝑦𝑦1

0.33�1.33 +
0.83 − 1.45𝑖𝑖

�16 + 27𝑦𝑦1 + 27�𝑦𝑦1�1.18 + 𝑦𝑦1�
1 3⁄

+ (0.13
+ 0.22𝑖𝑖)�16 + 27𝑦𝑦1

+ 27�𝑦𝑦1�1.18 + 𝑦𝑦1�
1 3⁄
� 

0 

0.66

−
0.83− 1.45𝑖𝑖

�16 + 27𝑦𝑦1 + 27�𝑦𝑦1�1.18 + 𝑦𝑦1�
1 3⁄

− (0.13
+ 0.22𝑖𝑖)�16 + 27𝑦𝑦1
+ 27�𝑦𝑦1�1.18 + 𝑦𝑦1�

1 3⁄
 

4 

 

5-3-Example 3: The convertible MINLP problem to the MIPP problem 
This example is in the form of model (12): 

(12) 

( ) ( ) ( )

{ }

2 2
1 1 1 2 1 2

1

1

    2 cos cos 2

. .                                                                           
3 3  

3, 2, 1, ,3

Min Z x y x y x y

s t
x

y

= + − − − + +

−



≤ ≤

− −



∈ −



…







 

By replacing the first seven sentences of Taylor expansion of cosine functions of the objective 
function, MINLP convert into the MIPP problem as shown below: 

 

𝑍𝑍 = 3𝑥𝑥12 −
𝑥𝑥14

12
+

𝑥𝑥16

360
+ 3𝑦𝑦12 −

𝑦𝑦12. 𝑥𝑥12

2
+
𝑦𝑦12.𝑥𝑥14

24
−
𝑦𝑦14

12
+
𝑦𝑦14. 𝑥𝑥12

24
+

𝑦𝑦16

360
 . 

After problem conversion to MIPP and formation of the Lagrange function (which is here the same 
as the objective function), the KKT condition forms Set (13), and the solutions obtained are given in 
Table 7. By reformulating the objective function for each parametric solution in Table 7, different 
objective functions can be obtained (Table 8). The optimal value of the problem for each parametric 
solution can be seen in Table 9; the optimal solution of the problem is (x1∗ = 0, y1∗ = 0, Z∗ = 0). 

(13) 
( ) 3 5 2 3 4

21 1 1 1 1 1
1 1 1

1

. .
6 .

3 60 6 12
yL x x x y x y xx y x
x

∂
= − + − + +

∂
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Table 7. The obtained solution from solving polynomial parametric equations in example 3 

State 𝑥𝑥1 Solution 

Non-imaginary 0 1 

Non-imaginary �10 − 5𝑦𝑦12 − 4.47�−13 − 2𝑦𝑦12 + 𝑦𝑦14 2 

Non-imaginary �10 − 5𝑦𝑦12 + 4.47�−13 − 2𝑦𝑦12 + 𝑦𝑦14 3 

 
Table 8. The objective function for each non-imaginary solution in Example 3 

Objective function Solution 

3𝑦𝑦12 −
𝑦𝑦14

12
+

𝑦𝑦16

360
 1 

24.45 − 8.67𝑦𝑦12 − 1.33y14 + 0.5y16 + 22.56�−13 − 2y12 + y14

− 0.99𝑦𝑦12�−13 − 2y12 + y14

+ 0.51𝑦𝑦14�−13 − 2𝑦𝑦12 + 𝑦𝑦14 
2 

24.45 − 8.67y12 − 1.33y14 + 0.5y16 − 22.56�−13 − 2y12 + y14

+ 0.99𝑦𝑦12�−13 − 2y12 + y14

− 0.51y14�−13 − 2y12 + y14 
3 

 
Table 9. The optimal values for each parametric solution in Example 3 

𝑦𝑦1 𝑥𝑥1 Optimal objective 
function Solution 

0 0 0 1 

- - Undefined 2 

- - Undefined 3 

 
Figure 1 shows plot of the objective function of the MINLP problem (Example 3) within the specified 

domain of variables, assuming the continuity of y1. Obviously, in this problem, the global optimal 
solution occurs at the point (x1 = 0, y1 = 0) where the value of the objective function is zero, which is 
equal to the obtained solution from the proposed method.  

Obviously, in the MINLP problem, the proposed method does not necessarily result in the exact 
global optimal solution, but because of a conversion of MINLP to the MIPP problem, an approximate 
of the optimal solution can be achieved, which in some problems such as Example 3, may be exactly 
equal to the global optimum solution. 
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Fig 1. Example 3, plot of the objective function, minimum value of this function occurs at the point (0, 0) and 
it is equal to 0 

6-Performance analysis  
In the previous section, three numerical examples in small dimensions were solved. Using these 

examples, application of the proposed solution approach was expressed. In addition, reaching the global 
optimal solution was ensured by use of them. In this section, a performance analysis is carried out in 
order to demonstrate the practical efficiency of the proposed method in the real problems and large 
dimensions. For this purpose, the MIPP model of a multi-products pricing problem is presented. Next, 
this problem is solved in various dimensions by proposed algorithm and some solvers such as 
BONMIN, COUENNE and BARON of GAMS software. At the end, the obtained results are reported. 

6-1-MIPP model for the pricing problem 
• Model notations 
𝐼𝐼 Set of products 
𝐷𝐷𝑖𝑖 Parameter: Maximum of demand in the market for product 𝑖𝑖 
𝑎𝑎𝑖𝑖 Parameter: Minimum of allowable price for product𝑖𝑖 
𝑏𝑏𝑖𝑖 Parameter: Maximum of allowable price for product𝑖𝑖 
𝑐𝑐𝑖𝑖 Parameter: Production cost per unit of product𝑖𝑖 
𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖 Parameter: Production capacity of product𝑖𝑖 
𝑝𝑝𝑖𝑖 Variable: Price of product𝑖𝑖 
𝑑𝑑𝑖𝑖 Variable: Activated demand for product 𝑖𝑖 
𝑥𝑥𝑖𝑖 Variable: Production/Supply amount of product𝑖𝑖 
𝑦𝑦𝑖𝑖 Binary variable: equal to 1 if product 𝑖𝑖 is produced; 0, otherwise 

 
• Model formulation 
 Objective function: maximizing of the benefit 

max 𝑧𝑧 = �(𝑝𝑝𝑖𝑖 − 𝑐𝑐𝑖𝑖)𝑥𝑥𝑖𝑖
𝑖𝑖∈𝐼𝐼

 

 Allowable interval of price 

𝑎𝑎𝑖𝑖 ≤ 𝑝𝑝𝑖𝑖 ≤ 𝑏𝑏𝑖𝑖  ∀ 𝑖𝑖 ∈ 𝐼𝐼 
 Recursive quadratic relationship between price and demand 

𝑑𝑑𝑖𝑖 = 𝛽𝛽0,𝑖𝑖 − 𝛽𝛽1,𝑖𝑖𝑝𝑝𝑖𝑖 − 𝛽𝛽2.𝑖𝑖𝑝𝑝𝑖𝑖2  ∀ 𝑖𝑖 ∈ 𝐼𝐼 

 Maximum variety of products supplied to the market (k is the maximum of variety) 
�𝑦𝑦𝑖𝑖
𝑖𝑖

≤ 𝑘𝑘 
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 Other constraints 
𝑥𝑥𝑖𝑖 ≤ 𝑑𝑑𝑖𝑖  ∀ 𝑖𝑖 ∈ 𝐼𝐼 
𝑥𝑥𝑖𝑖 ≤ 𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖. 𝑦𝑦𝑖𝑖   ∀ 𝑖𝑖 ∈ 𝐼𝐼 

Note that the objective function of the presented model and the relation between demand and price 
is nonlinear (as Quadratic Polynomial). The data of this problem in large dimensions have been 
randomly generated according to table 10. 

 
Table 10. Randomly generated data and parameters of the MIPP pricing problem with the uniform 

distribution 

𝐷𝐷𝑖𝑖 ∈ 𝑈𝑈(1000,2000) 𝑎𝑎𝑖𝑖 ∈ 𝑈𝑈(5,10) 𝑏𝑏𝑖𝑖 ∈ 𝑈𝑈(12,25) 

𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖 ∈ 𝑈𝑈(800,1500) 𝑐𝑐𝑖𝑖 ∈ 𝑈𝑈(3,15) 𝑘𝑘 = min {𝑈𝑈(1,10), |𝐼𝐼|} 

𝛽𝛽0,𝑖𝑖 = 𝐷𝐷𝑖𝑖  𝛽𝛽1,𝑖𝑖 ∈ 𝑈𝑈(15,20) 𝛽𝛽2,𝑖𝑖 ∈ 𝑈𝑈(2,4) 

6-2-The comparison of results 
Using the data mentioned in table 10, the pricing MIPP problem has been realized in different 

dimensions. In the following, the results of some solvers have been compared with proposed method in 
the cases of the solution time and the value of objective function. Tables 11 and 12 indicate that the 
similar results have been obtained in the small dimensions problems. However, it was observed that by 
increasing the dimension of the problem, the proposed method in comparison with the other solvers 
presents a better objective function in the less time. 

 
Table 11. The comparison of the objective function 

Proposed method COUENNE BONMIN BARON Problem size (|𝐼𝐼|) 
16142.36 16142.36 16142.36 16142.36 5 
17672.22 17672.22 17672.22 17672.22 10 
23651.23 23651.23 23651.23 23651.23 15 
60998.98 58124.34 60998.98 60998.98 20 
44573.90 40532.70 44573.90 44573.90 25 
55552.00 51540.06 55552.00 54236.55 30 

51043.510 47568.41 51043.51 49682.97 35 
82944.31 75852.68 82944.31 82944.31 40 
54733.49 54293.83 54534.45 54440.45 45 
87646.62 70752.76 77707.76 77369.99 50 

144958.90 NA 111867.70 129314.99 100 
 

Table 12. The comparison of the solution time (minute) 
Proposed method COUENNE BONMIN BARON Problem size (|𝐼𝐼|) 

0.15 0.32 0.30 0.25 5 
0.21 0.38 0.35 0.32 10 
0.24 1.20 0.38 0.75 15 
0.41 4.67 2.36 2.12 20 
1.23 7.21 3.11 3.70 25 
3.11 10.54 3.35 4.56 30 
4.21 12.45 5.00 5.42 35 
6.69 23.43 8.25 9.43 40 

11.90 42.24 13.56 15.67 45 
22.90 70.56 30.89 33.23 50 
513 NA +1000 +1000 100 

7-Conclusion 
In this study, a specific class of MINLP problems has been discussed, and its objective function and 

constraints are observed to be limited to polynomials. To solve MIPP problems, we have proposed a 
12 

 



 

method that uses GB in solving the polynomial equations system. Usually, using KKT conditions to 
find the optimal solution of MINLP problems, a system of nonlinear equations is obtained and the 
analytical algorithm for solving them is not provided. However, in the MIPP problem, which is a special 
class of MINLP problems, the KKT condition results in a polynomial equation system (PES) where its 
solutions can be calculated by using some methods based on GB. In optimization problems where 
integer variables also exist in addition to continuous variables, one of the techniques to solve it is that, 
first we consider integer variables as parameters and solve a parametric continues problem and then, 
using a simple optimization problem, the optimal values of integer variables are calculated. In this study, 
this technique has been applied to solve some MIPP problems.  

Although MIPP problems are not convex optimization problems, the proposed method guarantees 
the global optimum solution of them. Furthermore, in some class of MIPP problems that are convertible 
into MIPP problems in terms of Taylor's expansion of non-linear functions, using this method can 
approximate the optimal solution of them. In order to investigate the practical efficiency of the proposed 
method in the real problems, a performance analysis was conducted. The done analysis demonstrated 
that the proposed method in comparison with the other solvers by increasing the dimension of the 
problem presented a better objective function in the less time. 
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