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Abstract

Proper and realistic scheduling is an importantoiacf success for every project.
In reality, project scheduling often involves sealeobjectives that must be
realized simultaneously, and faces numerous uricBes that may undermine
the integrity of the devised schedule. Thus, thenmea of dealing with such
uncertainties is of particular importance for effez planning. A realistic
schedule must also take account of the time-baaedtons in the capacity of
renewable resources and the amount of resourcedese® undertake the
activities and the overall effect of such variaia@n the schedule. In this study,
we propose a multi-objective project schedulingrojziation model with time-
varying resource requirements and capacities. ioidel, with the objectives of
minimizing the project makespan, maximizing the estie robustness, and
maximizing the net present value, considers therasts of both project owner
and contractor simultaneously. Two multi-objectsaution algorithms, NSGA-
Il and MOPSO, are modified and adjusted with Taguwethod to be used for
determination of the set of Pareto optimal soludidor the proposed problem.
The proposed solution methods are evaluated bydbkeof fifteen problems of
different sizes derived from Project Scheduling dRem Library (PSPLIB).
Finally, solutions of the algorithms are evaluatedterms of five evaluation
criteria. The comparisons show that NSGA-II yielgsgter results than MOPSO
algorithm. Also, we show that ignoring the time-bdwariations in consumption
and availability of resources may lead to undemesiion of project makespan
and significant deviation from the optimal activigquence.

Keywords: Resource-constrained project scheduling, Net Rtégalue (NPV),
robust scheduling, resource variation, multi-objecoptimization.

1- Introduction

In a Resource-Constrained Project Schedulingl®no (RCPSP), a series of activities to be
undertaken continuously, according to their prenedeelations, and using a limited set of renewable
resources (such as human resources, machineryqaifghent) must be scheduled with the purpose
of achieving one or several particular objectivesaveral types of RCPSP, the one with the objectiv
of minimizing the project completion time (or magas) has attracted the most attention (see, e.g.,
Creemers, 2015, Delgoshaei et al., 2015, Wu er@ll]l, Chtourou and Haouari, 2008, Shi et al.,
2010, Ghassemi-Tari and Olfat, 2007, Kumar and Agim, 2010).
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But in addition, literature of RCPSP containsugihle publications on not only this objective but
also other types of objective as well as altermassumptions for activities, their precedence
relations, and resources.

A summary of these works have been compiled antgwed by Hartmann and Briskorn (2010).
Another primary objective usually adopted for RCBS® the project cost minimization. In this
approach, studies such as Liu and Zheng (2008) fagwsed entirely on minimizing the total cost of
the project while others such as Berthaut et @142 and Kang and Choi (2015) have attempted to
establish a tradeoff between time and cost. Castdbadbjectives can be expressed in terms of
optimization of Net Present Value (NPV); an applotmat was first introduced by(Russell, 1970) and
later followed in works such as Sobel et al. (2088semann et al. (2010) and Leyman and
Vanhoucke (2016). Also, other articles such as &sliKim (2005),Song et al. (2015) and Yuan et al.
(2015) have studied the resource investment prgblehere objective functions are based on
renewable resources, while others such as Akkaal. €2005), Demeulemeester et al. (1998) and
Vanhoucke et al. (2002)have focused on the disdiste-cost tradeoff problem, where objective
functions are based on nonrenewable resources. \Rarédl conditions often compel the project
managers to make their decision in line with migtipbjectives. Thus, the overall objective is to
optimize not only the makespan, but also revenast, @nd resource leveling and even control the
uncertainties involved in the project. Consequentiylti-objective project scheduling problem have
been introduced to aid the project managers in mgaketter decisions by taking multiple aspects of
the project into consideration.

A major issue associated with scheduling probklés the presence of uncertainties and occurrence
of unexpected events, which may disrupt and ddiaywork schedule. These disruptions may occur
for various reasons like misestimating of duratidractivities, lack of expected access to resoyrces
addition or omission of an activity in the projewtwork, or unexpected adverse weather conditions.
Goldratt (1997)points out that a disrupted schedinbeeases the project expenses by causing the
resource to remain idle, increasing the work-ingoess inventory, and intensifying the system
atmosphere. In the project scheduling literatusek lof certainty has been addressed by approaches
such as reactive scheduling, stochastic schedalmiyfuzzy scheduling(see, e.g., Soltani and Haiji,
2007). In addition to the above approaches, preadtiobust) scheduling has also proven useful in
minimizing the effect of unexpected events on primperformance criteria such as project
makespan. Such approach to scheduling has beeredtieffectively by Lambrechts et al.
(2011),Lamas and Demeulemeester (2016) and Paadiharrea (2017).

In the project scheduling literature, standB@PSP has been the subject of many developments
and modifications, for example, introduction of tiple operating modes for activities, generalized
precedence relations, preempted activities, anal @tiser approaches for generalizing the resource
constraints. Another assumption of standard RCRS3Re uniformity of resource requirements and
capacities over time, which undermines the pralcaipplicability of the solutions; because resource
availability is subject to variations caused bydaltime offs and planned maintenance operations
while demand for resources may also vary with treggess of activity. It is therefore important to
incorporate such assumptions into project scheguwmoblems. However, Hartmann (2015) reports
that the project scheduling literature contains faw works on time-varying resource requirements
and capacities, and the concept is only mentioneatticles such as Bartusch et al. (1988), Sprecher
(2012) and De Reyck et al. (1999).Table 1 lists esaoh the previous works on robust project
scheduling.
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Table 1. Review of RCPSP models with robustness considersiti

Model Objective functions Resource . considering
interests of owne

Article of);relglt?v-e o’t\J/J!Z::t'zi-ve '\;Itlg ge Makespan Robustness Cost NPV Quali;/;1 r)?i:?ewnh Sairr]:u(l:tc;rr]]tézzt;; Solution method
Haouari and Al-Fawzan (2002) X X X MOTS
Al-Fawzan and Haouari (2005) X X X MOTS
Abbasi et al. (2006) X X X SA
Chtourou and Haouari (2008) X X X Two-stage-priority-rule-based algorithm
Lambrechts et al. (2008) X X TS
Fallah et al. (2010) X X Heuristic methods
Xiong et al. (2011) X X X X X MOGA
Lambrechts et al. (2011) X X Heuristic methods
Artigues et al. (2013) X X Heuristic methods
Gomes et al. (2014) X X X MOG, MOVNS&%'\IAL(;VNS' MOVNS._|
Wang et al. (2014) X X X X X X CGA
Xiong et al. (2014) X X X X X K-MOEA
Hao et al. (2014) X X X moEDA
Rezaeian et al. (2015) X X X SPGA
Lamas and Demeulemeester (2016) X X Branch-and-cut method
Mogaadi and Chaar (2016) X X Improved GA
Afshar-Nadjafi (2016) X X A recursive heuristic
Proposed model X X X X X X NSGA-Il & MOPSO
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As can be seen, existing articles on robusjeptoscheduling, like other works on project
scheduling, have assumed both the resources alityilaler a period and the resource consumption
over the progress of activity to be uniform andeimvariant. Also, despite numerous studies in the
field of multi-objective project scheduling, fewusdies have attempted to minimize the makespan and
maximize the schedule robustness and Net Presdnk \(BPV) simultaneously. However, these
objectives encompass the three most importantidesi®f project managers. Giving due attention to
the cost-based objectives, which constitute onéhefprimary goals of the contractor, beside the
makespan minimization as well as robustness maatiiz objectives, which constitute the primary
goals of the owner, allows the interests of bothtigs to be incorporated into scheduling. Also,
considering the time-varying resource requiremants capacities along with these objectives allows
the resulting schedule to be more realistic.

In an attempt to make the project schedulingemealistic and enable the project managers to
make better decisions in regard to project actisjtithis paper introduces a robust multi-objective
optimization model for Resource-Constrained Proj8cheduling Problem (RCPSP) based on
discounted cash flows and time-varying resourcaiirements and capacities. It is assumed that
activities are carried out by consuming renewaldsources (with variable requirements and
capacities).The objective functions of our proposeddel are the minimization of makespan,
maximization of schedule robustness, and maxinumabf Net Present Value (NPV).Given that
RCPSP inherently belongs to the class of NP-haablems and that solving multi-objective
mathematical optimization models with metaheuristidgorithms result in more effective
determination of Pareto optimal solutions, two rmrolijective metaheuristic algorithms, namely
NSGA-Il and MOPSO, are used to solve this modek Proposed model and the solution methods
are evaluated by fifteen problems of different siderived from standard data of Project Scheduling
Problem Library (PSPLIB). After tuning the paramstef both algorithms with Taguchi method,
solution methods are compared in terms of fiveed#it evaluation criteria.

In the rest of this paper: in section 2, prabfermulations, notations, and description are gled,
in section 3, solution approaches are discussededtion 4, the effects of anticipated variatiams i
resources on the schedule are explained, probleamggers are discussed, algorithm parameters are
tuned by Taguchi method, the criteria to be usedkt@luation of the algorithms are explained, and
the results of evaluations are presented. Fin8kygtion 5 presents the conclusions.

2- Problem formulation

In the project scheduling problem, project d¢stssof n activities that must be performed without
preemption. Project structure is represented byctivity-On-Node (AON)diagram in the form of
the graplG(V, E), whereV is the set of vertices (or nodes) abd is the set of edges (or arcs),

which represent respectively the activities andassociated precedence relations. These precedence
relations are of finish-to-start type with zero ¢ifag. Graph nodes are named on a topological,basis
in other words, the number with which an activiylabeled is greater than the label number given to
all of its preceding activities. The nodes 1 andf graph G are dummy nodes representing the start
and end of project, meaning that they have a zmmg-lduration and need zero resources to be
finished. All activities can be performed in onlgeoway and each activity has a time-varying demand
for resources over its progress. It is also assuimsdesources necessary for the progress ofitédiv

are renewable resources with time-varying capacftigailabilities).

In the proposed model, the above assumptions apéemnented by the following notations and
definitions:

2-1- Sets

] Set of activities

k Set of resources

t Set of time periods

G Set of nodes and arcs on graph
vV Set of nodes
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E Set of arcs
P, Set of direct predecessors of activity |
S, Set of direct successors of activity |

2-2- Parameters

Number of activitie

n
K Number of type's renewable resou

d, Duration of activity |

R Availability of resource type k in time period t

ikt Request for resource type k by activity j in pracése t
CFJ.+ Positive cash flows for activity |

CF/ Negative cash flows for activity

NDS;  Number of direct successors of activi
a Discounted rate
T Project time window

2-3- Decision variables

ES, Earliest start time of activity |
EF; Earliest finish time of activity |
LS, Latest start time of activity |
LF, Latest finish time of activity |
FS; Free slack of activity j

C, Completion time of activity |
Crax Maximum completion time
NPV Net present vall

Ro Scheduling robustness

X =

1 If activity j is completed in time pied t
0 Otherwise

Among the decision variables of the model, vakies of ESj ,EF]. ,LS]. and LFj depend on

precedence relations, activities durations, andeptotime window, and since these values are
calculated by the model, they are listed as detis@riables. Also,FS, and C; are secondary

decision variables which are defined for objecfivection calculations. AlsoC, . NPV , and Ro

are decision variables expressing the values actibe functions. The primary decision variable of

this problem isx,, , which expresses the completion time of projetiviies.

2-4- Objective functions

The objective functions of our proposed modeltae minimization of makespan, maximization of
schedule robustness, and maximization of Net Prégaine (NPV). In the first objective function,
the goal is to minimize the project makespan, oothrer words, hasten the completion of activity n
(like a standard RCPSP). This objective is expekbyeequation 1:
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LF,

C..=C. = max(z t X, ) (1)

t=EF,

One method to increase the robustness of a schadalest disruptions is to maximize the free float
of activities. With adequate float considered tog schedule, if, for any reason, some activiti&e ta
more time than initially estimated, project can flleshed on time without any need for addition
funding. The probability of occurring disruptionsr fan activity is directly related to its duratiand
the amount of resources required, and the effectisstiption grows with the number of activities

directly succeeding that activity; so in the ohjeztfunction, r;, ,dj andNDS; are used as weights to

maximize the summation of free float of activitid$he second objective function is expressed by
Equation 2:

n d;

:Zii(rm.dj.NDsj)st 2)
i=1

=1 k=1 t=1

In the real world, every project involves atdetwo parties: i) the client or the project owreand ii)
the contractor, who undertakes the project in ppacFrom the contractor’s view, payments made by
client act as revenue and payments the contractkento procure materials and labor are the
expenses. There are several different ways a adanpay its contractor, and method of payment may
affect the project’s NPV from the contractor’s gerstive. Ulusoy et al. (2001) have outlined several
types of payment structures as follows:

e  Lump-Sum Payment (L SP) mode: In this model, which is one of the most commonrpast
structures, contractor receives the total amouetipd in contract when the project is finished.
Assuming that the contractor pays the expensel attavities within their respective earliest and
latest start dates, NPV of the LSP model will béhim form of Equation 3:

n LS CF;.x, (3)

NPV, = (ZCF J1+a e Z Z (1+a)t

» Payments at Event Occurrences (PEO) modd: In this method, payments will be made after
completion of previously agreed-upon activities.

» Payments of Activities (PAC) model: In this method of payment, contractor receivesatmeunt
corresponding to each activity once the activitfingshed. Assuming that the contractor pays the
expenses of all activities within their respectearliest and latest start dates, NPV of the PAC
model will be in the form of Equation 4:

n CFx

NPVPAczi CF ZH:CF A+a) ’—ZZ

4
]1tES(1+) @

e Equal Time Intervals (ETI) model: In this model, contractor receives H-1 paymentscatal
time intervals over the course of project and nexeihe H-th (final) payment once the project is
finished. The NPV of the ETI model will be in tharfn of Equation 5:

Scr Jasa)? -
H1l CF CF, H—l(_ n i X 5
D IPIE R

' (1+a) e = H (1+0’) j=1t=ES, (1+0’)
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* Progress Payment (PP) mode: In the final payment method known as the ProgResgment
model, contractor receives regular payments aticetime intervals over the course of the
project. For example, payments may be made atritiefeach month based on the work carried
out over that duration plus a previously agreedrupaie acting as the contractor’'s profit. The
difference between the ETI and PP models is thttérPP model, the number of payments is not
known in advance.

In the LSP model, maximization of NPV is equertito minimization ofC__, . In the PEO model,

the set of nodes at which payments will be madenwvn, so this has no significant effect on the
schedule of activities. In the ETI model, paymemitsbe made in H installments and H is known. So

with the reduction ofC__, , value of the third objective function will increa Thus, given that the

first objective function of the model seeks to miiie the makespar(J,,), we use the PAC model

in this objective function to maximize the NPV. Agesult, the first objective function is expressed
with equation 4.

2-5-Proposed model

Hence, our proposed mixed-integer optimization rhizlas follows:

Minimize C__, (6)
n K dj
Maximize Ro=» > (,, d, NDS, )FS, (7)
j=1 k=1 t=1
- ", CF o o CF X,
Maximize NPV CF (1+a) ‘ 8
S L) Z ZZ ra) ®)
Subjectto
EF, =ES, +d, 0j=1,2,..n (10)
ES, = Max{ EF} OidP; 0j=12,...n 11)
LS, =LF, -d, 0j=12,..n 12)
LF, =Min{LS} Oigds;; 0j=12,..n (13)
LF, =T a4)
FS, = LF, -EF, 0j=1,2,..n (15)
LK LFj
Y otx <> (t-d,)x, 0j=12,...n ;0i0P (16)
t=ER, t=EF,
Z X, =1 0j=1,2,..0 17)
t=EF;
LF;
C, =D tx, 0j=1,2,..0 (18)
t=EF,
Crax 2 C, 0j=12,..n 19)
T<>d, (20)
j=1
C. ., <T (21)
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zrjkt ijSRkt Ok=1,2,...K ;Ot= 1’2,---T—dj+ (22)
01]} 0j=12,.n;0t=12,..T (23)

The above model utilizes the objective functidescribed in the previous section as equatiois 6,
and 8. Constraints 9 to 14 are the formulationket@svith calculation of earliest and latest finigii
time of all activities. Constraint 15 calculates tfiee floating time of activity . Constraint 16

expresses the precedence relations between thecpmagtivities. Constraint 17 states that each
activity must only have one start and one finisheti and once started must progress without any
preemption until it is finished. Constraint 18 ediites the completion time of activijy. Constraint

19 calculates the value &, . Constraint 20 determines the project’s time wimdnd Constraint
21 states thal (time window) is an upper bound fOf,,, . Constraint 22 ensures that in the presence

of sufficient resources in a period, activify starts at the timdo . Finally, constraint 23 defines the
domain of decision variables.

3- Solution approach
3-1- Solution representation

When developing a metaheuristic algorithm, ofhdhe notable issues is how to represent the
solution in a way that satisfactory performancéhim search space would be achievable. In the dase o
project scheduling problem, solution representattan vary depending on the involved decision
variables. In this paper, solution is representgd lthromosome consisting of a vector of feasible
permutation reflecting the sequence of activitidss representation allows the start and finishrem
of activities to be easily determined based onrtpe¢cedence relations, required resources, and
available resources in each period of planning. pgiteosed model is to be solved with continuous
solution algorithms, so permutation of activities determined based on the order of obtained
numbers, or in other words, based on the use oforarkey strategy. Figure 2 illustrates some of the
feasible activity sequences for the project witbgadence network of figure 1.

L egend

Duration

W

Figure 1.Precedence network of a problem
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Figure 2. Some of the feasible activity sequences for thgeptavith precedence
network of figure 1

3.2. Solving methods

3.2.1. Non-dominated Sorting Genetic Algorithm 11

Non-dominated Sorting Genetic Algorithm Il (NS&lis a multi-objective evolutionary algorithm
introduced by Deb et al. (2002)as an improved versif the original NSGA. NSGA-Il sorts the
population of parents and offspring with an eliggategy and improves the diversity of solutiopsb
mechanism that is based on crowding distance apeirstead of niched operators. Thank to these
features, NSGA-Il has become well-known as a rhdiabnd suitable multi-objective genetic
algorithm and has found extensive applications amyrfields.

» TheProposed NSGA-I1

In this paper, we attempt to improve the efficie of NSGA-II for our purpose by using Arithmetic
crossover and Gaussian mutation in the productfamew population. In the Arithmetic crossover,
the parentsqand xhaving an equal number of elements will be randosdiected, and then, the
vector a with the same number of elements as the parentdbwilised to produce offspring using
equations 24 and 25.

Yo = 0% +(1-a,) %, 0<a, <1 (24)
Yai :ai'X2i+(1_ai)X]j O0<a;<1 (25)

In the Gaussian mutation, a certain number of cbhsmmes (this number is an adjustable algorithm
parameter) will be randomly chosen; thgn percent of genes of the selected chromosomedwill

subjected to a mutation with standard deviatibusing equation 26. In cases where mutated gene
violates a defined range, its value will be setatqoithe corresponding limit of that range.

X =X +0(Rand[0,1]) (26)
As shown in equation 27, the value dfis equaled to a coefficienfX) of the gene’s variation range.
& = B(Var™(x) -Var "(x)) 0<p<1 (27)

Finally, once offspring are produced and mutatédad;rmomosomes will be sorted in terms of the rank
and crowding distance value obtained accordinpémbjectives, and the fittest chromosomes will be
selected to form the new generation.

100



3.2.2. Multi-Objective Particle Swarm Optimization Algorithm

Multi-Objective Particle Swarm Optimization (MSB) algorithm was first introduced by Coello et
al. (2004) as an extension of PSO for solving raflfective problems. Unlike PSO, this algorithm
utilizes a concept known as "repository” or "hdllfame" for storing non-dominated particles and
Pareto front. In MOPSO, each particle moves toveantember of the repository known as the leader.
In other words, in MOPSO, the leader chosen froerépository replaces the global best (Gbest)
used in PSO.

* TheProposed MOPSO

In this paper, MOPSO algorithm is also usedoteesthe proposed model. To solve the problem, as
suggested by Coello et al. (2004), first an inipapulation will be created at random, then the bes
individual experience of each particle will be deimed, and non-dominated members will be
identified and stored in the repository. Each ptshould select a member of the repository as the
leader and move according to that leader. In naldiective optimization algorithms, dispersion of th
points in the Pareto front represents the strergftlslution, so we partition the objective spate ia
number of cells divided by gridlines; then utiligiBoltzmann method, we use equation 28 to assign
each cell with a selection probability, and thelecea cell and eventually a leader by using aatbell
wheel mechanism. According to equation 28, celkh iigwer Pareto points have a higher chance of
being selected, thus their members have highercehahbeing selected as a leader. This mechanism
ensures satisfactory dispersion in the Pareto.front

_ehn
PES e (28)
i

In equation 28p is the probability of selecting call, n, is the number of members in célandf

is the leader selection pressure parameter. Oreedetider is chosen and position and velocity of
every particle are updated, the best individuakeigmce of each particle will be updated and the ne
non-dominated members will be added to the repgsito this step, some of the existing members of
the repository may be dominated and thus replageitido new members. The repository can store a
limited number of members, so there may be not gimaoom to store new members. In this case,
algorithm will utilize a mechanism similar to theproach used for selecting the leader to remove
some of the existing members of the repositorghis mechanism, equation 29 is used to assign each
cell with a selection probability and then a rotidetvheel mechanism is used to select a cell and
eventually the member to be deleted. In equatiqre@®s with higher number of Pareto points have a
higher chance of being selected. This mechanismeaisures better dispersion in the Pareto front.

_e
qi - Zey_ni (29)
j

In equation 29¢} is the probability of selecting cell, n is the number of members in célland y

is the deletion selection pressure parameter. Mtieegrocess, from selecting the leaders to updati
the repository will be repeated until the desiregh s£ondition is satisfied.

4- Computational results

To demonstrate the effect of time-varying reseurequirements and capacities, the main
contribution of the proposed model, on the progmtteduling, we assume a small project with 6 real
(non-dummy) activities, 2 renewable resources,aptecedence network shown in figure 1. Because
of certain reasons (e.g. labor time offs and pldrmaintenance operations), the amount of available

renewable resourcedR,) varies over the time period as shown in table . aimount of resources
needed to carry out activitiegr,,)also varies over processing time as shown in t@With

makespan minimization serving as the objective,ptaect duration will be 11 days and the total
amount of resources to be consumed in each timedoeill be as shown in figure 3.
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Table 2. Amount of available renewable resources over éauh period R, )

Resource Period
type 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1 10 12 12 11 10 6 9 8 8 10 12 11 12 10 10 9
2 9 9 8 7 7 8 9 9 7 8 8 6 8 9 10 6

Table 3. Amount of resources needed for each activity dvercourse of its progregs, )

o Period
Activity Resour ce type 1 > 3 7
1 - - - -
1 2 _ _ _ _
> 1 4 4 3 5
2 3 1 0 4
1 7 - -- --
3 2 8 - -- --
1 5 4 6 --
4 2 5 2 2 --
5 1 3 2 4 --
2 7 5 9 --
1 5 5 - --
6 2 1 1 - --
7 1 6 5 7 --
2 4 3 5 --
1 - -- -- -
8 > _ _ _ _
12 E30_\_\{{;u_iI_r_;u_lgl_? ResourceR1 12
10 % by . 10 Available Resource R2

Used resource
(o)}
Used resource

Time Time

Figure 3. Total amount of consumed resources in each perf@hwesource requirements and availability is
variable

If we ignore the timéased variations of resources, or in other wordsume the amount
resource to be consuméd, ) and to be availabl¢R,) during any given time period to be fi>

over that period (i.e. to be equal to the averdgheir timevarying counterparts), the result will b
project with precedence network shown in figureldt.this case, with makespan minimiza
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considered as the objective, the project duratidhbe 10 days and the total amduwsf resources
be consumed in each time period will be as showigure 5.

L egend

Duration

0

Resources Usage
(r1;r2)

(5;3) (6;4)

Figure 4.Precedence network of the problem in the casexellfiesources

12 12 4

Available Resource R1

Available Resource R2

Used resource
Used resource

Time Time

Figureb. Total amount of consumed resources in each perf@mhwesource requirements and availability is
constant

Table 4 shows a summary of optimal activitytdienes obtained with and without consideration of
time-varying resource requirements and capacifies.difference between these two times is given in
the column "Absolute deviation ".
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Table 4. Comparing the obtained schedules

Start time
Activity Activity type Consderlng Ignqrmg_ Absolute deviation
variationsin variationsin
r esour ces r esour ces
1 Dummy 0 0 0
2 Real 1 0 1
3 Real 0 6 6
4 Real 1 0 1
5 Real 5 7 2
6 Real 9 7 2
7 Real 8 3 5
8 Dummy 11 10 1

As can be seen, ignoring the time-based vanatio consumption and availability of resources may
lead to underestimation of project makespan andifgignt deviation from the optimal activity
sequence. Therefore, it can also affect the copraject implementation and increase it. As table 1
shows, the majority of previous models in the cenhtef RCPSP models with robustness
considerations ignore the time-based variatiorresources.

As explained earlier, in order to solve the jms®d model, two metaheuristic algorithms have been
proposed.There are two reasons for solving theqgsegh model with multi-objective metaheuristics
NSGA-II and MOPSO. First, since the proposed maslel more general version of RCPSP, which
belongs to the class of NP-hard problems, the m@ganodel is NP-hard as well. Second, solving
multi-objective problems with metaheuristics hasaduwantage over alternative approaches, that is, it
allows a set of Pareto optimal solutions to be iokthat once and the solution space to be searched
more efficiently. Figure 6 shows the set of Pamgiomal solutions given by NSGA-II for a problem
with 12 activities and 4 types of renewable sources

1.2e+11
1.0e+11

8.0e+10

6.0e+10

NPV

4.0e+10

2.0e+10

0.0
600
0
007;:\5,0 400 2e+7
3e+7
4e+7
(o)
(S
250 5e+7 ‘“ﬁ§

6e+7 RO

Figure 6. Set of Pareto optimal solutions for the proposedeaho
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As shown in figure 6, the use of completion timmimization, schedule robustness maximization,
and cash flow NPV maximization objectives leada t@riety of solutions which, decision maker can
choose among at will. There is also a relations@ween these objectives, as schedule robustness
(the second objective) increases with the incredsgroject completion time (the first objective).
Figure 7 shows the relationship between these tbgscin the outputs of NSGA-II for a problem
with 12 activities and 4 types of renewable sourtéss direct relationship is because a longergatoj
completion time corresponds to longer float times ffroject activities, and thereby a reinforced
schedule robustness or, to put it simply, a low@lihood of delay in project completion.

6e+7

3 2
y =-0.6855x +1214.3x -519409x + 7E+07

5e+7 A

4e+7 A

3e+7 A

Robustness

2e+7 A

le+7 A

300 400 500 600

Cmax

Figure 7. The relationship between project completion tane scheduling robustness

It can also be observed that as the project compléme increases (the first objective), on avel
the net present value of cash flows (the third abje) increases as well. Figure 8 highlights
relationship between these two objectives in thputs of NSGAH for a problem with 12 activities a

4 types of renewable sources.
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Figure 8. The relationship between project completion tane Net Present Value

To compare the efficiency of the two proposedoathms, these solution methods are also
evaluated by using a group of problem instancel & 30, 60, 90 and 120 activities and 2, 3 and 4
renewable resources, which have been derived frioen Rroject Scheduling Problem Library
(PSPLIB). The problems of this library lack sometloé¢ features required for testing the proposed
model, so the amount of resources required for aattty in each period and the available resosirce
in each period (considering time-based variati@ssjvell as the amount of receipts and payments for
each activity are generated randomly with uniforistribution. The reason for choosing this
particular distribution function and parametershis presence of data with the same range in other
articles as well as PSPLIB. Table 5 shows the peters used for evaluating the model.

Table 5. Data used for problem parameters

Uniform distribution

Parameter ry S
M 0 10
R 10 40

CF/ 18 35
CF/ 10 18
Others Using PSPLIB data

* Used only for the problems with 15, 60 and 90wii¢s. For the problems with 30 and 120 actia}
we have used the standard data of PSPLIB
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Before solving the problem with NSGA-II and MO&®, parameters of both algorithms need to be

optimized to ensure accurate results and satisfap@rformance. One simple and effective method
of optimizing the parameters of an algorithm is tlse of Taguchi tests. This approach allows our
purpose to be achieved easily and via minimum nunabdrials. In this process, parameters of
NSGA-II and MOPSO algorithms are categorized irice¢ levels and then tuned separately for
small, medium and large problems. The results cdmpater tuning with Taguchi method are shown
in tables 6 and 7.

Table 6. Tuned parameters of NSGA-II algorithm

Problem Number of

NSGA-II Parameters

. o ax . . Crossover  Mutation . Mutation stef
size activities . Population size Mutation rate .
Iterations Percentage Percentage size
Small Jis 150 200 0.9 0.2 0.1 0.05
Medium  J,, Jg, 200 300 0.9 0.2 0.1 0.05
Large N SN J 250 400 0.9 0.2 0.1 0.05

Table 7. Tuned parameters of MOPSO algorithm

MOPSO Parameters

Problem  Num of . Iw Inflation Leader Deletion .
. Max Pop Rep Inertia . Num of . . Mutation
size activities . . . damping C1 C2 . Rate for selection selection
Iter size size Weight Grids . rate
rate Grids  pressure pressure
Small J15 150 150 200 1.5 0.85 1 2 7 0.2 2 6 0.1
Medium Jso-‘Jeo 200 175 300 15 0.85 1 2 7 0.2 2 6 0.1
Large Jgo.leo 250 200 400 15 0.85 1 2 7 0.2 2 6 0.1

Performance of the algorithms used for solving proposed model is evaluated in terms of 5

criteria described in the following.

Number of Pareto Solutions (NPS): One convenient criterion for measuring the peréomoe of

an algorithm developed for solving multi-objectipeoblems is the number of non-dominated
solutions found by that algorithm. This criteriangarticularly more important when the problem
has a discrete nature and there is a possibilitprofiucing duplicate solutions for objective
functions. Naturally, access to a higher numbeParfeto solutions can assist the decision maker
to adopt better decisions. Thus, any algorithm tizat provide more Pareto solutions will be
considered to have a better performance.

Quality Metric (QM): This criterion is one of the most important measuog comparing the
guality of Pareto solutions obtained by two diffgrenulti-objective algorithms. To calculate this
criterion, we compare the Pareto solutions of ajorithms together and remove the solutions
dominated by the solution of other algorithm. Thd @f each algorithm is defined as the ratio of
the number of its remaining non-dominated soluti@afser comparison) to the initial number of
its solutions (before comparison). Naturally, tihgoathm that achieves a higher QM value has a
better performance.

Mean Ideal Distance (MID): This criterion measures the proximity of Paretausohs to the
ideal point (f ", f>*, f>*') and is calculated by equation 30.
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an f, - fb‘ﬁ S fam ) [ f -
= fnadlr f2r1ad|r _ f;eﬁ fgadlr _ f;)at (30)

n

MID =

In equation 30n is the number of non-dominated solutions, §ffdl andf,""" are the best and

worst values of objective function subject to existing constraints. In view of thefidition, the
algorithm with lower MID value has a better perfamae.

» Diverdification metric (DM): This criterion represents the dispersion of Pasetotions and can
be calculated by equation 31:

oM = \/(max{fﬂ}—min{ £ jZJ{max{ f} min{ jz +ﬁax{ §, min{ ¥, ]2 1)

nadir _ ¢ best nadir _ ¢ best nadir _ £ best
f f f f f pedr _ D

This criterion in fact measures the diameter of thbe encompassing the space created by the
boundaries of objective functions for the set of#dominated solutions. In view of this
definition, a higher DM value signifies the betperformance of the algorithm.

» Spacing metric (SM): This criterion measures how uniform is the disperf the set of non-
dominated solutions and is defined by equation 32.

_ Qdﬁ - (32)

(n-1)d

In equation 32(;1i denotes the Euclidean distance between consecsivgions in the set of non-

dominated solutions obtained by the algorithm, dnds the average of these distances.

In this section, the discussed algorithms are eetlby the use of fifteen problems with 15, 3Q, 60
90 and 120 activities and 2, 3 and 4 renewableuress. The values of performance evaluation
criteria for the two algorithms are shown in talBe$2. For better comparison, figures 9-13 illustra
the plots of obtained results in terms of diffenprablem sizes.
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Table 8. Results obtained for the test problems with 15/giets

Comparison metrics

Number of - Number of - ion NPS QoM MID DM SM
activities resources
NSGA-I  MOPSO NSGA-II  MOPSO NSGA-II  MOPSO NSGA-I MOPSO NSGA-I  MOPSO
1 189 144 0.9350 0.6100 1.4722 1.4842 0.8523 99%.7 0.0044 0.0069
Jis K, 2 190 156 0.9200  0.5850 1.4997  1.5330 0.7966  556.7 0.0053  0.0065
3 185 149 0.9412 0.6435 1.5824 1.5667 0.7414 8426 0.0042 0.0067
Average 188 150 0.9321 0.6128 1.5181 1.5280 68.79 0.7464 0.0046 0.0067
1 197 138 0.8900 0.7950 1.0918 1.2123 0.8362 658.7 0.0038 0.0073
Jis K, 2 193 164 0.8950  0.8050 1.0822  1.1668 0.8411 878.7 0.0018  0.0061
3 198 152 0.8800 0.7300 1.0996 1.1352 0.8264 92a.7 0.0010 0.0066
Average 196 151 0.8883 0.7767 1.0912 1.1714 46.83 0.7818 0.0022 0.0067
1 195 126 0.9250 0.6800 1.4182 1.6298 0.7998 250.7 0.0051 0.0080
Jis K, 2 199 141 0.8950 0.6650 1.4194 1.4980 0.7793 5527 0.0027 0.0071
3 195 137 0.9400 0.5600 1.4064 1.5137 0.8071 538.7 0.0050 0.0054
Average 196 135 0.9200 0.6350 1.4147 1.5472 53.79 0.7446 0.0043 0.0068
Table 9. Results obtained for the test problems with 30/giets
Comparison metrics
Number of - Numberof .0 NPS QM MID DM SM
activities resources

NSGA-II  MOPSO NSGA-II  MOPSO NSGA-II  MOPSO NSGA-I MOPSO NSGA-II  MOPSO
1 300 232 0.9467 0.6833 0.9956 1.1939 0.8204 148.7 0.0026 0.00054
NS K, 2 300 202 0.9800 0.7200 0.9845 1.0278 0.8283 85a.7 0.0032 0.0238
3 300 198 0.9400 0.7533 0.9784 1.4215 0.8298 750.6 0.0025 0.0051
Average 300 211 0.9556 0.7189 0.9862 1.2144 62.82 0.7253 0.0028 0.0098
1 300 209 0.9333 0.7800 0.9315 1.0158 0.7981 4207 0.0028 0.0048
NS K, 2 298 249 0.9333 0.7167 0.9307 1.0299 0.8040 378.7 0.0029 0.0033
3 300 234 0.8867 0.7800 0.9187 1.0031 0.8084 388.7 0.0031 0.0043
Average 299 231 0.9178 0.7589 0.9270 1.0163 33.80 0.7394 0.0029 0.0041
1 298 219 0.9567 0.3933 0.9003 0.9962 0.8032 0187 0.0026 0.0046
J30 K4 2 300 237 0.9600 0.4433 0.8918 1.1858 0.8072 463.6 0.0028 0.0042
3 299 230 0.9467 0.3233 0.8991 0.9749 0.8015 218.7 0.0022 0.0044
Average 299 229 0.9545 0.3866 0.8971 1.0523 40.80 0.6899 0.0025 0.0044
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Table 10. Results obtained for the test problems with 60vaiets

Comparison metrics

Number of - Number of - on NPS QM MID DM SM
activities resources
NSGA-II  MOPSO NSGA-II MOPSO NSGA-II MOPSO NSGA-I MOPSO NSGA-II MOPSO
1 300 243 0.9667 0.8233 0.8514 1.0069 0.8074 139.7 0.0024 0.0028
Jeo K2 2 300 296 0.9833 0.7000 0.8514 1.0363 0.8074 1837 0.0024 0.0032
3 300 296 0.9833 0.7000 0.8514 1.0363 0.8074 1837 0.0024 0.0032
Average 300 278 0.9778 0.7411 0.8514 1.0265 74.80 0.7168 0.0024 0.0031
1 300 240 0.9733 0.5600 0.8342 1.0886 0.8100 84@.6 0.0020 0.00056
Jeo K3 2 300 260 0.9600 0.7667 0.7104 1.0572 1.0860 990.6 0.0012 0.0018
3 300 244 0.9700 0.5633 0.8239 1.1681 0.8101 876.6 0.0022 0.0041
Average 300 248 0.9678 0.6300 0.7895 1.1046 20.90 0.6906 0.0018 0.0022
1 300 250 0.9333 0.6267 0.7728 0.8304 0.8566 976.7 0.0023 0.0040
Jeo K4 2 300 282 0.9267 0.6133 0.7728 1.0433 0.9565 9626 0.0023 0.00049
3 300 219 0.9667 0.6567 0.7873 0.7808 0.9238 4788 0.0020 0.0076
Average 300 250 0.9422 0.6322 0.7776 0.8848 2391 0.7805 0.0022 0.0040
Table 11. Results obtained for the test problems with 90/aiets
Comparison metrics
Number of - Numberof .. NPS oM MID DM SM
activities resources

NSGA-IlL MOPSO NSGA-II MOPSO NSGA-II MOPSO NSGA-I MOPSO NSGA-II MOPSO
1 400 364 0.9925 0.5075 0.7882 1.1714 0.8657 17a.7 0.0010 0.0012
‘Jgo K2 2 400 388 0.9900 0.5325 0.8255 1.3722 0.8283 790.6 0.00093 0.0016
3 400 382 0.9900 0.5525 0.8344 1.2147 0.8160 952.6 0.00058 0.0022
Average 400 378 0.9908 0.5308 0.8160 1.2528 60.83 0.6974 0.0008 0.0017
1 400 327 0.9950 0.7300 0.6873 1.0535 1.5157 148.7 0.0014 0.0031
‘]90 K3 2 400 326 0.9800 0.7025 0.6661 1.1571 0.7616 892.6 0.0023 0.0031
3 400 326 0.9800 0.7025 0.6661 1.1571 1.2233 8926 0.0023 0.0031
Average 400 326 0.9850 0.7117 0.6732 1.1226 69.16 0.6976 0.0020 0.0031
1 400 347 0.9925 0.7075 0.7118 0.8857 1.1617 410.7 0.0025 0.0029
‘]90 K4 2 400 312 0.9775 0.8400 0.7149 1.0225 1.1887 180.7 0.0020 0.0031
3 400 305 0.9800 0.8175 0.7149 1.3401 1.1887 690.6 0.0020 0.0033
Average 400 321 0.9833 0.7883 0.7139 1.0828 9r.17 0.7096 0.0022 0.0031
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Table 12. Results obtained for the test problems with 12vities

Comparison metrics

Number of  Number of

o Iteration NPS QM MID DM SM
activities resources

NSGA-l  MOPSO NSGA-l  MOPSO NSGA-l  MOPSO NSGA-I MOPSO NSGA-l  MOPSO
1 400 299 09925 09125 0.7566  1.3622 06979 646.4 00025  0.0034
Jiso K, 2 400 367 09925  0.9225 0.7566 14278  0.6979  0.4619 0.0025  0.0027
3 400 354 09825  0.9475 07566 13413 06979  0.4557 0.0025  0.0025
Average 400 340 09892  0.9275 07566  1.3771 70.69 0.4607 0.0025  0.0029
1 400 303 09750  0.8275 06702  1.0645 10291 8594 00020  0.0033
Jiso K, 2 400 318 09875  0.8325 06702  0.9954 1.0201 9124 00020  0.0032
3 400 330 0.9900  0.8650 0.6729  0.8030 1.0069 3305 00021  0.0030
Average 400 317 09842  0.8417 06711  0.9543 17.02 0.5034 0.0020 _ 0.0032
1 400 260 0.9875  0.8500 0.6662  0.8200 12081 2695 00025  0.0039
Jis K, 2 400 235 09875  0.9050 0.6462  0.7105 1.3397 260.6 00025  0.0043
3 400 362 09900  0.7300 0.6662  0.8649 12081 1885 00025  0.0028
Average 400 286 09883  0.8283 06595  0.7985 2031 05574 0.0025  0.0037
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As can be seen, the proposed solution mettodssessed based on fifteen problem instances of
different sizes, each of which is solved 3 timethvidoth NSGA-Il and MOPSO algorithm. Tables 8-
12 show the value of five evaluation criteria fbe tproblems with 15, 30, 60, 90 and 120 activities.
The mean values of performance criteria NPS, QVMDMDM and SM, obtained after solving the
problems of different sizes are shown respectivelthe graphs of Figures 9-13. According to these
graphs, the following results can be concluded.

» For each specific problem, although the populasiae in NSGA-II is equal to the repository size
in MOPSO algorithm, NSGA-II has obtained a highember of unique Pareto solutions.

* From the QM perspective, regardless of the prolde®, NSGA-II has shown better capability
than MOPSO in providing Pareto optimal solution$igher quality.

* NSGA-II also outperforms MOPSO in terms of MID eribn. This advantage of NSGA-II
gradually grows with the size of the problem.

* For each specific problem, NSGA-Il has a better Bdue than MOPSO, which signifies its
ability to search for non-dominated solutions mertensively and thus provide the decision-
maker(s) with more alternatives.

* The results show that for each specific problemGKSI yields non-dominated solutions with
lower SM values; a result that again points tsitperiority over MOPSO.

In conclusion, the results show that features o&EN3SI and effectiveness of its mechanism in finding
Pareto optimal solutions of the proposed modelwalib to exhibit better performance in this
application. This superiority of NSGA-II over MOPSMorithm is evident in all proposed evaluation
criteria and for the problems of all sizes.

5- Conclusion
In this paper, we introduced a multi-objectivathematical model for robust resource-constrained

project scheduling with discounted cash flows, tiaeying resource requirements, and time-varying
resource capacities. In the proposed model, theigda minimize the project makespan, maximize
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the schedule robustness, and maximize NPV simuiteshg in order to assist the project managers to
make better and more realistic decisions for tinealgnpletion of project activities. It was found ttha
ignoring the predicted time-based variations instonption and availability of resource (assuming
them to be constant over time) may lead to inadeusaheduling; thus to avoid this issue, these
variations were incorporated into the proposed mdiace RCPSP belongs to the class of NP-hard
problems and solving multi-objective mathematicagbtimization models with metaheuristic
algorithms leads to more effective determinationPaffeto optimal solutions, two multi-objective
metaheuristic algorithms, NSGA-II and MOPSO, wedgusted and used to solve this model. The
proposed solution methods were evaluated by fiffgeblems of different sizes, which were derived
from the problems of PSPLIB. After tuning the paedens of both algorithms with Taguchi method,
solution methods were compared in terms of fivéediint evaluation criteria NPS, QM, MID, DMand
SM. The comparisons showed that, on average, N3@igltls better results than MOPSO algorithm.
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