Performance of cumulative count of conforming chart with variable sampling intervals in the presence of inspection errors

Document Type: Research Paper

Authors

1 Industrial Engineering Department, yazd university, Iran

2 Industrial Engineering Department, Yazd university, Iran

Abstract

In high quality industrial processes, the control chart is design based on cumulative count of conforming (CCC) items is very useful. In this paper, the performance of CCC-r chart with variable sampling intervals (CCC-rVSI chart) in the presence ofinspectionerrors isinvestigated. The efficiency of CCC-rVSI chart is compared with CCC-r chart with fixed sampling interval (CCC-rFSI chart). The comparison results show thatthe VSI scheme can performs better than the FSI scheme. In addition, analysis and discussion of the results are presented to illustrate the effect of input parameters on the performance of CCC-rVSI chart.

Keywords

Main Subjects


Amin, R. W., & Miller, R. W. (1993). A robustness study of X charts with variable sampling intervals. Journal of Quality Technology, 25, 36-36.

Aparisi, F., & Haro, C. L. (2001). Hotelling's T2 control chart with variable sampling intervals. International Journal of Production Research, 39(14), 3127-3140.

Burke, R. J., Davis, R. D., Kaminsky, F. C., & Roberts, A. E. (1995). The effect of inspector errors on the true fraction non-conforming: an industrial experiment. Quality Engineering, 7(3), 543-550.

Calvin, T. (1983). Quality Control Techniques for" Zero Defects". IEEE Transactions on Components, Hybrids, and Manufacturing Technology, 6(3), 323-328.

Case, K. E. (1980). The p control chart under inspection error. Journal of Quality Technology, 12(1), 1-9.

Castagliola, P., Celano, G., & Fichera, S. (2006). Evaluation of the statistical performance of a variable sampling interval R EWMA control chart. Quality Technology & Quantitative Management, 3(3), 307-323.

Castagliola, P., Celano, G., Fichera, S., & Giuffrida, F. (2006). A variable sampling interval S2-EWMA control chart for monitoring the process variance. International Journal of Technology Management, 37(1-2), 125-146.

Chen, S.-L., & Chung, K.-J. (1994). Inspection error effects on economic selection of target value for a production process. European Journal of Operational Research, 79(2), 311-324.

Chen, Y.-K. (2013). Cumulative conformance count charts with variable sampling intervals for correlated samples. Computers & Industrial Engineering, 64(1), 302-308.

Chen, Y. K., Chen, C. Y., & Chiou, K. C. (2011). Cumulative conformance count chart with variable sampling intervals and control limits. Applied stochastic models in business and industry, 27(4), 410-420.

Fallahnezhad, M., & Babadi, A. Y. (2015). A New Acceptance Sampling Plan Using Bayesian approach in the presence of inspection errors. Transactions of the Institute of Measurement and Control, 37(9), 1060-1073.

Fallah Nezhad, M. S., Yousefi Babadi, A., Owlia, M. S., & Mostafaeipour, A. (2015). A recursive Approach for lot Sentencing problem in the Presence of inspection errors. Communications in Statistics-Simulation and Computation, (just-accepted), 00-00.

Goh, T. (1987). A control chart for very high yield processes. Quality Assurance, 13(1), 18-22.

Huang, Q., Johnson, N. L., & Kotz, S. (1989). Modified Dorfman-Sterrett screening (group testing) procedures and the effects of faulty inspection. Communications in Statistics-Theory and Methods, 18(4), 1485-1495.

Joekes, S., Smrekar, M., & Righetti, A. F. (2016). A comparative study of two proposed CCC-r charts for high quality processes and their application to an injection molding process. Quality Engineering, 1-9.

Johnson, N. L., Kotz, S., & Wu, X.-Z. (1991). Inspection errors for attributes in quality control (Vol. 44): CRC Press.

Kudo, K., Ohta, H., & Kusukawa, E. (2004). Economic Design of A Dynamic CCC–r Chart for High-Yield Processes. Economic Quality Control, 19(1), 7-21.

Lindsay, B. G. (1985). Errors in inspection: integer parameter maximum likelihood in a finite population. Journal of the American Statistical Association, 80(392), 879-885.

Liu, J., Xie, M., Goh, T., Liu, Q., & Yang, Z. (2006). Cumulative count of conforming chart with variable sampling intervals. International Journal of Production Economics, 101(2), 286-297.

Lu, X., Xie, M., & Goh, T. (2000). An investigation of the effects of inspection errors on the run-length control charts. Communications in Statistics-simulation and Computation, 29(1), 315-335.

Luo, Y., Li, Z., & Wang, Z. (2009). Adaptive CUSUM control chart with variable sampling intervals. Computational Statistics & Data Analysis, 53(7), 2693-2701.

Nezhad, M. F., & Nasab, H. H. (2012). A new Bayesian acceptance sampling plan considering inspection errors. Scientia Iranica, 19(6), 1865-1869.

Ohta, H., Kusukawa, E., & Rahim, A. (2001). A CCC‐r chart for high‐yield processes. Quality and Reliability Engineering International, 17(6), 439-446.

Ranjan, P., Xie, M., & Goh, T. (2003). Optimal control limits for CCC charts in the presence of inspection errors. Quality and Reliability Engineering International, 19(2), 149-160.

Reynolds Jr, M. R., & Arnold, J. C. (1989). Optimal one-sided Shewhart control charts with variable sampling intervals. Sequential Analysis, 8(1), 51-77.

Reynolds, M. R., Amin, R. W., & Arnold, J. C. (1990). CUSUM charts with variable sampling intervals. Technometrics, 32(4), 371-384.

Reynolds, M. R., Amin, R. W., Arnold, J. C., & Nachlas, J. A. (1988). Charts with variable sampling intervals. Technometrics, 30(2), 181-192.

Runger, G.C., & Montgomery,D. (1993). Adaptive sampling enhancements for Shewhart control charts. IIE transactions, 25(3), 41-51.

Runger, G. C., & Pignatiello Jr, J. J. (1991). Adaptive sampling for process control. Journal of Quality Technology, 23(2), 135-155.

Ryan, T. P. (2011). Statistical methods for quality improvement: John Wiley & Sons.

Saccucci, M. S., Amin, R. W., & Lucas, J. M. (1992). Exponentially weighted moving average control schemes with variable sampling intervals. Communications in Statistics-simulation and Computation, 21(3), 627-657.

Shamma, S. E., Amin, R. W., & Shamma, A. K. (1991). A double exponentially weigiited moving average control procedure with variable sampling intervals. Communications in Statistics-simulation and Computation, 20(2-3), 511-528.

Suich, R. (1988). The c control chart under inspection error. Journal of Quality Technology, 20(4), 263-266.

Suich, R. (1990). The effects of inspection errors on acceptance sampling for nonconformities. Journal of Quality Technology, 22(4), 314-318.

Villalobos, J. R., Muñoz, L., & Gutierrez, M. A. (2005). Using fixed and adaptive multivariate SPC charts for online SMD assembly monitoring. International Journal of Production Economics, 95(1), 109-121.

Wang, R.-C., & Chen, C.-H. (1997). Minimum average fraction inspected for continuous sampling plan CSP-1 under inspection error. Journal of Applied Statistics, 24(5), 539-548.

Xie, M., Goh, T. N., & Kuralmani, V. (2012). Statistical models and control charts for high-quality processes: Springer Science & Business Media.

Zhang, M., Nie, G., & He, Z. (2014). Performance of cumulative count of conforming chart of variable sampling intervals with estimated control limits. International Journal of Production Economics, 150, 114-124.

Zhang, Y., Castagliola, P., Wu, Z., & Khoo, M. B. (2012). The variable sampling interval X chart with estimated parameters. Quality and Reliability Engineering International, 28(1), 19-34.