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ABSTRACT 
 

Facility location decisions play a prominent role in strategic planning of many firms, 
companies and governmental organizations. Since in many real-world facility location 
problems, the data are subject to uncertainty, in this paper, we consider the P-center problem 
under uncertainty of demands. Using Bertsimas and Sim approach, we develop a robust model 
of the problem as an integer programming model. Furthermore, we develop a tabu search 
algorithm for solving the problem. Finally we use design of experiments (DOE) to adjust the 
parameters of tabu search algorithm. The numerical results of algorithm are presented 
accordingly. 
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1. INTRODUCTION 

Facility location decisions play a prominent role in strategic planning of many firms, companies and 
governmental organizations. Deciding where to locate a new warehouse for a factory, where to 
place the fire stations, where to open a new branch of a bank and where to open a new store for 
chain storesare practical instances of facility location problems. These decisions are not only costly 
and irreversible (or at least very costly and time consuming to reverse), but they use up a lot of 
organization’s resources also.  

Facility location models can be classified according to their objectives, parameters, solutions and 
many other attributes. Jia et al. (2007), presented eight of the most common criteria that are used to 
classify the traditional facility location models. One of the most important criteria with which 
facility location models can be classified is the objective function. In the covering models, the 
objective is maximizing of covering demand nodes by a predefined number of facilities. If the 
objective function is to minimize the maximum distance between demand nodes and facilities, the 
problem belongs to the P-center problems.      

Another criterion to categorize the facility location models is the state of input parameters. 
Sometimes the exact value of parameters is available and we formulate the problem under certainty, 
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but it rarely happens in the real world. In contrast, Uncertainty assumption for problem parameters 
includes two main categories: Stochastic and robust models. In stochastic models, the parameters 
are not known exactly, but the information of their probability distribution is available. While in 
robust models, probabilities are not known, and uncertain parameters are specified either by discrete 
scenarios or by continuous ranges.  

Dealing with facility location problems in real-world problems, it is clearly observable that 
scientists must tackle with parameters uncertainty.  In fact, in the real-world application of facility 
location models, one cannot ignore the possibility that a small uncertainty in data can make the 
acquired optimal solution completely invalid. Because of this high importance, a vast literature 
could be found on the subject of optimization under uncertainty. Soyster (1973) developed a linear 
programming to deal with uncertainty that were feasible for all parameters that change in a specific 
interval. However, his method was creating over-conservatism solutions. To address this issue Ben-
Tal and Nemirovski(1998), and El-Ghaoui(1997) considered an ellipsoid as the allowed space for 
parameter changes. They presented an efficient algorithm for convex optimization. However, a 
practical drawback was that it leaded to solving a Conic Quadratic problem which was not 
applicable directly to discrete optimization problems. Afterwards, Bertsimas and Sim (2003) 
presented a different approach. It had the ability of being applied directly to discrete optimization 
problems. Besides, they defined control parameter which controls the level of conservatism of the 
problem. 

The p-center problem is one of the well-known NP-hard discrete location problems. There are a lot 
of applications of that in real-world problems. Some researchers worked on P-center problem under 
uncertainty. However, it is worthy to deal with it using Bertsimas and Sim approach as a new and 
easy-to-use method. In this paper, we apply the Bertsimas and Sim approach to the p-center 
problem under uncertainty to deal with the uncertainty of demands with having the ability to control 
the conservatism of the solutions. 

2. PROBLEM FORMULATION 

Let ܩሺܰ,  of ݉ links. We define ݀ the shortest ܮ ሻ be a graph with a set ܰ of ݊ nodes and a setܮ
distance between nodes݅and݆. Also, we define ݓ as the demand at any node݅ ∈ ܰ. We assume that 
in case of several facilities availability on the network, the customer will choose the nearest one. 
The objective of the p-center problem is to locate p facilities on the network in such a way that the 
maximum weighted distance in the network is minimized.  

In order to formulate the problem as an integer programming model, it is needed to define binary 
variables ݔ and ݔ as follows: 

ݔ ൌ ൜
	1, if	one	of	the		facilities	is	located	at	node	݆
0, otherwise																																																												

 

ݔ ൌ ൜
	1, if	demand	node	݅	is	assigned	to	a	facility	located	at	node	݆
	0, otherwise																																																																																										

 

According to above explanations, the objective function of p-center problem is: 

݁ݖ݅݉݅݊݅ܯ ቐ݉ܽݔ


ݓ. .ݔ ݀



ୀଵ

ቑ 
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Now we assume that the demand of each node is subjected to data uncertainty. There is no 
information on their probability distribution, but they are allowed to change in an interval, i.e., 

ݓ ∈ ሾݓ െ ,	ߜ ݓ   ݅∀					ሿߜ

The initial integer programming model of p-center problem under uncertainty can be written as 
follows. 

݁ݖ݅݉݅݊݅ܯ ܶ 

.ݏ  .ݐ

∑ .ݓ .ݔ ݀  ܶ											, ∀݅
ୀଵ  (1) 

∑ ݔ

ୀଵ ൌ  (2) 

ݔ െ ݔ  0																									, ∀݅	, ݆ (3) 

∑ ݔ

ୀଵ ൌ 1																												, ∀݅ (4) 

ݔ ∈ ሼ0,1ሽ																												, ∀݅	, ݆ (5) 

ݔ ∈ ሼ0,1ሽ																													, ∀݆ (6) 

Constraints (1) calculate the weighted distance for every node and bound it to ܶ. Constraint (2) 
assures that  facilities must be located on the network. Constraints (3) do not let the problem to 
assign a demand node to a node in which no facility has been located. Constraints (4) make certain 
that each demand node is assigned to just one facility. Constraints (5) and (6) limit the decision 
variables to binary values. It is obvious from above model that there are ݊ଶ  ݊ binary decision 
variables and ሺ݊  1ሻଶ constraint. 

Since there is no exact information about the value of demands, we should tackle with uncertainty 
using robust techniques. Among all of them, the Bertsimas and Sim (2003) approach seems to be 
more appropriate than others because: 

 It provides a linear counterpart problem for the main problem. This makes the technique 
available for discrete network optimization problems. 

 It allows a full control on the level on conservatism of the solution. 
 It is computationally tractable both practically and theoretically. 
 The number of added variables and constraints is less than other techniques. 

According to Bertsimas and Sim approach, the counterpart problem which is the final model that 
should be solved will be: 

݁ݖ݅݉݅݊݅ܯ ܶ 

.ݏ 	.ݐ

∑ .ݓ .ݔ ݀ 	 ߁ݖ	 	∑ ∈  ܶ	,					∀݅
ୀଵ  (7) 
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ݖ    .ߜ .ݔ ݀,				∀݅			, ∀݆ ∈ ܰ 

∑ ݔ

ୀଵ ൌ  (8) 

ݔ െ ݔ  0, ∀݅			, ∀݆ ∈ ܰ 

ݔ



ୀଵ

ൌ 1,				݅ ൌ 1,2,… , ݊ 

ݔ ∈ ሼ0,1ሽ	,					݅, ݆ ൌ 1,2,… , ݊ 

ݔ ∈ ሼ0,1ሽ	,					݆ ൌ 1,2,… , ݊  

  0,					∀݆ ∈ ܰ 

ݖ  0																																																															 

Where, ݖ and  are variables of dual problem and ߁ is the parameter that adjusts the level of 
conservatism of the solution. 

If ߁ ൌ ݊, the model will be over conservatism (equal to Soyster method). If ߁ ൌ 0, the model will 
be no longer a robust optimization problem. By changing ߁ in the interval ሾ0, ݊ሿ, we can control the 
level of conservatism of the solution. According to Bertsimas and Sim, we assume that some of 
demand nodes face the uncertainty on demand. If the demand of up to ߁nodes change, the solution 
will be feasible. Even if more than ߁ of demand nodes change, the solution will remain feasible 
with a very high probability. We will present these probabilities in last section. 

3. SOLUTION METHOD 

Appropriate modeling is just the first challenge of solving a facility location problem. In fact, the 
main (and perhaps the most difficult) challenge is to find the optimal solution through a specific 
approach. Besides, the above problem is NP-hard because it is proved that the p-center problem is 
NP-hard. Therefore we should try to solve it through heuristic approaches. A vast range of different 
heuristic approaches could be found in the literature of facility location. Arostegui et al. (2006) 
compared the relative performance of Tabu Search, Simulated Annealing and Genetic Algorithms 
on various types of facility location problems under time-limited, solution-limited, and unrestricted 
conditions. The results indicated that tabu search shows very good performance in most cases. The 
performance of simulated annealing and genetic algorithm were more partial to problem type and 
the criterion used. Thus, in general it can be concluded that tabu search should be applied to solve 
the derived model.  

3.1. Tabu Search Method 

Glover (1989, 1990) introduced tabu search algorithm as a heuristic method. Afterwards, a large 
number of scientists applied it to their combinatorial optimization problems. In very complex 
problems, tabu search is able to find a near optimum solution or in some cases, the exact optimum 
solution. 
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Tabu search needs a feasible solution to launch the process of solving the problem. There are 
different methods to create a feasible solution. For example, one can choose first   demand nodes 
by their indexes (ݔଵ, ,ଶݔ … ,  ) to locate facilities. However, the point is that selecting a goodݔ
feasible solution to start will affect not only the run time of the tabu search, but the quality 
(nearness to the optimal solution) of the solution also. Therefore it is better to choose a more wise 
approach. In this paper, the greedy method has been selected since it is found very common in 
creating a feasible solution in literature. This method sorts the demand nodes by their weights (ݓ) 
and selects the first  nodes having the greater weights and locates the facilities. Then, the remained 
demand nodes will allocate to the nearest located facility. The value of ݖ and  will be the 
minimum possible values which satisfy constraints (2) of counterpart problem.  

3.1.1. Neighborhood structure 

Another important stage in designing a tabu search method is the neighborhood structure. The 
neighborhood, according to definition, are solutions obtained by applying a single local 
transformation in the search space. Thus, the definition of a neighborhood could be as one of the 
following: 

1- Changing the assignment of one demand node from one facility to another facility 
ݔ ൌ 1			 ⇆ ݔ ൌ 1 

2- Changing the location of a facility and move all of the assignment to new location 
ݔ ൌ 1		, ݔ ൌ 1			 ⇆ ݔ ൌ 1		, ݔ ൌ 1			 

After each transformation, the values of ݖ and will be adjusted accordingly. 

When the algorithm starts, it considers the given feasible solution by greedy algorithm. Then the 
method creates all possible neighborhoods and calculates the objective function for all 
neighborhoods. If there exists a neighborhood with better objective function value, the method will 
replace that solution with that of greedy algorithm. This will continue until no better neighborhood 
could be found. 

3.1.2. Tabu List 

Tabu list is an element which distinct the tabu search method from other methods such as local 
search. In fact, the algorithm needs something to prevent it from moving back to visited area when 
it is moving toward the optimal solution. In other words, tabu list is the short term memory of the 
algorithm which prevents cycling when moving away from local optima through non-improving 
moves.  In defined problem, there are two possible way to insert a transformation to tabu list: 

1- After each transformation which includes a change in the allocation of a demand node to a 
facility (ݔ instead of ݔ), if a better value for objective function found, allocating demand 
node ݅ to facility located in ݆ is a tabu move. 

2- After each transformation which includes a change in the location of a facility (݆  instead of 
݅), if a better value for objective function found, Locating a facility in demand node ݅ again 
is a tabu move. 

Designing a tabu search algorithm, the size of tabu list is a very important factor. The size of tabu 
list depends on the problem. However, it should neither be very short nor very long. In next section, 
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some experiences to adjust the tabu list size are presented. 

3.1.3. Aspiration Criteria 

After some iteration and considering all neighborhoods, algorithm will reach a state in that no better 
neighborhood could be found. In this case, we need to direct the algorithm into some unexplored 
areas of the search space. But beforehand, in order to be sure about any possible interesting 
neighborhood in current area of search space, we check the solutions currently in tabu list. If a 
better solution could be found, the algorithm will continue the process with that solution. 
Otherwise, we are almost sure that no interesting solution will be found in current area of search 
space. Therefore, the algorithm goes to other areas of search space by diversification. 

3.1.4. Diversification 

Diversification is another strength point of tabu search algorithm, since it survives the algorithm 
from getting stuck into local optimums. For that, it is needed to define a long term memory which 
counts the number that every component (facility or allocation) participates in forming a solution. 
For instance, it counts the iterations in that a facility has been located in demand node ݆. Then it 
must be calculated as a percentage of all solutions. Diversification is forming new solutions using 
components which their percentages are below a pre-specified percentage called “low bound of 
diversification”. In this problem, if ݎ demand nodes fall behind the low bound of diversification, the 
algorithm will replace them with ݎ demand nodes which participated in forming solution the most. 
The low bound of diversification is an important parameter of algorithm which affects the quality 
and run time of the algorithm. Thus it is needed to adjust for the algorithm. Design of experience to 
adjust this parameter is presented in next section. 

3.1.5. Stop Criteria 

Similar to every other algorithm, this algorithm needs a criterion to terminate the program. Some 
different criteria could be found in the literature of tabu search such as after reaching a pre-specified 
iteration or value of objective function. However, since the diversification is the key part of the 
algorithm, the number of diversification is chosen as the termination criterion. This could be also an 
assurance that the algorithm will do the diversification sufficiently. 

3.2. Adjusting the Parameters of Tabu Search Method using Design of Experiments (DOE) 

As it is mentioned in advance, it is needed to tune the algorithm parameters in order to work more 
efficiently. This includes both adjusting the algorithm parameters -including tabu list size (factor 
A), lower bound of diversification (factor B), and the number of diversification (factor C) - and 
considering their effects on each other. In design of experiments, the 2 method has been used. It 
determines 2 levels (low and high) for each factor and considers the effects of them on each other. 
The levels are shown in table 1. 

Table 1 Low and high level for each factor. 

  Factor  

A B C

Low 
݊
4

 5% 
݊
5

 

High ݊ 75% ݊ 
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For 3 factors and 2 levels, we need at least 8 experiments. We have done 32 experiments in order to 
make our results more precise. All experiments have been done under below circumstances: 

݊ ൌ 			,			20 ൌ 5			,			Γ ൌ 10	 

Besides, weights of demand nodes, distance of nodes and the noise of each weight have been 
produced by a program randomly and are fixed for all 32 experiments. The optimum value of 
objective function (acquired by exact algorithm which explores all possible solutions) is 1765.89. 
The results for 32 experiments are shown in table 2. 

Table 2  Results for 32 experiments 

Factors Objective function values 

A B C Iteration 1 Iteration 2 Iteration 3 Iteration 4 

Low Low Low 2200.72 2058.34 1836.75 2058.34 

Low Low High 1869.36 1895.25 1904.86 1955.03 

Low High Low 2116.52 1869.36 2177.93 2173.67 

Low High High 1889.97 1988.77 1765.89 1836.22 

High Low Low 2200.72 2116.52 2116.52 2200.72 

High Low High 1978.63 1765.89 1869.36 1901.82 

High High Low 2141.52 1871.37 2200.72 2177.93 

High High High 2058.34 1819.64 1871.37 1765.89 

Some calculations have been done on data of table 2 related to 2 method. The results of them 
including the variance analysis are shown in table 3.  

Table 3 Variance analysis of experiments 

 
Sum of Squares 

Degree of 
freedom 

Mean of 
Squares 

F0 F-distribution 

A 6611.925013 1 6611.925013 0.509750571 0.495546705 

B 1296.93245 1 1296.93245 0.099987834 0.759937038 

C 357299.8578 1 357299.8578 27.54626018 0.000775289 

AB 2504.19645 1 2504.19645 0.193062621 0.672006633 

AC 11582.42 1 11582.42 0.892954049 0.372339356 

BC 223.1328125 1 223.1328125 0.017202566 0.89888826 

ABC 10133.89661 1 10133.89661 0.781279216 0.402531475 

Error 311301.6625 24 12970.9026     

Total 700954.024 31       

If F െ distribution	  F , it may be  concluded that the factor or the interaction between factors 
are important to our algorithm. In this case, it is obvious that factor C is very important and factor A 
and interaction between factors A and C (AC) is of less important. Now, in order to set the 
regression line: 

ොݕ ൌ መߚ  ଷݔመଵߚ  ଷݔଵݔመଶߚ  ଷݔଶݔଵݔመଷߚ
ൌ 1989.18 െ ଷݔ105.66 െ ଷݔଵݔ19.025   ଷݔଶݔଵݔ17.78
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In which xଵand xଶ and xଷ are coded variables2. The results for yො are shown in table 4. 

Table 4 yො results in each combination of factors 

A B C ݕො  
-1 -1 -1 2058.035 
-1 -1 1 1920.325 

-1 1 -1 2093.595 

-1 1 1 1884.765 

1 -1 -1 2131.645 

1 -1 1 1846.715 

1 1 -1 2096.085 

1 1 1 1882.275 

As we expected in advance, the best case is related to high level of factor C. The next stage of 
importance is related to high level of AC.As a result, the tabu list size must be set equal to ݊ and the 
number of diversification equal to ݊ too. There is no specific result for the low bound of 
diversification. So, we adjust it according to some different experiments as 50 percent. 

4. EXPERIMENTAL RESULTS 

According to above adjustments, the results of some experiments are presented in table 5. In some 
cases, the comparison between the result of tabu search and that of exact algorithm are presented. 
The weight of each demand node has been produced randomly between 10 and 100. Besides, all 
experiments have done on a Sony computer which has a 1.66 GHz CPU and 1 GB RAM. The used 
software for implementation of algorithm is Wolfram Mathematica 6.03. 

According to table 5, it is obvious that the implemented algorithm works properly for ݊  20. For 
greater number of nodes, because of run time of exact algorithm, it was practically impossible to 
find the optimum value. However it can be guessed that for very large number of ݊, there is 
possibly a gap between the result obtained from tabu search and optimal value. But, since there is 
no access to optimal value, the result of tabu search would be applicable in real-world problems. 

As we mentioned in advance, the role of Γ in this problem is to control the degree of conservatism 
of the solutions. It is assumed that up to Γ number of demand nodes are allowed to have fluctuation 
in their weights. Bertsimas and Sim proved that even if more than Γ	changes, the solution will 
remain feasible with a very high probability. We analyzed the role of Γ in a problem with 10 
demand nodes and 2 facilities. The data were fixed for 10 iteration with different possible values for 
Γ. The results are shown in table 6. 

                                                      

2 Coded Variables’ formulation is : 	

ݔ ൌ
ݔ െ

௫ା௫ೢ
ଶ

௫ି௫ೢ
ଶ

 

3http://www.wolfram.com/products/mathematica/index.html 
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Table 5 Numerical results 

 2ࢋ࢛ࢇࢂࢇ࢚ࡻ 1ࡿࢀ ࢋࢀ࢛ࡾ ࢣ  .

3 1 2 0.06 1570.71 1570.71 

4 1 3 0.14 3257.06 3257.06 

5 3 4 0.64 1715.54 1715.54 

6 2 4.5 0.9 1380.17 1380.17 

7 2 3 2.1 1646 1646 

8 2 7.5 3.79 2213.13 2213.13 

9 2 7 4.89 2671.96 2671.96 

10 2 5 4.34 2334.99 2334.99 

11 3 7 8.93 1242.52 1242.52 

12 7 8 60.93 978.2 978.2 

12 8 8 189.04 596.34 596.34 

15 3 10 29.15 3158 3158 

20 5 13 378.75 1840.63 1840.63 

30 5 20 271.29 3908.43 --- 

40 6 30 732.92 4180.82 --- 

80 4 60 7138.47 1024.4 --- 

100 10 70 --- 
1- The result of Tabu search algorithm 
2- The result of exact algorithm (Optimal value) 

Table 6 Different results for one specific problem with changes in  Γ 

 ડ Value  
Probability of 

violation 
Increase in value of objective 

function ( % ) 
0 2738.59 0.62 0 

1 2738.59 0.5 0 

2 2821.77 0.37 3.037 

3 2849.38 0.27 4.046 

4 2849.38 0.17 4.046 

5 2850.23 0.11 4.077 

6 2902.99 0.054 6.003 

7 2902.99 0.03 6.003 

8 2902.99 0.01 6.003 

9 2902.99 0.005 6.003 

10 2982.28 0.00099 8.898 

In table 6, the probabilities of violation for constraints have been presented too. Clearly, the more 
the method moves toward more conservatism solutions, the more the probability move toward zero.  

5. CONCLUSION 

To sum up, we used the Bertsimas and Sim approach of dealing with uncertainty to model the p-
center problem under uncertainty of demands. The derived model is a mixed integer programming 
model and we developed a tabu search method to solve the problem. The parameters of the tabu 
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search method were adjusted using DOE method. The performance of developed tabu search 
method is very efficient and we see the most solutions of sample problems are optimal. A potential 
future research area is analyzing this problem considering an uncertain number of facilities may be 
constructed in future. Therefore considering this assumption and modeling it by robust approaches 
can be an interesting problem.    
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