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ABSTRACT 
 

This paper breaks new ground by modelling lot sizing and scheduling in a flexible flow line 
(FFL) simultaneously instead of separately.  This problem, called the ‘General Lot sizing and 
Scheduling Problem in a Flexible Flow Line’ (GLSP-FFL), optimizes the lot sizing and 
scheduling of multiple products at multiple stages, each stage having multiple machines in 
parallel.  The objective is to satisfy varying demand over a finite planning horizon with minimal 
inventory, backorder and production setup costs. The problem is complex as any product can be 
processed on any machine but with different process rates and sequence-dependent setup times 
& costs. The efficiency of two alternative models is assessed and evaluated using numerical 
tests. 
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1. INTRODUCTION 
 
The Flexible Flow Line (FFL) is a very prevalent production system and found in many industries, 
especially automotive, chemical, electronics, steel making, food and textile (Linn and Zhang, 1999) It 
consists of several production stages in series with parallel machines at each stage. The decisions to 
be taken are the determination of production quantities (lots), machine assignments and production 
sequences (schedules) on each machine at each stage in a FFL. Lot sizing and scheduling problems 
are closely interrelated. However, it can be difficult and complex to combine both problems. As a 
result, they are often modelled and solved independently in spite of their interdependency. Our 
work in this paper builds on integrated models developed by other researchers for simpler contexts. 
Fleischmann and Meyr (1997) first integrated the lot sizing and scheduling of several products on a 
single capacitated machine, calling their model the General Lot sizing and Scheduling Problem 
(GLSP). Meyr (2000) included sequence-dependent Setup Times, resulting in the GLSPST model. 
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Meyr (2002) then extended GLSPST to parallel machines or Parallel Lines (GLSPPL). In an 
alternative approach, Clark and Clark (2000) designed a mixed integer programming (MIP) model 
for simultaneous sequencing and lot sizing production lots on a set of parallel machines in the 
presence of sequence-dependent setup times.  
 
The survey by Linn and Zhang (1999) reviewed the state of FFL scheduling research ten years ago 
and described a variety of different configurations. They noted the lack of research on FFLs with 
more than two stages and the extensive using of dispatching rules in practice.  Their survey did not 
include any research or mention of lot sizing and scheduling within FFLs. Six years later, Quadt and 
Kuhn (2005) explicitly identified a lack of literature for lot sizing and scheduling in FFLs and went 
on to describe a hierarchical 3-phase approach for integrative lot-sizing and scheduling. The second 
phase consisted of capacitated lot-sizing  problem (CLSP) model (Bitran and Yanasse, 1982) 
generalised to the sequencing of lots of product families lot , the possibility of back-orders and  
parallel  machines.  While more general than needed for FFLs, the approach of Quadt and Kuhn 
(2005) is limited partly due to its aggregation of products into families, but primarily because of the 
necessity of bottleneck stage identification and stability during the planning run. In our FFL models 
below, these two restrictive assumptions are not considered and the whole problem is modelled in 
its entirety. Subsequently, in Quadt and Kuhn (2007), they gathered a wide range of literature on the 
FFL scheduling problem and built a taxonomy for FFL scheduling procedures (excluding lot-
sizing), classifying them by general solution approach. They concluded by noting again that very 
little research has been published combining both lot sizing and scheduling in FFL, although in the 
same year Quadt and Kuhn (2007) did deal with batch scheduling. Relevant to the sequential stages 
of FFLs, Fandel and Stammen-Hegene (2006) formulated the Multi Level General Lot sizing and 
Scheduling Problem with Multiple Machines (MLGLSP-MM), based on the GLSP for single level 
production and parallel machines.  However, the job shop structure in the MLGLSP-MM model is 
more general than needed for a flowshop. Moreover the paper contains only a mathematical model 
for the MLGLSP-MM without any numerical tests or solution procedure, possibly because the 
authors themselves recognized that the model’s complexity limits optimal solutions to just small 
instances. Responding to the challenge, this paper’s research contribution is to propose three 
mathematical models for General Lotsizing and Scheduling Problem in FFL (GLSP-FFL) and to 
obtain initial insight into their comparative computational performance via experimental tests. The 
paper is organized as follows. Section 2 develops mathematical formulations of the GLSP-FFL. 
Numerical results are discussed in Section 3 and finally conclusions and suggestions for further 
research are contained in Section 4.    
 

2. PROBLEM DEFINITION AND MATHEMATICAL FORMULATIONS  
 

A flexible flow line (FFL) or hybrid flow shop can be considered as an extension of two classical 
systems, namely the flow shop and the parallel shop. The production line consists of several 
processing stages in series, separated by finite intermediate buffers, where each stage has one or 
more parallel identical machines (Pinedo, 1995). The layout of FFL is shown in Figure 1. 

 

 
Figure 1 Flexible flow line 
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The GLSP-FFL was developed from the single-level GLSP of Fleischmann and Meyr (1997) and 
the multi-stage capacitated lot sizing and loading problem (MCLSLP) of Özdamar and 
Barbarosoglu (1999). According to different formulations, three distinct models are introduced for 
GLSP-FFL, all of which are based on the following assumptions: Multiple products can be 
produced at stages in the flexible flow shop. Production at each stage involves unrelated parallel 
machines with different production rates. All machines can produce any product. The available 
capacity of each machine is limited and can vary between periods and stages. The finite planning 
horizon is divided into T macro-periods. The independent demand for all products is felt at the final 
stage at the end of each macro-period. It is known with certainty, but varies dynamically over the 
planning horizon. 
 
The main assumptions of the problem were described in the following 
 

 Demand for items in other stages is dependent on the production of the next stage. 

 Backlog shortages are permitted for products at the final stage but are upper-bounded by a 
given percentage of demand in each macro-period.This is the practiced assumption in flow 
shop manufacturing systems (Özdamar and Barbarosoglu, 1999).  

 The products may be manufactured in lots of varying size on any one of the parallel 
machines in each stage.  

 The production rate can vary between products and machines, but is constant over the 
planning horizon. 

 A changeover from one product to another requires a setup time during which the machine 
is unproductive. Setup times and costs are sequence dependent and can vary between 
machines.  

 The setup state is conserved when no product is being processed.  

 At the beginning of the planning horizon, each machine is setup for a specified product. 

 A two-level time structure is assumed. Each macro-period consists of a variable number of 
micro-periods with variable length.  Each machine has its own micro-period segmentation, 
i.e., the number of micro-period can differ between machines.  Micro-periods do not have to 
be of equal durations on the same machine. 

 At the start of a micro-period, a machine is setup and then produces just one product until 
the end of the micro-period.  

 If setup costs and times are triangular, then it is not economical to produce a product in 
more than one lot on the same machine in the same micro-period. Thus there will be at most 
one setup per product per macro-period on each machine and so the number of micro-
periods on a machine will be at most the number of products. 

 Lot-splitting is permitted at any stage, i.e., each product can be simultaneously produced on 
more than one machine at any given stage.  

 In order to obtain viable schedules, we assume that there is the lead time of one period 
between   different production stages. In this case, a product which is produced at a stage is 
available for production at the next stage only in the next period. However in some 
industries, assuming a lead time of period may be unrealistic and lead to inferior model 
solutions. 
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The parameters and indices of the GLSP-FFL for all the models are 
 

J Number of total products i, j, k 

E Number of different stages e 

 ௘ Number of different machines ݉௘ available for production at stage e (so that the totalܯ
number of machines over all stages is ܯ ൌ ∑ ௘௘ܯ ) 

T Number of macro-periods t in the planning horizon 

 ௠௔௫ Maximum number of micro-periods f in each macro-period tܨ

௠௧ܨ ,௠௧ The number of micro-periods f in macro-period t on machine meܨ ൑  ௠௔௫ܨ
 
Note that in the definition of ܨ௠௧ above, to avoid notational clutter such as ܨ௠೐௧, the simple index m 
is used when strictly speaking the subscripted index ݉௘ should have been used. Similarly, the 
simple index f will be used when strictly speaking the subscripted index ௠݂೐௧ should be used. From 
now on, this convention will be used so that the subscripts e and t are implied wherever the indices 
m and f are used. Figure 2 illustrates the segmentation of macro-periods into micro-periods on a 
machine m at any stage e.  Note how the varying lengths of macro-periods differ between macro-
periods. 
 

 
Macro-period t = 1 … Macro-period t = T 

݂ ൌ 1 ݂ ൌ 2 … ݂ ൌ ݂ … ௠ଵܨ ൌ 1 ݂ ൌ 2 … ݂ ൌ ௠்ܨ   
Micro-periods f …  Micro-periods f 

 
Figure 2 Micro-period segmentation on a machine differs between macro-periods 

 
The data required in all the models are 
 

݀௜௧ Demand for product i realised at the end of macro-period t 

 ௠௧ Available capacity of machine m in macro-period tܥ

 ௜௝௠ Time needed to setup on machine m from product i to product jݐݏ

 ௜௝௠ Cost needed to setup on machine m from product i to product jܿݏ

ܾ௜௠ Capacity (processing time) on machine m required to produce a unit of product i 

݄௜௧௘ Cost of holding a unit of product i from period t to t+1 at stage e 

݃௜௧ Cost of backordering a unit of end-item demand for product i from period t to t+1 

BP Maximum permitted percentage of total end-item demand that can be backordered 

݅଴௠ The product setup on machine m at the end of period 0, i.e., the starting setup 
configuration 

௜ܲ௠ Cost of producing one unit of product i on machine m 

௠௧ܥ ௜௠௧ Upper boundܤܷ ܾ௜௠⁄   on the amount of product i produced in macro-period t on 
machine m 

 ௜௠௧ Lower bound on the amount of product i produced in macro-period t on machine mܤܮ
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The objective of all three models presented below is to minimise backorders, inventory and setup 
costs of producing the ܬ products over the ܶ macro-periods in the planning horizon. 
 
2.1. Model FFL-FS 
 
In the first model, the number ܨ௠௧ of micro-periods in macro-period t is itself a variable to be 
minimised, as in Fandel and Stammen-Hegene’s (2006) MLGLSP-MM. The setup constraints are 
based on Clark and Clark (2000). The decision variables are 
 

 .௜௘௧ Inventory level of product i in stage e at the end of macro-period tܫ

 .௜ா௧ Backordered amount of end-product i at the last stage E at the end of macro-period tܤ

 .௜௠௙ Production quantity of product i on machine m in micro-period fݔ

 ௜௝௠௙ Binary variable, = 1 if there is a changeover from product i to product j on machine m atݕ
the start of micro-period f , = 0 otherwise. 

 .௠௧ Final micro-period on machine m at the end of macro-period tܨ

 
The objective function minimises backorders, inventory and setup costs  
 

∑ ௜௝௠௙௜௝௘௠௧௙ݕ ௜௝௠ܿݏ ൅ ∑ ݄௜௧௘ ܫ௜௘௧௜௧௘ ൅ ∑ ݃௜௧ ܤ௜ா௧௜௧  (1) 
 
Note how the implied summation limits and indices e and t avoid notational clutter in the first term 
in expression (1).  The full cluttered version would be:  
 

∑   ∑   ∑   ∑   ∑   ∑ ௜௝௠೐ܿݏ

ி೘೟
௙೘೐೟ୀଵ

்
௧ୀଵ

ெ೐
௠೐ୀଵ

ா
௘ୀଵ

௃
௝ୀଵ,௜ஷ௝

௃
௜ୀଵ ௜௝௠೐௙೘೐೟ݕ

   (cluttered 1) 

 
From now on, expressions will similarly be kept as concise as possible without sacrificing 
precision.  Just occasionally, some clutter will be unavoidable, for example in constraints (3) and 
(9) below. If need be, production costs can be included in the objective function by appending the 
term ∑ ௜ܲ௠ ݔ௜௠௙௜௘௠௧௙ . Figure 3 shows the flow of production, inventory and backorders over 
different periods and stages. 
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Figure 3 Flow diagram of GLSP-FFL 
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Constraints (2) and (3) follow from Figure 3. 
 

௝ா,௧ିଵܫ െ ௝ா,௧ିଵܤ ൅ ∑ ௝௠௙௠ಶ,௙೟షభݔ
െ ௝ா௧ܫ ൅ ௝ா௧ܤ ൌ ௝݀௧               ׊ ݆,  (2) ݐ

 
Constraint (2) expresses the material balance for end items, including backorders. Some clutter is 
required in order to be clear that the term ∑ ௝௠௙௠ಶ௙ݔ  refers only to the final stage E.  However, note 
again how the implied use of the index ௠݂೐௧ in ∑ ௝௠௙௠ಶ௙ݔ  avoids further notational clutter. The 
context (ݐ ׊) of (2) makes it reasonable to assume that the values of f apply respectively to just the 
micro-periods within the specific macro-period t.  The fully cluttered version would be:  
 

∑ ∑ ௝௠ಶ௙೘ಶሺ೟షభሻݔ

ி೘ሺ೟షభሻ

௙೘ಶሺ೟షభሻୀଵ
ெಶ
௠ಶୀଵ  . 

 
Constraint (3) expresses the material balance for work in process. Again, some clutter is required in 
order to be clear that the right-hand side refers to the successor stage ݁ ൅ 1 of the left-hand side’s 
stage e 
 

௝௘,௧ିଵܫ ൅ ∑ ௝௠௙௠೐,௙೟ݔ
െ ௝௘௧ܫ  ൌ ∑ ௝௠௙௠೐శభ,௙೟శభݔ

,݆ ׊                ݁ ݀݊ܽ ݐ ൌ 1, … , ܧ െ 1. (3) 
 
Constraint (4) bounds backorders of end items in any macro-period to be within a specified 
proportion of demand  
 

௜௧ாܤ  ൑ ܲܤ  · ݀௜௧               ׊ ݅,  (4)   .ݐ
 
Constraint (5) represents the limited capacity 
 

∑ ௜௝௠௙௜௝௙ݕ ௜௝௠ݐݏ ൅ ∑ ܾ௜௠ ݔ௜௠௙௜௙  ൑ ,݁ ׊               ௠௧ܥ  ݉,  (5) .ݐ
 
Constraints (6) and (7) specify the initial setup configuration.  
 

௜௝௠ଵݕ ൌ ݅ ׊               0 ് ݅௢௠, ݆, ݁, ݉ (6) 

∑ ௜೚೘௝௠ଵ௝ݕ ൌ ,݁  ׊               1 ݉ (7) 
 
Constraints (6) to (9) ensure that a setup on a machine in each micro-period may only occur 
between a single pair of different products.  
 

∑ ௜௝௠௙௜ݕ ൌ ∑ ௝௞௠,௙ାଵ௞ݕ ,݆  ׊                 ݁, ݉, ݂ ݀݊ܽ  ݐ ൌ 1, … , ௠௧ܨ െ 1 (8) 

∑ ௜௝௠ி೘,೟షభ௜ݕ ൌ  ∑ ௝௞௠ଵ௞ݕ ,݆ ׊                ݁, ݐ  ݀݊ܽ  ݉ ൌ 2, … , ܶ (9) 
 
Constraint (10) enforces the appropriate setup before production 
 

௝௠௙ݔ  ൑ ௝௠௧ܤܷ  ∑ ௜௝௠௙௜ݕ ,݆ ׊                ݁, ݉, ,ݐ ݂ (10) 
 
Constraint (11) enforces minimum lot sizes or specified lower bounds in order to avoid a setup 
change without subsequent production. If set-up costs or times do not satisfy the triangle 
inequality ሺܿݏ௜௝௠ ൅ ݏ ௝ܿ௞௠ ൒ ,݅׊  ௜௞௠ܿݏ ݆, ݇, ݁, ݉ሻ, then (11) prohibits that a setup from i to k passes 



Simultaneous Lot Sizing and Scheduling in a Flexible Flow Line 113

through a third product j without minimal production of j. Non-triangular setups occur in many 
industries. 

௝௠௙ݔ  ൒ ௝௠௧ܤܮ  ∑ ௜௝௠௙௜ݕ ,݆ ׊                 ݁, ݉, ,ݐ ݂ (11) 
 
However, when some setups are non-triangular, an optimal solution can feature multiple lots of a 
product on the same machine in the same period.  Constraint (12) simplifies the model by ensuring 
that a product cannot be produced in more than one lot on a machine in a macro-period 
 

∑ ௜௝௠௙௝௙ݕ ൑ ,݅ ׊               1 ݁, ݉,  (12) ݐ
 
Constraint (13) minimises the number ܨ௠௧ of micro-periods in a macro-period to those actually 
required and thus prevents micro-periods with a length of zero time units. The right side of the 
constraint has two terms. The first term is ܨ௠௔௫ if there is production in micro-period f, or zero if 
not. The second term adds up the number of micro-periods with production.  
 

௠௧ܨ  ൑ ௠௔௫ܨ  ∑ ௜௝௠௙௜௝ݕ ൅ ∑ ∑ ௜௝௠௦ݕ
ி೘ೌೣ
௦ୀଵ௜௝ ,݁  ׊                ݉, ,ݐ ݂ (13) 

 
Constraint (14) limits the number ܨ௠௧ of micro-periods in a macro-period.  
 

௠௧ܨ  ൑ ,݁ ׊                ௠௔௫ܨ  ݉,  (14) ݐ
 
Similarly to Fandel and Hegene (2006), the above model is not a MIP as it features ܨ௠௧ as both a 
variable and an index upper limit in many constraints, for example, implicitly in the summation in 
(5). Fixing the values of ܨ௠௧ will transform the model into a MIP, as shown in the next section.  
 
2.2. Model FFL-CC  
 
A generalisation of Clark and Clark (2000), model FFL-CC can be adapted from model FFL-FS by 
treating ܨ௠௧ as a parameter, not a variable, thus eliminating constraints (12)  to (14). If setup times 
and costs are triangular it is inefficient to produce more than one lot of a given a product on a 
machine in a given micro-period. Therefore ܨ௠௧ is upper bounded by J, the number of products, and 
can be fixed at this value. The number of setups may be less than J, but the remaining ones are 
treated as phantom setups from a product ݅ to itself (ݕ௜௜௠௙ ൌ 1) with zero setup time  ሺݐݏ௜௜௠ ൌ 0ሻ 
and no consequent production thus invalidating constraint (12). Constraint (15) replaces constraint 
(11) so as to exclude phantom setups when enforcing minimum lot-sizes. 
 

௝௠௙ݔ ൒ ௝௠௧ܤܮ ∑ ௜௝௠௙௜ஷ௝ݕ ,݁ ׊                  ݉,  j,f (15),ݐ
 
 
2.3. Model FFL-FM 
 
Fleischmann and Meyr (1997)’s adaptation of the General Lot sizing and Scheduling Problem 
(GLSP) to sequence-dependent setup times and parallel machines (Meyr, 2002) can be extended to 
the FFL. The parameters and continuous decision variables for this new model, denoted FFL-FM, 
are the same as for the FFL-CC model.  However, to be consistent with Meyr’s notation, the 
variable y୧୨୫୤ is renamed z୧୨୫୤, and y becomes a new setup-state variable as follows  
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 .௜௠௙ = 1 if machine m is setup for product i in the micro-period f, otherwise = 0ݕ

 ௜௝௠௙ = 1 if there is a setup changeover from product i to product j on machine m at the startݖ
of micro-period f, otherwise = 0. 

 
Note that there is no need to define ݖ௜௝௠௙ a binary variable in the model since ݖ௜௝௠௙ as a positive 
variable will take on the value 0 or 1 in any optimal solution (Fleischmann and Meyr, 1997). As in 
model FFL-CC, the number ܨ௠௧ of micro-periods within a macro-period is fixed at the number J of 
products. Like models FFL-FS and FFL-CC, the objective function also minimises backorders, 
inventory and setup costs 
 

∑ ௜௝௠௙௜௝௘௠௧௙ݖ ௜௝௠ܿݏ ൅ ∑ ݄௜௧௘ ܫ௜௘௧௜௧௘ ൅ ∑ ݃௜௧ ܤ௜ா௧௜௧  (16) 
 
Constraints (17) - (19) are identical to (2) - (4) of models FFL-FS and FFL-CC . 
 

௝ா,௧ିଵܫ െ ௝ா,௧ିଵܤ ൅ ∑ ௝௠௙௠ಶ,௙೟షభݔ
െ ௝ா௧ܫ ൅ ௝ா௧ܤ ൌ ௝݀௧               ׊ ݆,  (17) ݐ

௝௘,௧ିଵܫ ൅ ∑ ௝௠௙௠೐,௙೟ݔ
െ ௝௘௧ܫ  ൌ ∑ ௝௠௙௠೐శభ,௙೟శభݔ

,݆ ׊                ݁ ݀݊ܽ ݐ ൌ 1, … , ܧ െ 1 (18) 

௜௧ாܤ  ൑ ܲܤ  · ݀௜௧;               ׊ ݅,  (19)   ݐ
 
Constraints (20) and (21) are (5) and (7) adapted to the new variables ݕ௝௠௙ and ݖ௜௝௠௙ 
 

∑ ௜௝௠௙௜௝௙ݖ ௜௝௠ݐݏ ൅ ∑ ܾ௜௠ ݔ௜௠௙௜௙  ൑ ,݁ ׊               ௠௧ܥ  ݉,  (20)   ݐ

∑ ௜೚೘௝௠ଵ௝ݖ ൌ ,݁  ׊               1 ݐ ݀݊ܽ ݉ ൌ 1 (21) 
 
Note that this formulation has no strict equivalent of constraint (6) which states that the first setup in 
a macro-period t cannot be from a product which is not ݅௢௠. However, constraint (22) prohibits the 
value of ݕ௜௠௙ from indicating that the initial setup-state on a machine is any product which is not 
݅௢௠ 
 

௜௠ଵݕ ൑ ,݅  ׊               ௜೚೘௜௠ଵݖ ݁, ݐ ݀݊ܽ ݉ ൌ 1 (22) 
 
Constraint (23) imposes a minimum initial lot-size except for ݅௢௠ 
 

௝௠ଵݔ ൒ ௝௠௧ܤܮ · ݆  ׊                ௜೚೘௝௠ଵݖ ് ݅௢௠ , ݁, ݐ ݀݊ܽ ݉ ൌ 1 (23) 
 
Constraint (24) is requires that a product can only be processed on a machine if it is setup for that 
product 
 

௝௠௙ݔ ൑ ௝௠௧ܤܷ · ,݁ ׊                ௝௠௙ݕ ݉, ݆, ,ݐ ݂ (24) 
 
Constraints (25) and (26) enforce minimum lot sizes, again avoiding intermediate non-zero 
production setups if set-up costs/times do not satisfy the triangle inequality 
 

௝௠௙ݔ ൒ ௝௠௙ݕ௝௠௧൫ܤܮ െ ,݁ ׊                ௝௠,௙ିଵ൯ݕ ݉, ݆, ,ݐ ݂ ൌ 2, … ,  ௠௧ (25)ܨ

௝௠ଵݔ ൒ ௝௠ଵݕ௝௠௧൫ܤܮ െ ௝௠ி೘,೟షభݕ
൯                ׊ ݁, ݉, ݆, ݐ ൌ 2, … , ܶ (26) 
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Constraint (27) ensures that only one setup state is defined in each micro period 
 

∑ ௝௠௙௝ݕ ൌ ,݁  ׊               1 ݉, ,ݐ ݂ (27) 
 
Constraint (28) ensures that only one setup changeover occurs in each micro period  
 

∑ ௜௝௠௙௜௝ݖ ൌ ,݁  ׊               1 ݉, ,ݐ ݂ (28) 
 
Constraints (29) and (30) relate the setup state variables and changeover variables  
 

௜௝௠௙ݖ ൒ ௜௠,௙ିଵݕ ൅ ௝௠௙ݕ െ ,݁  ׊               1 ݉, ݅, ݆, ,ݐ ݂ ൌ 2, … ,  ௠௔௫ (29)ܨ

௜௝௠ଵݖ ൒ ௝௠ଵݕ ൅ ௜௠ி೘,೟షభݕ
െ ,݁  ׊               1 ݉, ݅, ݆, ݐ ൌ 2, … , ܶ (30) 

 
2.4. Comparison of the FFL-CC and FFL-FM models 
 
The main difference between models FFL-CC and FFL-FM is in the setup variables. As in Clark 
and Clark (2000), the FFL-CC setups are modelled with just one set of binary variables, ݕ௜௝௠௙, 
whereas in the FFL-FM model setups are formulated with one set of binary variables ݕ௜௠௙ and one 
set of positive variables ݖ௜௝௠௙, similar to Fleischmann and Meyr (1997). Table 1 shows the number 
of variables and constraints in models FFL-CC and FFL-FM. Note that FFL-CC has a smaller 
number of continuous and total variables than FFL-FM. The total number of variables in FFL-CC 
equals to the number of continuous variable in FFL-FM, but the latter has fewer binary variables 
than FFL-CC, suggesting that it might be faster to solve in very large problem. However, the order 
of magnitude of the number of variables and constraints is the same in both models. The 
computational tests in the next section will provide some insights into the relative efficiencies of the 
two models. 
 

Table 1 Number of Variables and Constraints in models FFL-CC and FFL-FM 

Number of: Model FFL-CC Model FFL-FM 
Continuous variables  ܬଶܶܯ ൅ ܧሺܶܬ ൅ 1ሻ ൅ 1 ܯଷܶܬ ൅ ܯଶܶܬ ൅ ܧሺܶܬ ൅ 1ሻ ൅ 1
Binary variables ܬଷܶܯ ܯଶܶܬ
Capacitated lot sizing constraints 1 ൅ ܧܶܬ ൅ ܶܬ ൅ ܯܶ 1 ൅ ܧܶܬ ൅ ܶܬ ൅  ܯܶ
Sequencing constraints 3ܬଶܶܯ ൅ ܬሺܯܬ െ 2ሻ ൅ ܯ ܯଶܶܬ2 ൅ ܯܬ
Setup state and changeover 
connecting constraints 

െ ܶܬሺܯଶܬ െ 1ሻ ൅  ܯܶܬ2

 
3. COMPUTAIONAL RESULTS 
 
The aim of this section is to explore the FFL-CC and FFL-FM models through initial computational 
tests on small and larger problems in order to gain insight into their relative speed and performance. 
Özdamar and Barbarasoglu (1999) designed test problems to solve the CLSP in FFLs. Later Quadt 
(2004) also used their testing method, as does this paper. The problem parameters outside the 
statistical experimental design are randomly generated as follows: Processing times ܾ௜௠ (in hours) 
are generated from uniform distribution U(1,5) for all products i and machines m. Setup costs ܿݏ௜௝௠ 
are generated from U(300,500). Set-up times are related to the total processing time 
 

௜௝௠ݐݏ ൌ
ௌ ∑ ௕ೕ೘·ௗೕ೟ೕ೟೘  

்·ெ௔௫௙௔௖
 (31) 
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where S is generated from U(0.05,0.10) and ݂ܿܽݔܽܯ ൌ max௘ሼܯ௘ሽ is the maximum number of 
machines at any stage. In the other words setup times are proportional to the mean production time 
per machine-period. The parameter levels within the experimental design are randomly generated as 
follows Demand variability is either low, d୧୲ being generated from U(90,110), or high, from 
U(50,150). Holding and backordering costs assume that successive stages add value, so that work-
in-process holding costs will increase as material progresses along the line. To reflect this, a value-
added percentage factor ܸܲܣ is used, whose value is 1.1 (low) or 1.3 (high). Inventory costs are 
then generated consecutively as follows The first stage’s unit holding cost ݄௜௧ଵ for product i is 
generated from U(1,20). For subsequent stages, h୧୲ୣ ൌ VAP · h୧୲,ୣିଵ for ݁ ൒ 2. The backordering 
cost for product i is ܤ௜௧ ൌ 1.25 · ݄௜௧ா. Capacity tightness is measured by a factor CAT with value 
1.2 (tight) or 1.6 (loose).  The mean capacity requirement C per machine at each stage is calculated 
as 
 

ܥ ൌ  ݔܽ݉
௘

ቄ
∑ ௕ೕ೘·ௗೕ೟ೕ೟೘  

்·ெ௔௫௙௔௖
ቅ (32) 

 
which is the maximum, over all stages, of the mean production time per machine-period.  The 
capacity C୫୲ on machine m in macro-period t is then given by C୫୲ ൌ CAT · C. Özdamar and 
Barbarosoglu (1999) did not specify the permitted percentage BP of end item demand that can be 
backordered, but this paper considers values of 20% (low) and 80% (high) for BP. Considering the 
four experimental attributes above, 2ସ ൌ 16 combinations were generated for each of two sets of 
test problems (small and large) of very different dimensionality. Three replications were generated 
for small problems while, due to the long solutions computing times involved, just one replication 
was generated for the large problems. Thus in total 48 small and 16 large problems were generated.  
The attributes and dimensionality of small problems are ܧ ൌ 2, ௘ܯ ൌ 2, ܬ ൌ 4, ܶ ൌ 6 and large 
problems are ܧ ൌ 3, ௘ܯ ൌ 3, ܬ ൌ 8, ܶ ൌ 6. To obtain some insight into the dimensionality of the 
models and problems, Table 2 computes the number of continuous and binary variables of the 
Özdamar and Barbarosoglu (1999) model, and FFL-CC and FFL-FM models for the small and large 
problems attributes in the former’s paper (OzBa 1999). Note how the modelling of sequence-
dependent setups can generate a very large number of binary and continuous variables. The 
conspicuous features are the huge number of binary variables in FFL-CC and continuous variables 
in FFL-FM, some 400 and 280 times more respectively than in OzBa 1999 for the big instance. 
 

Table 2 OzBa (1999) attributes and comparing with FFL-CC and FFL-FM 

 
Model 

Small problems 
ࡱ ൌ ૜, ࢋࡹ ൌ ૜, ࡶ ൌ ૞, ࢀ ൌ ૟

Large problems 
ࡱ ൌ ૝, ࢋࡹ ൌ ૞, ࡶ ൌ ૛૙, ࢀ ൌ ૟

Continuous 
Variables 

Binary 
Variables 

Total 
Variables 

Continuous 
Variables 

Binary 
Variables 

Total 
Variables 

OzBa 1999 534 270 804 3,600 2,400 6,000 
FFL-CC 1,471 6,750 8,221 48,601 960,000 1,008,601
FFL-FM 8,221 1,350 9,571 1,008,601 48,000 1,056,601 

 
Table 3 illustrates the number of constraints and variables of both models, calculated based on the 
problems attributes of GLSP-FFL. As shown in Table 3, FFL-CC has fewer constraints, continuous 
and total number of variables than FFL-FM for both small and large problems. However FFL-FM 
has a smaller number of binary variables which, nevertheless, are still very many in the large 
problems.  
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Table 3 Number of constraints and variables in models FFL-CC and FFL-FM 

Large problem 
ܧ ൌ 3, ௘ܯ ൌ 3, ܬ ൌ 8, ܶ ൌ 6

Small problem 
ܧ ൌ 2, ௘ܯ ൌ 2, ܬ ൌ 4, ܶ ൌ 6 

Number of: 
FFL-FM modelFFL-CC model FFL-FM modelFFL-CC model 

35,16711,0562,5451,285Constraints 
31,2973,6491,993457 Continuous variables 
3,456 27,648 384 1,536Binary variables 
34,753 31,297 2,377 1,993Total variables 

 
Both models were implemented in the optimisation modelling software GAMS and solved using the 
industrial-strength CPLEX 9.0 solver on a computer with 2.1 GHZ CPU and 2 GB RAM. 
 
The first two rows of Table 4 show the result of both models for the small problems including the 
average of CPU time, percentage of optimality gap and RAM usage. Figure 4 illustrates the value of 
the objective function for all 16 small problems for one replication. Observe that both models 
exhausted the 2 GB of available RAM before terminating the CPLEX branch-&-cut search, leaving 
large optimality gaps. Figure 4 shows that model FFL-CC obtained better solutions in a shorter time 
compared to model FFL-FM for all 16 small problems considered, being a mean 32% faster and 
with solutions 12% better on average. Moreover overall small problems, the mean optimality gap 
for FFL-CC was 35% less than FFL-FM. Both models found the first feasible solution in the first 
second of running time.  
 

Table 4 Mean CPLEX results for small and bigproblems 

Average of RAM usage 
(MB) 

Average of Percentage of 
optimality gap

Average of  CPU time 
(secs)

 
Models and problems 

1890 70.6%6346.5FFL-CC 
Small problems 

193995.5%8361.8FFL-FM 
1867 89.9%21,628FFL-CC 

Big problems 
175699.9%23,919FFL-FM 

 
 

 
Figure 4 Result of CPLEX incumbent solution for the small problems 

 
The last two rows of Table 4 show the results of both models for the large problems. Observe the 
large optimality gaps at termination after about 6 to 7 hours of running time. Similar to the small 
problems, FFL-CC obtained better results for all the large problems, on average, 10% shorter time, 
with 11% less optimality gap and with solutions 13% better. To provide more detailed insight into 
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the large problems, the progression of the CPLEX solution is shown in Figure 5 for a sample of the 
large problems. Note that, on the one hand, at termination model FFL-CC obtained a better solution 
in a shorter time compared to model FFL-FM.  On the other hand, FFL-FM found the first feasible 
solution more quickly (63 sec) than FFL-CC (3550 sec). To sum up, the test results above, although 
merely probing, and not conclusive, indicate that model FFL-CC finally obtains a better solution in 
a shorter time. However due to the importance of number of binary variables in large instances, 
FFL-FM finds the first feasible solution in much shorter time for over all the big problems 
compared with FFL-CC. 
 

 

Figure 5 Result of CPLEX incumbent solution for a sample of the large problems 
 
4. CONCLUSIONS  
 
In this paper, three mathematical models were presented for the lot sizing and scheduling of flexible 
flow lines. The first model is dynamic so cannot be solved as a MIP, whereas the second and third 
can. Initial computational tests indicate that the second model (FFL-CC) is faster and more effective 
than the third (FFL-FM), but the third model (FFL-FM) can find an initial feasible solution much 
faster than second model (FFL-CC) for the big size problems. However, the complexity of the 
problem means that these tests to optimality could only be performed on small instances and so 
must be considered as just preliminary probing. Ongoing research is focusing on (i) more efficient 
formulations with ASTP subtour prohibitions constraints, that have already show promise in single-
stage multi-machine problems (Clark et al. (2006), Almada-Lobo et al. (2007)) and (ii) heuristic 
solution approaches to solve larger problems within a reasonable time period. 
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