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Abstract
Recently, a mixed integer data envelopment analy3isA) model has been
proposed to find the most BCC-efficient (or the thedecision making
unit(DMU) by Toloo (2012).This paper shows that theodel may be
infeasible in some cases, and when the model sibleait may fail to identify
the most efficient DMU, correctly. We develop arpioved model to find the
most BCC-efficient DMU that removes the mentionedwbacks. Also, an
algorithm is proposed to find and rank other moStCBefficient DMUs, when
there exist more than one BCC-efficient DMUs. Thpability and usefulness
of the proposed model are indicated, using a ratl det of nineteen facility
layout designs (FLDs) and twelve flexible manufaiciy systems (FMSSs).
Keywords: data envelopment analysis (DEA), most BCC-effici&MU,
mixed integer DEA models, ranking, facility layalgsign

1- Introduction

Data envelopment analysis (DEA), introduced lnai@es, Cooper, and Rhodes (1978), is a
linear programming for the assessment of relatffieiency of a set of decision making units
(DMUs). The DMUs usually use a set of resourcesyrefeto as input indices, and transform
them into a set of outcomes, referred to as outplites. The CCR model is developed for
constant returns to scale of DMUs. Banker, Charaed,Cooper (1984), promoted it to variable
returns to scale.

DEA effectively divides DMUs into two groups:fiefent DMUs and inefficient DMUs. The
efficiency score of efficient DMUs is equal to omed the efficiency score of inefficient DMUs
is less than one. It should be noted that the iefficDMUs do not necessarily have the
equivalent performance in real practices. In trectical applications, it is necessary to rank all
DMUs, or find the most efficient DMU. For this pauge, different approaches have been
proposed. Cross efficiency (Liu and Peng, 2008pesLefficiency (Andersen and Petersen,
1993), imposing restrictions on the weights anchgisi common set of weights (Sexton et al.,
1986; Allen, 1997), are some examples of theseoagpes.

Mentioned approaches solve at leastone lineak BiBdel for each DMU to find the most
efficient DMUs. However, some researchers propasgitbus methods to determine the most
efficient DMU by solving just one model, (KarsakdaAhiska, 2005;Amin and Toloo, 2007;
Amin, 2009; Toloo and Nalchigar, 2009; Foroughil2doloo, 2012; Wang and Jiang, 2012;
Foroughi, 2013; Toloo, 2014a; Toloo, 2014b; Tol@dl4c; Toloo and Ertayb, 2014; Toloo,
2015).
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In a recent paper, Toloo, (2012), proposed aintgrated mixed integer programming — data
envelopment analysis (MIP-DEA) model to find thesmBCC-efficient DMU.We show that
this model may lead to infeasibility in some casé& also, show that when the model is
feasible, the DMU reported as the most BCC-effiienay be wrong (see example 3 in the
section 4).The aims of the current paper are teldpvnew models to find the most BCC-
efficient DMUs and eliminate the mentioned drawlsack addition, we propose a new
algorithm to find and rank the other efficient DMU$e remainder of the paper is organized as
follows: in section 2, the proposed model by To{@012), is presented and the infeasibility
problem of the model has been shown by an exan§#etion 3, presents an improved
integrated DEA modeland a new algorithm to find aadk BCC-efficient DMUs. Numerical
examples and conclusion are given in section 45anelspectively.

2- Infeasibility problem of Toloo’s Model
Recently, Toloo, (2012), proposed a new MIP-Dadel to find the most BCC-efficient
DMU by a common set of optimal weights, as follows:

M* =Min d
st. d

max

max_dj =20; J =1..k

Sux <L j=1..k

i=1

DUy —Uo =D X +d; =0 j =1k
r=1 i=1

Zk:ej =k-1;
j=1

1)
djsMHj; j=1..k
6, <Nd; j=1..k
dj >0; j=1..k
6,0{01}; j=1..k
u=&; r=12..m
V,2g; i=12..n

Uyis freein sign,

WhereM andN are large enough numbexsis the amount ofj input consumed by DMUYy,;
is the amount ofyf output produced by DMj =12,... k;r =12,...m&i =12,...,n) .dj is the
deviation of DMV from the BCC-efficiencyd

minimized. £ is the maximum non-Archimedean epsilon. He propdbedfollowing linear
programming (LP) to determire :

is maximum inefficiency that should be

max
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Toloo and Nalchigar, (2009),proved that model §¢quivalent to the following model (3):

£ =max ¢
st.
n 3
Zvixijsl; j=1..k 3)
i=1
v,—£20; i=12,...n
Toloo, (2012),showed that the optimal value of mMod¢3) is equal to

* 1
£ = - .
max{)_x;:j =12,...k}
i=1

He also proved that model (1), reports only simgle BCC-efficient DMU with the common
set of optimal weights. In the other words, atapémal solution of model (1)dp =0 for only

one pU{12..k}and d; #0,[Jj # p .It should be noted that, in model (1),DMis BCC-
efficient if in the optimal solution of the moded; =0. The following example shows the case
of infeasibility of model (1).
Example 1 Consider 3 DMUs each uses two inputs to produeecutput.

Table 1 Data for 3 DMUs

DMU No. I1 P (o)
1 1 1 2
2 2 1 4
3 1 2 4
For this example, the maximum non-Archimedeas is 1 =l.
max{l+12+12+1} 3

Now, by considering the value af =%, we show that model (1) is infeasible.From the

constraints of this model for the data presentadbie 1,we have:
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v, +v, <1 A
2v,+v,<1 B
v,+2v,<1 C
2u-u,-v,-v,+d, =0 D
4u, —u,-2v, -v,+d, =0 E
4u, -Uy -V, —2v,+d; =0 F

From the other constraints of model (1), we haye,,v, 2% & d;20 j=123.Thus:

vl,vzzé =2+, 21& v, +2v,21 G

Hence, fromthe constraintsB)fCandswe should have:

1
2V +V, =18& Vv, +2v, =1 =53, +3v, =2 = v, +V, =§ DOy =v, =%
Now, by considering the constraintsandFwe have
(E)+(-F)=d,-d;=0 = d, =d,
In this example for only onepl] {123e haved,= 0O, and for the others we have
d;>0,0j#p, (see theorem 4 in Toloo, 2012). So, we showsed, =0& d,,d;>0.

Fromthe constraintD, we haveu0=2u1—§20, (note thatulzé ).Now by considering

(E) - (2% D) ,we should have:
u0+d2+%=0 0f? . u,<0

This is inconsistent witti, = 0.So, model (1) is infeasible for this example.

3- Developed improved model

It was shown that the proposed model of Tol@91@), may be infeasible. The purpose of
model (1) is finding a set of weights such thatyomhe DMU has the largest efficiency score
corresponding to those weights. Hence, the modgl meainfeasible when there are more than
one BCC-efficient DMU. In this section, an integrdtDEA model proposed which is always
feasible and can determine a single most BCC-efficDMU, when such a DMU exists, and
otherwise proposes a set of BCC-efficient DMUs las most BCC-efficient. The model is
formulated as follows.
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j=1
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u2g; r=12..m
uyis freein sign,

Whered; is a binary variable ang3, is considered because is discrete.d; - f; is the
deviation of DMY from the BCC-efficiency and,, is maximum inefficiency that should be
minimized. Note that maximizing the minimum valugsf; is equivalent to minimizing the

maximum values ofd; —=3;, [j . So this model minimizes the maximum inefficierldye

optimal non-Archimedean epsilon is obtained by isgithe following model (5).
£ =max &

st. Zvixij <1 j=1..k
i=1

> U Y —Up =D V% +dj -5 =0, = 1.k
r=1

i=1
k 5
D dj=k-1 ®)
j=1
Osﬂjsl, dj {01}; j=1..k
u-£20; r=12..m

v,—€20; i=12,..,n
Uyis freein sign,
The lemmas 1 and 2 prove that model (4) and m&jelré always feasible.

Lemma 1 model (5) is always feasible.

Proof: lete =u, =v, =u, =d, =£,=0,00i ,r &d; =p; =10 #1. Clearly,(v,u,d, B,u,, )
is a feasible solution of model (5), where

V=V, Vs, V), U=(U,Uy,..u0U,), d=(d,,d,,....d, ), B=(8,,05,.---.5)
Lemma 2 model (4) is always feasible.

Proof:Suppose(g; ,v ,u’,d", 8 ,u, Jobe an optimal solution of model (5), in this case
(A VoU, 0, B,Ug) = (MIN{ B, B5r... B}, VU, d, B, up) s a feasible solution of model (4).
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Theorem 1, proves that model (4) finds a singletrB&C-efficient DMU.
Theorem 1 solving model (4) gives a single BCC-efficient DM

*

Proof: supposéd. ..,v,u’,d", 5 ,u,)to be an optimal solution of model (4), by consiiigr
k
the constrainEdj =k -1, there is only onp{12,....k puchthatl, =0 andd; =10j # p

j=1
. According to the third type constraints of mo@Blwe have:

m * *
m n Zuryrp_uo
DUy, U= VX, =fB,20 = L >1
r=1 i=1

D Vi X
i=1

We also show that at the above optimal solutioa, dfficiency score of other DMUs are less
than or equal to one and this completes the pFmfDMU; (0j # p), we have:

m n
dj=1&0< B <10z p =d; -5 20= D Uy, ~Uy =) VX <0
r=1 i=1

m * *
Zuryrj ~ Uy
= r=1 - :
D%
i=1

The above expression shows that at the optirefijivs the other DMUs have the efficiency
score less than or equal to one. It should be nttadif ,8; >M" >0 then DMUY, is super

efficient, since the efficiency score of DMUk larger than one while the efficiency score of
other DMUs is less than or equal to one. Note thabrem 1 does not say that there are only
one BCC-efficient DMU but reports one most BCC-@éint DMU form a set of BCC-efficient
DMUs.

<1

3-1- Finding and Ranking other efficient DMUs

To rank efficient DMUs in DEA, different apprdaes have been developed by researchers.
Hosseinzadeh Lotfi et al., (2013), reviewed thekiragn method in DEA and divided them into
seven groups. The readers can refer to this papdurfther discussion on ranking approaches.
In this section, a new algorithm is presented ta fand rank BCC-efficient DMUs. This
algorithm is as follows:

Step 0: Solve model (4), the DMU with the maximudy,,, is the most BCC-efficient DMU,
say DMU,,let T ={ p}.

Step 1:Add the constraint; =1 [Jj T to model (4) and resolve it.

Step 2:If the model is infeasible there is no other mMBEC-efficient DMU exist and” shows
the set of most BCC-efficient DMUs, else suppose & the optimal solutialy = .0

Step 3:Let T =T O{l} and go to step 1.

In this algorithm the BCC-efficient DMUs have befind, one by one until the model with
additional constraints will be infeasible. So, iretresult of using this algorithm the decision
maker could find and rank all the most BCC-effi¢ci&MUs. Indeed, DMUs are ranked based
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on the optimal values df,,that represents the maximum distance that Digah have from
the best DMUs ifT.

The proposed algorithm is necessary to show tleatlétermined DMU by the model (4) is the
best DMU. Also, this algorithm capable us to fihe bther BCC-efficient DMUs with the same
efficiency score, similar to the example 2. ThesBrg ranking approaches cannot be used with
the model (4) to find and rank BCC-efficient DMUsor example, the proposed method by
Andersen and Petersen, (1993) to rank the effiéditUs should be used with the traditional
BCC-DEA model.

4-Numerical examples

In this section, two numerical examples are g to shows the capability and usefulness
of the proposed methodology of the paper.
Example 2 In this example, we apply model (4) to find th@sin BCC-efficient DMU in
example 1.In section 2, it was shown that modeliglinfeasible for this example. Solving
model (5) for data presented in table 1gisies 0333. The following table 2 shows the results

of the proposed algorithm step by step for datagared in table 1.

Table 2 results of the proposed algorithm for example 2

Eff. DMU,; = 0.1670, Eff. DMU= 0.9999,Eff. DMU= 1.0004
Step 0 d. =05x107, d}=0T=(3}
First Step 1 Add the constraing=l to model (4)and resolve it
fteration , Eff. DMU,= 0.5011, Eff. DMy= 1.0004, Eff. DMU= 0.9999
Step d., =05x10%, d)=0
Step 3 T=(2, 3}
itseig?igg Steps 1, 2 Model (4) is infeasible with the additibrestrictions of grd;=2

*

In the step 0, solving model (4) with =  033Rads tod,, =S; = 05x10°%andd, = 0.
This solution implies that DMYJ is most BCC-efficient DMU. Solving model (4) with
additional restriction ofl; =1, results tod,,, =/, =05x10°andd, =0. So DM, is also
most BCC-efficient. Solving model (4) with an adloiital restriction ofd, =1&d; =1 or
d, +d, =2, leads to infeasibility. Therefore, model (4) imegl that both DMy and DMU; are

BCC-efficient.

It may be wrong to search just one efficient Di$Ja single most efficient DMU, because in
fact there are may be different DMUs in a set of U8as the most efficient. The above
example shown this fact and results both DMUs 2 Zras the most efficient. Also,it can be
shown that other ranking methods as Andersen aratdea, (1993), result to the same score for
DMU 2 and 3 and could not discriminate between BMidd DMU;. We found that the only
way to determine just one DMU as most BCC-efficiBMU is restricting the feasible region
using weight restrictions.

Example 3: This numerical example, contains a real dataoéteien facility layout designs
(FLDs) that be shown in table 3, originally prowvidiey Ertay et al., (2006) and used in Toloo,
(2012). Each FLD (or DMU) has two inputs: cost aadjacency score and four outputs:
flexibility, hand-carry utility, quality and shapation.
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Model (5) is applied for data presented in Tabkng leads te, =26x10°. To find the most
BCC-efficient FLD solving model (4) gives, ., =8, =0. 63&8dd,,= Q Solving model (4)
with an additional restriction ofi,, =1 givesd,.,, = 3, =0.2187and d,, = 0.Decreasing the

*

optimal value ofd,, emphases that FLPis the most BCC-efficient DMU, and the DMUs

the second most BCC-efficient DMU.It should be dotieat the proposed models of Wang and
Jiang, (2012), and Foroughi, (2011), to find thestr®CC-efficient DMU, selects FLipas the
most BCC-efficient DMU.The result of applying theoposed algorithm to find and rank the
other most BCC-efficient FLDs, summarized in tadlNote that, model (1) selects DMlAs
the most BCC-efficient FLD. As it can be seen frtable 4, FLOQ, is one of the most BCC-
efficient DMUs and it is not the only most BCC-efént DMU. This implies that model (1) is
unable to find the most efficient DMU, correctly.

Table 3. Inputs and outputs of 19 FLDs

DEA inputs DEA outputs
MU No. Cost ($) Adéiccz)?gcy Shape rate| Flexibility | Quality Hal;lt(ij"-ti/arry
1 20309.56 6405 0.4697 0.0113 0.041 30.89
2 20411.22 5393 0.438 0.0337 0.0484 31.34
3 20280.28 5294 0.4392 0.0308 0.0653 30.26
4 20053.20 4450 0.3776 0.0245 0.0638 28.03
5 19998.75 4370 0.3526 0.0856 0.0484 25.43
6 20193.68 4393 0.3674 0.0717 0.0361 29.11
7 19779.73 2862 0.2854 0.0245 0.0846 25.29
8 19831.00 5473 0.4398 0.0113 0.0125 24.80
9 19608.43 5161 0.2868 0.0674 0.0724 24.45
10 20038.10 6078 0.6624 0.0856 0.0653 26.45
11 20330.68 4516 0.3437 0.0856 0.0638 29.46
12 20155.09 3702 0.3526 0.0856 0.0846 28.07
13 19641.86 5726 0.269 0.0337 0.0361 24.58
14 20575.67 4639 0.3441 0.0856 0.0638 32.20
15 20687.50 5646 0.4326 0.0337 0.0452 33.21
16 20779.75 5507 0.3312 0.0856 0.0653 33.60
17 19853.38 3912 0.2847 0.0245 0.0638 31.29
18 19853.38 5974 0.4398 0.0337 0.01Y9 25.12
19 20355.00 17402 0.4421 0.0856 0.0217 30.02
Table 4 Ranking of efficient FLDs
Efficient FLDNo. Ranking o
10 1 0.6319
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12 2 0.2187
15 3 0.1385
16 4 0.1179
7 5 0.0324
17 6 0.0294
14 7 0.0143

Example 4: The data of this example, twelve flexible manufiaicig systems (FMSs), are taken
from Wang and Jiang, (2012) that are presentedblet5. The goal is finding the most BCC-
efficient FMSs.

Input 1: Annual operating and depreciation cost measunaditsof $100,000,

Input 2: Floor space requirements of each specific systeasaredin thousands of square feet,
Output 1: Improvements in qualitative benefits,

Output 2: Work in process (WIP),

Output 3: Average number of tardy jobs,

Output 4: Average yield

For this example, solving the model (3) giges 0.040258. Model (1) is infeasible with the

£ . Indeed, by using the Toloo (2012) model, we areblen#o find the best FMS. Now,we
apply the proposed model in this paper to findrtost BCC-efficient FMS. Appling the model

(5) for the data presented in table 5 implies= 0.01781876 Model (4) with thes, identifies

DMU, as the most BCC-efficient FMS. This is also thiect®n made byWang and Jiang,
(2012).

Table 5. Inputs and outputs of 12FMSs

DEA inputs DEA outputs
DMU No.
1 2 1 2 3 4

1 17.02 5 42 45.3 14.2 30.1
2 16.46 4.5 39 40.1 13 29.8
3 11.76 6 26 39.6 13.8 24.5
4 10.52 4 22 36 11.3 25

5 9.5 3.8 21 34.2 12 20.4
6 4.79 5.4 10 20.1 5 16.5
7 6.21 6.2 14 26.5 7 19.7
8 11.12 6 25 35.9 9 24.7
9 3.67 8 4 17.4 0.1 18.1
10 8.93 7 16 34.3 6.5 20.6
11 17.74 7.1 43 45.6 14 311
12 14.85 6.2 27 38.7 13.8 25.4

5- Conclusion

In this paper, the drawbacks of the integratefiDiodel to find the most BCC-efficient DMU
introduced by Toloo, (2012), is discussed. It whaswn that this model may be infeasible in
some cases,and in the feasible cases, it cannetcdgrfind the most BCC-efficient DMU, (see
example 3). To overcome the drawbacks, a new iatedrDEA model presented. It was proved
that the proposed model is always feasible andindrthe most BCC-efficient DMUs.Also, we
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argued that the most BCC-efficient DMU may not lmgke and in some cases there are several
most BCC-efficient DMUs. To find and rank all m@&€CC-efficient DMUs, a new algorithm
proposed. The proposed approach in this paper pfiedpto a real data oftwelve flexible
manufacturing systems (FMSs) and nineteen faddipput designs (FLDs).
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