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Abstract 
In modeling a cold standby redundancy allocation problem (RAP) with imperfect switching 
mechanism, deriving a closed form version of a system reliability is too difficult. A 
convenient lower-bound on system reliability is proposed and this approximation is widely 
used as a part of objective function for a system reliability maximization problem in the 
literature. Considering this lower-bound does not necessarily lead to an optimal solution. In 
this study by assuming that working time of switching mechanism is exponentially 
distributed, exact value of system reliability is derived analytically through applying Markov 
process and solving a relevant set of differential-difference equations. The Runge-Kutta 
numerical scheme is also employed to verify the accuracy of the results. It is assumed that 
component time-to-failure follows an Erlang distribution which is appropriate for most 
engineering design problems by giving the possibility of modeling different increasing 
hazard functions. A new mathematical model is presented and its performance is evaluated 
through solving a well-known example in the literature. Results demonstrate that a higher 
level of system reliability is achievable through implementing the proposed model.   
 
Keywords: Cold standby, Redundancy allocation problem, System reliability, Markov 
process, Differential-difference equations 

1- Introduction 
   Reliability is a fundamental factor playing a crucial role in evaluating the performance of engineering 
systems. The necessity for enhancing reliability in many real world engineering systems including power 
plants, production, manufacturing and industrial systems has made the reliability optimization as one of the 
most important problems which has seized the interest of many researchers. For improving a system 
reliability, one of the following approaches may be chosen: (i) improving components reliabilities, (ii) 
utilizing redundant components in parallel, (iii) combining components reliabilities improvement and 
utilizing redundant components in parallel and (iv) reassigning interchangeable components (Kuo and 
Prasad, 2000). The second approach which is called redundancy allocation problem (RAP) is widely studied 
in the literature. RAP is categorized into two classes. In first one, discrete component choices with 
predetermined characteristics such as reliability, cost, weight, volume, etc. are available. The objective is 
to determine the types of utilized components and the associated redundancy levels. 
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   In second one, component reliability is unknown and considered as a design variable, whereas the other 
component characteristics are defined as increasing functions of component reliability (Coit, 2003). 
   The two well-known types of redundancy strategies are called active and standby. In active redundancy, 
all components operate simultaneously at time zero, whereas in standby redundancy, redundant components 
are sequentially put into operation when the active one fails. Standby redundancy is classified into three 
types: cold, warm and hot standby. In cold standby redundancy, redundant component does not fail in 
standby mode and its failure rate is zero. In warm standby redundancy, the inactive component may fail 
before being put in operation and its failure rate is less than that of the same component in active mode. In 
hot standby redundancy, the failure rates of the standby component and the same component in active mode 
are equal.   
   In cold standby redundancy, detection of the failed component and activation of the redundant one are 
both performed by a detection and switching mechanism not necessarily perfect. Two scenarios, Cases 1 
and 2, are identified for this switching mechanism. In Case 1, the switching mechanism monitors 
continuously the system functionality to detect any failure and to switch-on the redundant component, if 
one is available. It is assumed that the switching mechanism has a reliability function and may fail at any 
time. As long as the switching mechanism is in working condition, the failure of the active component is 
detected and is simultaneously replaced by the available standby component. In this case, the system does 
not fail necessarily due to the switching mechanism failure because no detection and replacement may be 
required during the remainder of the system mission time (Coit, 2001). In Case 2, switching mechanism 
fails with a constant probability in response to an active component failure. 
   A wide variety of exact optimization methods and meta-heuristic techniques such as dynamic 
programming (Bellman and Dreyfus, 1958, Fyffe et al., 1968, Nakagawa and Miyazaki, 1981, Yalaoui et 
al., 2005), integer programming (Coit, 2001, Coit, 2003, Misra and Sharma, 1991), branch and bound 
(Bulfin and Liu, 1985, Djerdjour and Rekab, 2001), geometric programming (Federowicz and Mazumdar, 
1968), Lagrangean multipliers (Govil and Agarwala, 1983), genetic algorithm (GA) (Coit and Smith, 1996, 
Tavakkoli-Moghaddam et al., 2008, Ardakan and Hamadani, 2014), simulated annealing (SA) (Chambari 
et al., 2013), particle swarm optimization (PSO) (Chambari et al., 2012) and non-dominant sorting genetic 
algorithm (NSGA II) (Chambari et al., 2012, Safari, 2012) are applied to cope with RAPs. Comprehensive 
overviews on the models and methods in reliability optimization problems are also presented by Kuo and 
Prasad (2000) and Soltani (2014). 
   Coit (2001) formulated the RAP for the case of series-parallel systems with cold standby redundancy. He 
considered an Erlang distribution for the component time-to-failure under the two scenarios of imperfect 
switching mechanism. He stated that for Case 1, it is too difficult to obtain the exact value of system 
reliability. Therefore, a convenient lower-bound on system reliability was used to approximate the 
reliability. This approximation shed light on the modeling of the RAP in series-parallel systems containing 
components with Erlang distribution time-to-failure and imperfect switching mechanism. In many studies, 
this approximation is applied as a term of objective function to tackle the complexity and difficulty of 
modeling such problems. Some of these studies are addressed here. 
   Coit (2003) extended his formulation by assuming that either active or cold standby redundancy strategies 
can be selected for each subsystem. An equivalent problem formulation was introduced and integer 
programming method was applied to obtain the optimal solutions. Tavakolli-Moghaddam et al. (2008) and 
Chambari et al. (2013) proposed a GA and SA algorithm for solving this problem, respectively. Soltani et 
al. (2014) presented a nonlinear redundancy allocation model with the choice of redundancy strategy. In 
this model, the parameters such as scale parameter of Erlang distribution for components time-to-failure, 
cost and weight of components, available budget and allowable weight were considered as interval 
uncertainties. Considering the scale parameter of Erlang distribution as interval uncertainty, Sadjadi and 
Soltani (2015) formulated the problem through Min-Max regret criterion. They applied a Benders’ 
decomposition method to deal with this problem. Chambari et al. (2012) and Safari (2012) formulated the 
problem as a multi-objective integer nonlinear programming. The two objective functions were maximizing 
the system reliability and minimizing the system cost. In these studies, NSGA II and PSO algorithms were 
proposed to solve the problem. Ardakan and Hamadani (2014) introduced mixed redundancy strategy, 
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which is the combination of active and cold standby redundancy strategies in a particular subsystem. They 
formulated the problem and developed a GA. 
   In this study, a new redundancy allocation model for nonrepairable series-parallel systems with cold 
standby redundancy is presented. In this work, the component types and the redundancy levels are 
determined in order to maximize the system reliability. It is assumed that the component time-to-failure 
follows an Erlang distribution, appropriate for components with increasing hazard functions. The problem 
is formulated for Case 1 and Case 2 of imperfect switching mechanism. It is assumed that for Case 1, the 
switching mechanism time-to-failure follows an exponential distribution. An explicit expression of system 
reliability is obtained by means of Markov process and is applied as the coefficients of objective function.   
The rest of the paper is organized as follows: In Section 2, the system reliability function for two Cases of 
imperfect switching mechanism is obtained analytically. Section 3 describes the problem and presents the 
proposed mathematical model. In order to evaluate the performance of the proposed model, a well-known 
numerical example is solved in Section 4. Finally, conclusion and future research directions are presented 
in Section 5. 
   
2- Reliability function 
   In this section, reliability function of a parallel cold standby subsystem consisting of n  components with 
two cases of switching mechanism is derived analytically. It is assumed that time-to-failure of each 
component is distributed according to an Erlang distribution with shape parameter k and scale parameter
λ .  Moreover, for Case 1, the working time of switching mechanism is assumed to be exponentially 
distributed with parameterβ . Hence, the reliability function of switching mechanism is represented by

tet βρ −=)( .  
2-1- Case 1: Continuous monitoring and detection   
   Let )(tN  be the state of the non-repairable subsystem at time t . Then, }0);({ ≥ttN  is a continuous-time 
Markov process whose states are indicated by ),,( mji  where i  and j  represent the number of failed 
components and the number of failures occurred for )1( +i th active component, respectively and m  
represents the switching mechanism status. When the switching mechanism fails, 0=m  and while the 
switching mechanism is in working state, 1=m . The state transition diagram of this subsystem is 
illustrated in figure 1. The letter F represents the subsystem failure state.  
 

Figure 1. State transition diagram of cold standby subsystem with Case 1 of switching mechanism  
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Representing the probability of being in state ),,( mji  at time t   by )(,, tP mji  for 1,,0 −⋅⋅⋅= ni , 
1,,0 −⋅⋅⋅= kj  and 1,0=m , the set of differential-difference equations is attained by: 

)()()( 1,0,01,0,0 tPtP
dt
d βλ +−=   (1a) 

)()()()( 1,1,1,,1,, tPtPtP
dt
d

jijiji −++−= λβλ  1,,11,,0 −⋅⋅⋅=−⋅⋅⋅= kjni  (1b) 

)()()()( 1,1,11,0,1,0, tPtPtP
dt
d

kiii −−++−= λβλ  1,,1 −⋅⋅⋅= ni  (1c) 

)()()()( 0,1,1,,0,,0,, tPtPtPtP
dt
d

jijijiji −++−= λβλ  1,,11,,0 −⋅⋅⋅=−⋅⋅⋅= kjni  (1d) 

)()()( 1,0,0,0,0,0, tPtPtP
dt
d

iii βλ +−=  1,,0 −⋅⋅⋅= ni  (1e) 

Assuming that the process is initially in state )1,0,0( , the initial conditions are denoted by:  

1,0),0,0(),(0)0(
1)0(

,,

1,0,0

=≠=

=

mjiP
P

mji

 
 

 Thus, applying Laplace transforms to equation (1) leads to the following set of difference equations:   
)(~)(1)(~

1,0,01,0,0 sPsPs βλ +−=−   (2a) 

)(~)(~)()(~
1,1,1,,1,, sPsPsPs jijiji −++−= λβλ  1,,11,,0 −⋅⋅⋅=−⋅⋅⋅= kjni  (2b) 

)(~)(~)()(~
1,1,11,0,1,0, sPsPsPs kiii −−++−= λβλ  1,,1 −⋅⋅⋅= ni  (2c) 

)(~)(~)(~)(~
0,1,1,,0,,0,, sPsPsPsPs jijijiji −++−= λβλ  1,,11,,0 −⋅⋅⋅=−⋅⋅⋅= kjni  (2d) 

)(~)(~)(~
1,0,0,0,0,0, sPsPsPs iii βλ +−=  1,,0 −⋅⋅⋅= ni  (2e) 

Solving equations. (2a), (2b) and (2c) recursively gives: 

11,, )(
)(~

++

+

++
= jki

jki

ji s
sP

βλ
λ

 1,,01,,0 −⋅⋅⋅=−⋅⋅⋅= kjni  (3) 

On making the substitution of equation (3) into equation (2d), one can arrive at: 
  

)(~
))((

)(~
0,1,10,, sP

sss
sP jijki

jki

ji −++

+

+
+

+++
=

λ
λ

βλλ
βλ

 1,,11,,0 −⋅⋅⋅=−⋅⋅⋅= kjni  (4) 

The prior equation is a nonhomogeneous difference equation whose initial condition is obtained through 
evaluating )(~

1,0, sPi  from equation (3) and then substituting it into equation (2e) as:   

10,0, ))((
)(~

++++
= ki

ki

i ss
sP

βλλ
βλ

 1,,0 −⋅⋅⋅= ni  (5) 

Defining the z-transform of )(~
0,, sP ji  as ∑

∞

=

=Π
0

0,, )(~)(
j

j
ji zsPz and taking the z-transform of equation (4) 

results in:  
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∑∑∑
∞

=
−

∞

=

∞

= +
+








++

=
1

0,1,
1

0,0,
1

0,, )(~)(~)(~
j

j
ji

j

j

i
j

j
ji zsP

s
z

s
sPzsP

λ
λ

βλ
λ

  (6) 

Therefore, 

)(
1

)(~)(~)( 0,0,0,0, zz
sz

s

z
ssPsPz ii Π

+
+

++
−

++=−Π
λ

λ

βλ
λ
βλ

λ

     (7)   

By solving equation (7), )(zΠ is attained by: 



















++
−

+
−

+++

+
−

=Π
)1)(1(1

1)(~)( 0,0,

z
s

z
s

z
s

z
s

sPz i

βλ
λ

λ
λ

βλ
λ

λ
λ   (8) 

Equation (8) can be rewritten as: 



















++
−

+

−

+
−

+

+

+
−

=Π
z

s

s

z
s

s

z
s

sPz i

βλ
λ
β
λ

λ
λ
β
λ

λ
λ 111

1)(~)( 0,0,   (9) 

Taking the inverse z-transform of equation (9) yields: 









++

+
−

+
+

+
+

= jjj
iji s

s
s

s
s

sPsP )()()()(~)(~
0,0,0,, βλ

λ
β
λ

λ
λ

β
λ

λ
λ

  (10) 

Substituting equation (5) into equation (10) results in the following equation:  

11110,, )()()()()(
)(~

++

+

+

+

++

+

++
−

+++
+

+++
= jki

jki

kij

jki

kij

jki

ji sssss
sP

βλ
λ

βλλ
λ

βλλ
βλ

  (11) 

 

for 1,,1,1,,0 −⋅⋅⋅=−⋅⋅⋅= kjni  . 

The Laplace transform of the subsystem reliability is achieved by:  

( ) ∑∑∑∑
−

=

−

=
+

+−

=

−

= +++
=+=

1

0

1

0
1

1

0

1

0
0,,1,, )()(

)(~)(~)(~ n

i

k

j
kij

jkin

i

k

j
jiji ss

sPsPsR
βλλ

λ
  (12) 

Hence, the reliability function of subsystem by taking the inverse Laplace transform is derived as: 

∑∑
∑

∑−

=

−

=

=

−

−

=

++−

+









































−








−

−+−
−

+






 −+−
−

=
1

0

1

0

0

1

0

1)(

!
)(1

)1(

!
)(1

)1(
)()(

n

i

k

j
j

m

m
jt

ki

m

m
jt

jki

m
t

mj
mjki

e

m
t

j
mjki

e
tR

β

β

β
λ

λ

βλ

 (13) 

It should be noted that this equation is obtained by mathematical induction proof.   
Following the work of Coit (2001), the lower-bound on subsystem reliability can be determined by  
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







+= ∑ ∑

−

=

−

=

−
1

0

1

!
)()(

!
)()(

k

l

kn

kl

ll
t

l
tt

l
tetR λρλλ

 (14) 

Assuming that the switching mechanism has an exponential time-to-failure distribution with parameterβ , 
then equation (14) may be rewritten as   









+= ∑ ∑

−

=

−

=

−−
1

0

1

!
)(

!
)()(

k

l

kn

kl

l
t

l
t

l
te

l
tetR λλ βλ

 (15) 

In order to assess the accuracy and validity of the proposed reliability function given by equation (13), the 
Runge-Kutta numerical scheme is adopted to solve the set of equation (1). To this end, as a case study, the 
parameters are considered as 5=n , 4=k , 05.0=λ  and 01.0=β . As shown in figure 2, the proposed 
reliability function and the one obtained numerically are well the same. The lower-bound on reliability 
function presented in equation (15) is also included in this figure. 
  

Figure 2. A comparison between the subsystem reliability functions obtained from Eq. (13), numerical scheme and 
the relevant lower-bound  

 
Furthermore, mean time-to-failure of the cold standby subsystem can be achieved by evaluating )(~ sR   at

0=s . Thus, based on equation (12), MTTF is determined by: 

∑
−

= +
=

1

0
)(

n

x

kxKMTTF
βλ

λ
λ

  (16) 

In case of 0=β , the switching mechanism becomes reliable and the MTTF of subsystem is obtained as 

λ
nk  which is the expected value of the sum of n iid Erlang random variables with shape parameter k  and 
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scale parameterλ . As parameterβ  goes to infinity, the subsystem turns to be a non-redundant system and 

hence the MTTF of subsystem approaches
λ
k . Considering a series-parallel system consisting of s

subsystems, the reliability function and MTTF are also obtained as the followings: 

∏
=

=
s

i
i tRtR

1

)()(  (17) 

∫
∞

=
0

)( dttRMTTF  (18) 

 

2-2- Case 2: detection and switching only at failure time  
   In this case, the probability of successful detection and replacement is symbolized by ρ . The states of 
the relevant continuous-time Markov process are indicated by ),( ji where i  and j  represent the number 
of failed components and the number of failures occurred for )1( +i th active component, respectively. The 
state transition diagram of this subsystem is illustrated in figure 3 in which the subsystem failure state is 
symbolized by F. 

 
 

Figure 3. State transition diagram of cold standby subsystem with Case 2 of switching mechanism 

 
Representing the probability of being in state ),( ji  at time t   by )(, tP ji  for 1,,0 −⋅⋅⋅= ni  and

1,,0 −⋅⋅⋅= kj , the set of differential-difference equations is expressed by: 
 

)()( 0,00,0 tPtP
dt
d λ−=

 
 (19a)  

)()()( 1,,, tPtPtP
dt
d

jijiji −+−= λλ
 

1,,11,,0 −⋅⋅⋅=−⋅⋅⋅= kjni  (19b) 
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)()()( 1,10,0, tPtPtP
dt
d

kiii −−+−= ρλλ  1,,1 −⋅⋅⋅= ni  (19c) 

If it is assumed that the process is initially in state(0,0) , the initial conditions are given by:  

)0,0(),(0)0(
1)0(

,

0,0

≠=

=

jiP
P

ji

 
 

Therefore, applying Laplace transforms to equation (19) results in the following set of difference equations:   
)(~1)(~

0,00,0 sPsPs λ−=−   (20a) 

)(~)(~)(~
1,,, sPsPsPs jijiji −+−= λλ  1,,11,,0 −⋅⋅⋅=−⋅⋅⋅= kjni  (20b) 

)(~)(~)(~
1,10,0, sPsPsPs kiii −−+−= ρλλ  1,,1 −⋅⋅⋅= ni  (20c) 

The preceding equation can be solved recursively to obtain )(~
, sP ji  as:   

1, )(
)(~

++

+

+
= jki

jki
i

ji s
sP

λ
λρ  1,,01,,0 −⋅⋅⋅=−⋅⋅⋅= kjni  (21) 

The Laplace transform of the subsystem reliability is stated by:  

∑∑ ∑∑
−

=

−

=

−

=

−

=
++

+

+
==

1

0

1

0

1

0

1

0
1, )(

)(~)(~ n

i

k

j

n

i

k

j
jki

jki
i

ji s
sPsR

λ
λρ   (22) 

Accordingly, one can readily arrive at the reliability function of subsystem by taking the inverse Laplace 
transform as follows: 

∑∑
−

=

−

=

+
−

+
=

1

0

1

0 )!(
)()(

n

i

k

j

jki
it

jki
tetR λρλ   (23) 

Equation (23) can be rewritten by: 









+

+= ∑ ∑∑
−

=

−

=

+−

=

−
1

1

1

0

1

0 )!(
)(

!
)()(

n

x

k

l

lkx
x

k

l

l
t

lkx
t

l
tetR λρλλ  

  (24) 

Replacing lkx +  by l  in Eq. (24) yields: 









+= ∑ ∑∑

−

=

−+

=

−

=

−
1

1

1)1(1

0 !
)(

!
)()(

n

x

xk

kxl

l
x

k

l

l
t

l
t

l
tetR λρλλ   (25) 

This equation is exactly same as the reliability function derived by Coit (2001). An approximation for 
subsystem reliability extracted by Coit (2003) is also given in equation (26). 









+=









+=

∑∑

∑ ∑∑
−

=

−
−

=

−

−

=

−+

=

−
−

=

−

1
1

1

0

1

1

1)1(
1

1

0

!
)(

!
)(

!
)(

!
)()(

kn

kl

l
n

k

l

l
t

n

x

xk

kxl

l
n

k

l

l
t

l
t

l
te

l
t

l
tetR

λρλ

λρλ

λ

λ

 

(26) 
In addition, mean time-to-failure of the cold standby subsystem can be obtained by evaluating )(~ sRs  at

0=s . Thus, using Eq. (22), MTTF may be calculated from:  

∑
−

=

=
1

0

n

x

xkMTTF ρ
λ

  (27) 
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In case of 1=ρ , the switching mechanism becomes reliable and the MTTF of subsystem is expressed as 

λ
nk which is the expected value of the sum of n iid Erlang random variables with shape parameter k and 

scale parameter λ . When 0=ρ , the subsystem turns to be a non-redundant system and thus the MTTF of 

subsystem approaches
λ
k .  

3- Problem statement and formulation 
   In this section, systems with serial parallel structures are considered. The purpose is to maximize the 
system reliability at its mission time by allocating redundant components with cold standby strategy in 
some subsystems. It is assumed that component time-to-failure follows an Erlang distributions with two 
parameters shape and scale. This distribution gives the possibility of modeling a wide variety of 
increasing hazard functions which makes it appropriate for versatile engineering design problems. 
Moreover, when the shape parameter is equal to one, the Erlang distribution transforms to the exponential 
distribution. The system has imperfect switching mechanism according to Cases 1 and 2 introduced in 
section 2. Time-to-failure in Case 1 is assumed to be exponentially distributed. In addition, there is no 
repair or preventive maintenance and the replacement time is negligible. In each subsystem, component 
mixing is not allowed.  
The mathematical model and its parameters and decision variables for a series-parallel system with s  
subsystems and two linear constraints on cost and weight under the condition of cold standby redundancy 
are presented as the following integer programming model. 
 
3-1- Parameters and decision variables  
Parameters 

ijλ  Scale parameter of an Erlang distribution for component j  in subsystem i  

ijk  Shape parameter of an Erlang distribution for component j  in subsystem i  

iβ  Parameter of an exponential distribution for switching mechanism of Case 1 in 
subsystem i  

iρ  The probability of successful detection and replacement for Case 2 in subsystem i  

ijc  Cost corresponding to the component type j  available for subsystem i  

ijw  Weight corresponding to the component type j  available for subsystem i  

C  Available budget 
W  Allowable weight 

inmax,  Maximum number of allowable components in subsystem i  

s  Number of subsystems 

im  Number of component types available for subsystem i   

t  Mission time 
)(

1,, tR qji  Reliability of subsystem i  at time t  when 1q  of the component type j  are allocated 
under cold standby strategy 

 
Decision variables 

jin ,  Number of components of type j  utilized in subsystem i  under cold standby strategy 

1,, qjiX  A binary variable which is equal to one if 1q of the components of type j  is utilized in 
subsystem i   
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3-2- Proposed mathematical model 
  The proposed mathematical model is as follows: 

( )
1

max,

1

1 ,,
1 1 1

,, )(ln)(ln qji

s

i

m

j

n

q
qji XtRtRMax

i i

∑∑∑
= = =

=  (28) 

∑∑
= =

⋅⋅⋅==
i im
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The objective function (28) maximizes the series-parallel system reliability with cold standby redundancy 
strategy in which the natural logarithm function and the binary variable 

1,, qjiX  are applied to linearize the 

problem. )(
1,, tR qji  is achieved by equations (34) and (35) for Case 1 and 2 of imperfect switching 

mechanism, respectively. The derivations of these two equations are provided in Section 2. 
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Constraint set (29) indicates that for each subsystem only one type of component can be selected and the 
number of the allocated components ranges from 1 to inmax, . The redundancy level of each subsystem is 
determined using constraint set (30). Constraints (31) and (32) respectively restrict system’s cost and weight 
and constraint set (33) defines the binary variables of the problem. 
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4-Numerical example 
   In order to evaluate the performance of the proposed model, a well-known example taken from Coit 
(2001) is solved. In this example, a series-parallel system consisting of 14 subsystems is considered in 
which each subsystem has three or four component choices. Table 1 tabulates component cost, weight and 
Erlang distribution parameters. The objective is to maximize system reliability at a 100 hours mission time 
subject to constraints 130=C  for system cost and 170=W  for system weight. For each subsystem, cold 
standby redundancy can be used. The switching mechanism is imperfect and Case 1 with exponential time-
to-failure distribution and reliability equal to 0.99 at 100 hours for all subsystems is considered, i. e. 

ii ∀−= )99.0ln(01.0β . Also, the maximum number of allowable components in each subsystem is taken 
to be 6. 
   For this example, the proposed mathematical model with 288 binary decision variables is solved on a PC 
with a 3.00 GHz processor and 8 GB memory using General Algebraic Modeling System (GAMS) version 
23.5.1. The optimal solution of the proposed model and the one presented by Coit (2001) are compared in 
Table 2. As demonstrated in this table, the optimal solution of the model obtained by Coit (2001) 
corresponds to a system with system reliability of 0.9896, a system cost of 123 and a system weight of 170. 
However, the system reliability increases to 0.9898 by solving the proposed mathematical model. System 
cost and system weight are 116 and 170, respectively. As expected, by applying the proposed model which 
considers the exact reliability value instead of its convenient lower-bound as the coefficients of objective 
function, higher level of system reliability can be obtained. It should be remarked that the convenient lower-
bound on system reliability corresponding to the optimal solution presented by Coit (2001) is 0.9863. 
According to table 2, one can observe that the system configuration obtained by the two models only differs 
for subsystems 8, 9 and 12. The corresponding values of subsystems reliability are also depicted in figure 
4. 
 
 

Table 1. Component data for example 
i  
 Choice 1(j=1)  Choice 2 (j=2)  Choice 3 (j=3)  Choice 4 (j=4) 

 ijλ  kij
 

cij
 

wij
  

ijλ  kij
 

cij
 

wij
  

ijλ  kij
 

cij
 

wij
  

ijλ  kij
 

cij
 

wij
 

1 0.00532 2 1 3  0.000726 1 1 4  0.00499 2 2 2  0.00818 3 2 5 
2 0.00818 3 2 8  0.000619 1 1 10  0.00431 2 1 9  - - - - 
3 0.0133 3 2 7  0.0110 3 3 5  0.0124 3 1 6  0.00466 2 4 4 
4 0.00741 2 3 5  0.0124 3 4 6  0.00683 2 5 4  - - - - 
5 0.000619 1 2 4  0.00431 2 2 3  0.00818 3 3 5  - - - - 
6 0.00436 3 3 5  0.00567 3 3 4  0.00268 2 2 5  0.000408 1 2 4 
7 0.0105 3 4 7  0.00466 2 4 8  0.00394 2 5 9  - - - - 
8 0.0150 3 3 4  0.00105 1 5 7  0.0105 3 6 6  - - - - 
9 0.00268 2 2 8  0.000101 1 3 9  0.000408 1 4 7  0.000943 1 3 8 
10 0.0141 3 4 6  0.00683 2 4 5  0.00105 1 5 6  - - - - 
11 0.00394 2 3 5  0.00355 2 4 6  0.00314 2 5 6  - - - - 
12 0.00236 1 2 4  0.00769 2 3 5  0.0133 3 4 6  0.0110 3 5 7 
13 0.00215 2 2 5  0.00436 3 3 5  0.00665 3 2 6  - - - - 
14 0.0110 3 4 6  0.000834 1 4 7  0.00355 2 5 6  0.00436 3 6 9 
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Table 2. Comparison between the optimal solution of the 
proposed mathematical model and the one given by Coit (2001) 

i  Proposed model Coit (2001) 
 j  jin ,  j  jin ,  
1 3 3 3 3 
2 1 2 1 2 
3 4 3 4 3 
4 3 3 3 3 
5 2 3 2 3 
6 2 2 2 2 
7 1 2 1 2 
8 1 3 3 2 
9 1 2 2 2 
10 2 3 2 3 
11 3 2 3 2 
12 1 4 4 2 
13 2 2 2 2 
14 3 2 3 2 
System reliability 
(present study) 0.9898 0.9896 

Lower-bound - 0.9863 
Cost 116 123 
Weight 170 170 

 

Figure 4. Subsystems reliability at mission time 
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Figure 5. The system reliability function 

 

   The system reliability associated with the optimal solution of the two models is displayed in figure 5. To 
generate the results, using the data of tables 1 and 2, by substituting the associated value of optimal solution 
into equation (13), the reliability function of each subsystem is first obtained and then the system reliability, 
which is the product of subsystem reliability values, is calculated as a function of time. In order to 
investigate the influence of the switching mechanism reliability on the system reliability, figure 6 is 
displayed for three values of )100(ρ . As depicted, the system reliability is sensitive to the changes of 
switch reliability and increases as this parameter intensifies.  
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Figure 6. The effect of switch reliability on system reliability 

 
   Moreover, the MTTF of each subsystem and that of the entire system are calculated in table 3. As shown, 
increasing the switching mechanism reliability causes the subsystem MTTF to increase resulting in higher 
values for system MTTF. 
 

Table 3. The effect of switch reliability on the MTTF of system and its subsystems 
Subsystem (100) 0.98ρ =  (100) 0.99ρ =  (100) 1.00ρ =  

1 1112.9856 1156.0073 1202.4048 
2 707.6118 720.3037 733.4963 
3 1185.6180 1234.5112 1287.5536 
4 829.6651 853.4262 878.4773 
5 1273.7946 1330.3314 1392.1114 
6 1005.4473 1031.0341 1058.2011 
7 555.5514 563.3788 571.4286 
8 576.7050 588.1781 600.0000 
9 1391.5791 1439.5635 1492.5373 
10 829.6651 853.4262 878.4773 
11 1199.2059 1234.9888 1273.8854 
12 1504.7692 1593.8668 1694.9153 
13 1288.7223 1330.6762 1376.1468 
14 1067.7238 1096.1663 1126.7606 

System MTTF 331.1866 352.0931 376.5041 
 

5- Conclusions 
   Since deriving the exact system reliability function in cold standby redundancy allocation problem is too 
difficult, this problem is usually formulated by considering a convenient lower-bound on system reliability 
as the objective function. For some particular cases, deriving the exact value of system reliability is possible. 
In this study, assuming that component time-to-failure is distributed according to an Erlang distribution and 
working time of switching mechanism follows an exponential distribution, the system reliability is derived 
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analytically through solving a set of differential-difference equations. Utilizing the exact system reliability 
as the objective function, a new mathematical model is presented. A well-known example is solved and it 
is demonstrated that for the particular case, implementing this model results in a meaningful increase in 
system reliability. For future research, the formulation can be extended to allow selection of either active, 
cold standby or mixed redundancy strategies for each subsystem. Moreover, assuming that time-to-failure 
of switching mechanism follows an Erlang distribution is an interesting and applicable generalization. 
Various forms of uncertainty can be also incorporated into the parameters of the proposed model. 
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