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ABSTRACT 
 

A characteristic of data envelopment analysis (DEA) is to allow individual decision making 
units (DMUs) to select the most advantageous weights in calculating their efficiency scores. 
This flexibility, on the other hand, deters the comparison among DMUs on a common base. For 
dealing with this difficulty and assessing all the DMUs on the same scale, this paper proposes 
using a multiple objective linear programming (MOLP) approach for generating a common set 
of weights in the DEA framework.  
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1. INTRODUCTION 

 
Data envelopment analysis (DEA) has been widely applied to measure the relative efficiency of a 
group of homogeneous decision making units (DMUs) with multiple inputs and multiple outputs. Its 
characteristic is to focus on each individual DMU to select the weights attached to the inputs and 
outputs, and to calculate their efficiency scores. 
 
As the mathematical models in DEA are run separately for each DMU, the set of weights will be 
different for the various DMUs, and in some cases, it is unacceptable that the same factor is 
accorded widely differing weights. This flexibility in selecting the weights, deters the comparison 
among DMUs on a common base. A possible answer to this difficulty lies in the specification of a 
common set of weights, which was first introduced by Roll et al.(1991). In other words, the major 
purpose for generating a common set of weights is to provide a common base for ranking the 
DMUs. 
 
Research on the idea of a common set of weights and their rankings has grown gradually in recent 
years. Kao and Hung (2005), based on multiple objective nonlinear programming and by using 
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compromise solution approach, proposed a method to generate a common set of weights for all 
DMUs which are able to produce a vector of efficiency scores closest to the efficiency scores 
calculated from the standard DEA model (ideal solution). Likewise, Jahanshahloo et al.(2005) 
based on multiple objective nonlinear programming and Maximization of the minimum value of the 
efficiency scores, proposed a method to generate a common set of weights for all DMUs. Some of 
the other studies in this field are attributed to Doyle and Green (1994), Karsak and Ahiska (2005), 
Roll and Golany (1993). 
 
The plan for the rest of this paper is as follows. In section 2 we present a brief discussion about 
DEA models and the multiple objective linear programming (MOLP). The mathematical foundation 
of our method for finding a common set of weights and the method itself are discussed in Section 3. 
A Numerical example is presented in section 4 and finally, section 5 draws the conclusive remarks. 
 
2. DEA AND MOLP PRELIMINARIES 

 
Thirty years after the publication of the pioneering paper by Charnes et al.(1978), DEA can safely 
be considered as one of the recent success stories in Operations Research. Interestingly, Charnes 
and Cooper have also developed Goal Programming (GP) that is a multiple objective linear 
programming technique (Charnes and Cooper, 1961). Since the 1970s, MOLP has become a 
popular approach for modeling and analyzing certain types of multiple criteria decision making 
(MCDM) problems. Some work on the interactions between MCDM and DEA, are as follows: 
Bouyssou (1999), Estellita et al.(2004), Giokas (1997), Golany (1988), Joro et al.(1998), Stewart 
(1996), and Xiao and Reeves (1999). 
 
Data Envelopment Analysis 
 
Consider n production units, or DMUs, each of which consumes a varying amount of m inputs to 
produce s outputs. Suppose 0≥xij

denotes the amount consumed by the ith input and 0≥yrj  
denotes the amount produced by the rth output for the jth decision making unit. Then, the following 
set is the production possibility set (PPS) of obviously the most widely used DEA model, CCR, 
with constant returns to scale characteristics: 
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Definition 1: njDMU j ,...,2,1, =

 
is called efficient iff there does not exist another 

( ) T cyx ∈, such that x jx < and y jy > , and is called Pareto efficient iff there does not exist 

another ( ) T cyx ∈, such that x jx ≤  and y jy ≥  and ( ) ( )yx jjyx ,, ≠ . 

 
In DEA, the measure of efficiency of a DMU is defined as a ratio of a weighted sum of outputs to a 
weighted sum of inputs subject to the condition that corresponding ratios for each DMU are less 
than or equal to one. The model chooses nonnegative weights for a DMU in a most favorable way. 
The original model proposed by Charnes et al.(1978), for measuring the efficiency of unit ’p’, is a 
fractional linear program as follows: 
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where ur  and vi are the weights to be applied to the outputs and inputs, respectively. 
The above model can be transformed to a linear program by setting the denominator in the objective 
function equal to an arbitrary constant (e.g., unity) and maximizing the numerator. The resulting 
model, called an input oriented CCR multiplier model (CCRm), is as follows: 
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The optimum solution of the problem is associated to a normalized coefficient ( )uv **,−  of a 
supporting hyperplane (a hyperplane that contains the PPS in only one of the halfspaces and passes 
through at least one of its points). The dual problem of CCRm model called input oriented CCR 
envelopment model (CCRe), will also be used. This model has a strong intuitive appeal and is 
typically the one used to explain and visualize DEA. If θp represents the CCR efficiency of DMUp 
then the CCRe model is 
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A DMU is efficient if and only if the objective function value associated with the optimal solution 
of the problem (1) above equals to unity; otherwise it is inefficient. Moreover, if in the former 
model all variables take a strictly positive value or as in its counterpart in the latter model all slack 
variables are equal to zero, the DMU is Pareto efficient. According to Kao and Hung (2005) and 
based on the solution of model (3), we present the following lemmas. 
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Lemma 1: If θ *
p  is the optimum solution of model (3), then ( )yx ppp ,*θ , called projection of 

DMUp on the efficient frontier, is an efficient virtual DMU. 
Lemma 2:  DMUp is efficient iff there exist a nonnegative coefficient ( ) RR smuv ×∈,  associated 
to the gradient vector of a supporting hyperplane where we have: 
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We now present a brief introduction of MOLP 
 
Multiple Objective Linear Programming 
 
The MOLP problem can be written in the general form as follows: 
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Where Rnx∈ , the objective function matrix R nkC ×∈  and mixgi ,...,2,1,0)( =≤ , are 

linear functions. 
 
In MOLP, an efficient solution is introduced as follows: 
 
Definition 2: Xx ∈* is called an efficient solution (or non-dominated solution) iff there does not 

exist another Xx∈  such that CxCx *≥ and CxCx *≠ . 
 
In order to solve model (4) and identifying the efficient solutions, there are many different methods 
in the literature. One of these methods is Goal Programming which is developed by Charnes and 
Cooper (1961). This method requires the decision maker (DM) to set goals for each objective that 
he/she wishes to attain. A preferred solution is then defined as the one which minimizes the 
deviations from the set of goals. Thus a simple GP formulation is given by: 
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Where f j, j = 1, … , k are objectives; b j  , j=1,...,k are the goals set by the DM for the objectives, 

d j
−  and d j

+ are the under-achievement and over-achievement of the jth goal respectively . The 

value of p is based upon the utility function of the DM. 
 
Now, by combining DEA and MOLP we present a new method for finding a common set of 
weights. 
 
3. A METHOD FOR FINDING A COMMON SET OF WEIGHTS 

 
Kornbluth (1991) noticed that the DEA model could be expressed as a multi-objective linear 
fractional programming problem. The objective function of the model is the same as in the CCR 
model (1) which attempts to maximize the efficiency of all DMUs collectively, instead of one at a 
time by the same constraints. However, the proposed model is nonlinear. Based on Kornbluth’s 
approach some other methods also have been proposed in the literature, all of which are nonlinear. 
In this section, we present an improvement to Kornbluth’s approach by introducing an MOLP for 
finding common weights in DEA. The following model which provides the same results as the CCR 
multiplier model is introduced to find the efficiency value of DMUp. This model has some 
advantages compared to foregoing models that will be discussed later. 
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Where njj ,...,2,1,* =θ  is the optimum value obtained from the CCRe model, when DMUj is 

under consideration. 
 
We present the following theorem to address the optimal solution of the model in (6). 
 
Theorem 1: The optimum value of the model in (6) is zero and for its optimal solution, say

( )vu **, , we have 
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Proof : Since ( )yx ppp ,*θ  is input oriented projection of DMUp on the efficient frontier, hence it 

is efficient. 
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According to the above model and the proposed approach by Kornbluth (1991), The idea behind the 
identification of the common weights is formulated as the maximizing the ratio of outputs to inputs 
for all projected DMUs simultaneously. So we present the following MOLP problem. 
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Furthermore, in order to solve the above MOLP model, we set p=1 and use a goal programming 
with all goals equal to zero. 
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Here, due to the fact that p=1 and model is linear, the last set of constraints in model (5) does not 
appear in the above model. Moreover, the first and the second set of constraints in model (8) force 

d j
+  to take value zero. However, solving the above GP model gives us a common set of weights 

and then the efficiency scores of DMUj , j=1,...,n, can be obtained by using these common weights 

as 
∑

∑

=

=
m
i iji

s
r rjr

xv

yu

1
*

1
*

. If for ( )vu **,  we have 1
1

*
1

*

=
∑

∑

=

=
m
i iji

s
r rjr

xv

yu
, then DMUp is called efficient. 

Based on the work of Kao and Hung (2005) we can propose the following lemma. 
 
Lemma 3: A DMUp which is shown to be efficient by model (8), also is efficient in the input 
oriented CCR model. 
 
On the basis of the solution of model (8) we present the following theorem. 
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Theorem 2: There exists a DMUj , j=1,...,n which is characterized as the efficient DMU by 
model (8). 
 
Proof:. There is a DMUp, { }np ,...,2,1∈  for which the first inequality in (8) is binding. Because, 
if that is not the case, there exists a sufficiently small value 0>ε   for which 
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We know that, ( )yx ppp ,*θ  is efficient. Therefore, (u,v) is associated with the gradient vector of a 

supporting hyperplane. Furthermore, this supporting hyperplane must support the PPS at some 
extreme efficient DMUs. Therefore, such a DMUs is indicated to be efficient by the model (8). 
 
Roll et al.(1991) and Golany and Yu (1995) show that a general requirement for the common set of 
weights is that it explains a high portion of  any DMU’s performance. This requirement implies that 
at least one DMU must attain efficiency 1 with the common weights. If there is no DMU with 
efficiency score 1, then it is obvious that the efficiency scores are under-estimated based on relative 
comparison with the highest efficiency actually observed. More importantly, there is no way to 
know whether the production frontier appropriately represents the sampled DMUs. In this sense, the 
efficiency scores obtained from the proposed method are not under-estimated and will satisfy the 
general requirement. If the first set of constraints in model (8) are eliminated, and we let d j

+  take a 

value greater than zero, a complete ranking of DMUs will be obtained. In other words, by using the 

efficiency scores 
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for each DMUp, p=1,...,n, the DMUs can be characterized in three 

groups: Super efficient, efficient and inefficient. 
 
4. NUMERICAL EXAMPLE 

 
To illustrate the merits of the proposed approach, we choose an example from Kao and Hung 
(2005). In that example, 17 forest districts (DMUs); four inputs (I1-I4): budget (in US dollars), 
initial stocking (in cubic meters), labor (in number of employees), and land (in hectares); and three 
outputs (O1-O3): main product (in cubic meters), soil conservation (in cubic meters), and recreation 
(in number of visits) are considered for measuring the efficiency. 
 
Table 1 contains the original data, while Table 2 shows the common set of weights generated by  
the proposed method (GP), with respect to inputs and outputs. Furthermore, Table 3 shows the 
efficiency scores of the 17 forest districts calculated from the CCR Model, efficiency scores of the 
compromise solution approach by Kao and Hung (2005), and the efficiency scores of the GP 
approach in this paper, respectively. 
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Table 1. Input and output data for the 17 forest districts in Taiwan. 
 

DMUs I1 I2 I3 I4 O1 O2 O3 

1 51.62 11.23 49.22 33.52 40.49 14.89 3166.71 

2 85.78 123.98 55.13 108.46 43.51 173.93 6.45 

3 66.65 104.18 257.09 13.65 139.74 115.96 0 

4 27.87 107.6 14 146.43 25.47 131.79 0 

5 51.28 117.51 32.07 84.5 46.2 144.99 0 

6 36.05 193.32 59.52 8.23 46.88 190.77 822.92 

7 25.83 105.8 9.51 227.2 19.4 120.09 0 

8 123.02 82.44 87.35 98.8 43.33 125.84 404.69 

9 61.95 99.77 33 86.37 45.43 79.6 1252.6 

10 80.33 104.65 53.3 79.06 27.28 132.49 42.67 

11 205.92 183.49 144.16 59.66 14.09 196.29 16.15 

12 82.09 104.94 46.51 127.28 44.87 108.53 0 

13 202.21 187.74 149.39 93.65 44.97 184.77 0 

14 67.55 82.83 44.37 60.85 26.04 85 23.95 

15 72.6 132.73 44.67 173.48 5.55 135.65 24.13 

16 84.83 104.28 159.12 171.11 11.53 110.22 49.09 

17 71.77 88.16 69.19 123.14 44.83 74.54 6.14 
 

Table 2. A common set of weights generated from GP method. 
 

v1 v2 v3 v4 u1 u2 u3 
0.20026 0.34628 0.00010 0.03421 0.06658 0.35022 0.00236 

 
The CCR efficiency scores are the highest values that the districts can attain, and there are nine 
efficient units which cannot be differentiated. Regarding the compromise solution approach (Kao 
and Hung, 2005) three values of p, viz., 1, 2, and ∞ , have been considered and the results are 
referred to as MAD, MSE and MAX. 
 
The common sets of weights generated from these four models, on whose basis the efficiency 
scores of every district are calculated, are different sets of weights due to the fact that they are 
obtained from different viewpoints. Therefore, it is inappropriate to say which weights are correct 
and which are not. But, as Kao and Hung (2005) mention, the property that the distance between the 
vector of efficiency scores calculated from the compromise solution approach to the efficiency 
scores calculated from the standard DEA model, is the shortest in the Euclidean space, suggests that 
p=2 is the most suitable choice in compromise solution approach. Therefore, to be conservative, 
p=2 is a better choice than p=1 and ∞ . We can also use correlation to obtain Spearman’s ρ (rank 
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correlation coefficient). Like the Pearson product moment correlation coefficient, Spearman’s ρ is a 
measure of the relationship between two variables. However, Spearman’s ρ is calculated on ranked 
data. 
 

Table 3. Efficiency scores and the associated rankings (in parentheses) calculated from the CCR 
ratio model for different methods of common weights.  

*Results obtained from Kao and Hung (2005). 
 

DMUs CCR MAD* MSE* MAX* GP 
1 1.0000(1) 1.0000(1) 1.0000(1) 1.0000(1) 1.0000(1) 
2 1.0000(1) 1.0000(1) 1.0000(1) 1.0000(1) 1.0000(1) 
3 1.0000(1) 1.0000(1) 0.9989(3) 0.7231(11) 1.0000(1) 
4 1.0000(1) 1.0000(1) 0.9927(4) 0.8984(4) 1.0000(1) 
5 1.0000(1) 0.9747(5) 0.9866(5) 1.0000(1) 1.0000(1) 
6 1.0000(1) 0.8524(9) 0.9123(6) 0.8692(7) 0.9654(6) 
7 1.0000(1) 0.9244(6) 0.8849(7) 0.7432(9) 0.8743(8) 
8 1.0000(1) 0.8954(7) 0.8707(9) 0.8939(5) 0.8469(9) 
9 1.0000(1) 0.6619(14) 0.6690(14) 0.7230(12) 0.6783(13) 

10 0.9403(10) 0.8721(8) 0.8768(8) 0.8761(6) 0.8779(7) 
11 0.9346(11) 0.6398(15) 0.6518(15) 0.6577(13) 0.6526(15) 
12 0.8290(12) 0.7456(10) 0.7282(10) 0.7594(8) 0.7175(11) 
13 0.7997(13) 0.6229(17) 0.6260(16) 0.6453(14) 0.6227(16) 
14 0.7733(14) 0.7140(12) 0.7142(12) 0.7406(10) 0.7126(12) 
15 0.7627(15) 0.7245(11) 0.7210(11) 0.6410(15) 0.7215(10) 
16 0.7435(16) 0.6996(13) 0.6811(13) 0.4665(17) 0.6696(14) 
17 0.6873(17) 0.6310(16) 0.6068(17) 0.5908(16) 0.5925(17) 

Average 0.910 0.821 0.819 0.778 0.819 
 
For calculating spearman’s ρ  we can use the following formulation in which di  is the difference 
between ranks for the same observation (DMU) and n is the number of DMUs. 
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Empirically, in this example the spearman’s correlation between the set of efficiency scores of the 
GP method and MSE (where p=2), is greater than 95%. However, GP approach needs to solve a 
linear problem and this is its advantage of it over the Kao and Hung’s approach, which has to solve 
a nonlinear problem. In general, the rankings of these four methods, as shown in parentheses in 
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Table 3, are consistent with those of the CCR model, indicating that the results are reasonable. In 
addition, they are more informative. Not only do they differentiate the efficient units, but also detect 
some abnormal efficiency scores calculated from the CCR model. The efficiency scores obtained 
for districts 9 and 11 are two of such examples. 
 
5. CONCLUSIONS 

 
The flexibility in the choice of weights is both a weakness and a matter of strength for DEA 
approach. It is a weakness because it tends to deter the comparison among DMUs on a common 
basis. This flexibility is also a sign of strength, however, for if a unit turns out to be inefficient even 
when the most favorable weights have been incorporated in its efficiency measure, then this is a 
strong statement and in particular the argument that, the weights are incorrect is not tunable.  
 
For dealing with this difficulty and assessing all the DMUs on the same scale, this paper proposes 
the application of goal programming approach for generating common set of weights. There are 
other methods in the literature which are also able to generate common weights. A case taken from 
Kao and Hung (2005) is solved to investigate the differences among these methods and some 
conclusions are derived. 
 
Solving linear problems is an advantage of the proposed approach against general approaches in the 
literature which are based on solving nonlinear problems. When weights of the input/output factors 
are available, efficiency scores can be measured. Moreover, all DMU’s can be ranked in terms of a 
common basis. Compared to the original DEA model, this approach discriminates in a better way 
among DMU’s in order to yield the less efficient ones. As in the conventional DEA model, it does 
not require the formulation of n models. In fact, the efficiencies of all DMU’s can be calculated by 
solving a single model, enabling one to evaluate the relative efficiency of every DMU on a common 
weight basis. Finally, with appropriate modifications, the proposed method, can simply be 
generalized to other DEA models. 
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